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VECTORIZATION

* The process of converting an algorithm's scalar implementation that
processes a single pair of operands at a time, to a vector
implementation that processes one operation on multiple pairs of
operands at once.

OOOOOOOOOOOOOOOOO
------



WHY THIS MATTERS

e Say we can parallelize our algorithm over 32 cores.
* Each core has a 4-wide SIMD registers.

* Potential Speed-up: 32x x 4x = 128x
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MULTI-CORE CPUS

e Use a small number of high-powered cores.

* Intel Xeon Skylake / Kaby Lake
* High power consumption and area per core.

* Massively superscalar and aggressive out-of-order execution
* Instructions are issued from a sequential stream.
e Check for dependencies between instructions.
* Process multiple instructions per clock cycle.
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SINGLE INSTRUCTION, MULTIPLE DATA

A class of CPU instructions that allow the processor to perform the
same operation on multiple data points simultaneously.

* All major ISAs have microarchitecture support SIMD operations.
* x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512

* PowerPC: Altivec
* ARM: NEON, SVE

OOOOOOOOOOOOOOOOO
......


https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve

SIMD EXAMPLE

X+Y=2
X1] [V
X2 (4| Y2
%] Vs

X11Y,
X1y,

for (i=0; i<n; i++) {
Z[1] = X[1] + Y[1];

\
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SIMD INSTRUCTIONS (1)

* Data Movement
* Moving data in and out of vector registers

* Arithmetic Operations

* Apply operation on multiple data items (e.g., 2 doubles, 4 floats, 16 bytes)
 Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

* Logical Instructions

* Logical operations on multiple data items
 Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS
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SIMD INSTRUCTIONS (2)

 Comparison Instructions

 Comparing multiple data items (==,<,<=,>,>=, ! =)
* Shuffle instructions

 Move data in between SIMD registers

* Miscellaneous
* Conversion: Transform data between x86 and SIMD registers.

e Cache Control: Move data directly from SIMD registers to memory (bypassing
CPU cache).
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Source: James Reinders

INTEL SIMD EXTENSIONS
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Width Integers Single-P Double-P
1997 MMX 64 bits v
1999 SSE 128 bits v v (x4)
2001 SSE2 128 bits v v v (x2)
2004 SSE3 128 bits v v v
2006 SSSE 3 128 bits v v v
2006 SSE 4.1 128 bits v v v
2008 SSE 4.2 128 bits v v v
2011 AVX 256 bits v v (x8) v (x4)
2013 AVX2 256 bits v v v
2017  AVX-512 512 bits v Vv (x16) Vv (x8)


https://www.youtube.com/watch?v=_OJmxi4-twY

SIMD TRADE-OFFS

* Advantages:

* Significant performance gains and resource utilization if an algorithm can be
vectorized.

* Disadvantages:
* Implementing an algorithm using SIMD is still mostly a manual process.

* SIMD may have restrictions on data alignment.

* Gathering data into SIMD registers and scattering it to the correct locations is
tricky and/or inefficient.
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VECTORIZATION

* Choice #1: Automatic Vectorization Ease of Use

* Choice #2: Compiler Hints

* Choice #3: Explicit Vectorization Programmer
Control

Source: James Reinders



https://www.youtube.com/watch?v=_OJmxi4-twY

AUTOMATIC VECTORIZATION

* The compiler can identify when instructions inside of a loop can be
rewritten as a vectorized operation.

* Works for simple loops only and is rare in database operators.
Requires hardware support for SIMD instructions.
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AUTOMATIC VECTORIZATION

void add(int =X, * This loop is not legal to
int Y, automatically vectorize.
int *72) {&—— *7=%X+]

for (int i=0; i<MAX; i++) {

Z[il = X[il + Y[il: * The code is written such that the
} ‘\'\ / addition is described sequentially.
)
N
These might point
to the same

address!

OOOOOOOOOOOOOOOOO
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COMPILER HINTS

* Provide the compiler with additional information about the code to
let it know that is safe to vectorize.

* Two approaches:
* Give explicit information about memory locations.
 Tell the compiler to ignore vector dependencies.
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COMPILER HINTS

void add(int *restrict X, * The restrict keyword in C++
int *restrict v, tells the compiler that the arrays
int *restrict 7) { are distinct locations in memory.

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
}
}
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COMPILER HINTS

void add(int =X, * This pragma tells the compiler to
int =Y, ignore loop dependencies for the
int *Z) { vectors.

#pragma ivdep
for (int i=0; i<MAX; i++) { o
Z[i1 = X[i] + Y[il; * It’s up to you make sure that this is
} correct.
3
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EXPLICIT VECTORIZATION

* Use CPU intrinsics to manually marshal data between SIMD registers
and execute vectorized instructions.

e Potentially not portable.
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EXPLICIT VECTORIZATION

void add(int *X, . Sto!'e the vectors in 128-bit SIMD
int xY, registers.

int *Z2) {

—-mm128i *vecX = (__m128ix)X;  Then invoke the intrinsic to add
__mm128i *vecY = (__m128ix*)Y;

T Im28i *vecZ = (_m1281%)Z; together the vectors and.wrlte
for (int i=0; i<MAX/4: i++) { them to the output location.
_mm_store_si128(vecZ++,

Y _mm_add_epi32(*vecX++,
G xvecY++)):

OOOOOOOOOOOOOOOOO
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VECTORIZATION DIRECTION

* Approach #1: Horizontal L
* Perform operation on all elements _.
together within a single vector.
* Approach #2: Vertical ol11213
* Perform operation in an elementwise
manner on elements of each vector. ID Aa’ —

IERENEN

Source: Przemystaw Kar pinski



https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

EXPLICIT VECTORIZATION

* Linear Access Operators
* Predicate evaluation
* Compression

e Ad-hoc Vectorization
* Sorting
* Merging

 Composable Operations

* Multi-way trees
 Bucketized hash tables

Source: Orestis Polychroniou



http://www.cs.columbia.edu/~orestis

VECTORIZED DBMS ALGORITHMS

* Principles for efficient vectorization by using fundamental vector
operations to construct more advanced functionality.
* Favor vertical vectorization by processing different input data per lane.

* Maximize lane utilization by executing unique data items per lane subset (i.e.,
no useless computations).

~~ | RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015
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https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

FUNDAMENTAL OPERATIONS

e Selective Load
* Selective Store
e Selective Gather

* Selective Scatter

OOOOOOOOOOOOOOOOO
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FUNDAMENTAL VECTOR OPERATIONS

Selective Load

Vector

Mask

Memory
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FUNDAMENTAL VECTOR OPERATIONS

Selective Gather Selective Scatter
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ISSUES

e Gathers and scatters are not really executed in parallel because the L1
cache only allows one or two distinct accesses per cycle.

e Gathers are only supported in newer CPUs.

* Selective loads and stores are also implemented in Xeon CPUs using
vector permutations.
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https://software.intel.com/en-us/node/683481

VECTORIZED OPERATORS

e Selection Scans
 Hash Tables
e Partitioning / Histograms

* Paper provides additional vectorized algorithmes:
* Joins, Sorting, Bloom filters.

~~ | RETHINKING SIMD VECTORIZATION FOR IN-

MEMORY DATABASES

SIGMOD 2015
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https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
1 =0 1 =20
for t in table: for t in table:
key = t.key copy(t, output[i])
if (key=low) &% (keyshigh): key = t.key
copy(t, outputl[i]) m = (key=low ? 1 : 0) &
i=1+1 Y (key<high ? 1 : 0)
1 =1 +m

SELECT * FROM table
WHERE key >= $low AND key <= $high

Source: Bogdan Raducanu
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https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS
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https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Vectorized
ID @ KEY Key Vector
i=0 1 J
[for v, in table: 2 0
simdLoad(v,.key, V) 2 \S(
v, = (vi2low 2 1 : 0) &
Y (ve<shigh 21 @ 0) 5 U Mask
simdStore(v,, v,, output[i]) 6 X E
i=1+ |v#false| All Offsets

SELECT * FROM table

WHERE key >= "0" AND key <= "U" Matched Offsets
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SELECTION SCANS

@ Scalar (Branching)
@ Scalar (Branchless)
MIC (Xeon Phi 7120P — 61 Cores + 4xHT)

A

Memory
. Bandwidth

Throughput
(billion tuples / sec)

4 R Selectivity (%) Selectivity (%)



HASH TABLES — PROBING

Scalar ) )
Limewmr Pratbimy
Input Key  hash(key) Hash Index Buckéd{tixsld Tdodb Table
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HASH TABLES — PROBING

Vectorized (Vertical)

Linear Probing

Input Key hash{key) Hash Index Hash Table
k99
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k88
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HASH TABLES — PROBING

@ Scalar A Vectorized (Horizontal) l Vectorized (Vertical)

MIC (Xeon Phi 7120P — 61 Cores + 4xHT) Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
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PARTITIONING — HISTOGRAM

* Use scatter and gathers to increment counts.
* Replicate the histogram to handle collisions.

'"ﬁé’cttgfy Ha‘s}g Clttz,ar’ex HisReghmoted Histogram Histogram
k1 » hl =
k2 » h2 & +1 o o +1
k3 » h3 y—ﬁ? +1 +1 o +2
k4 » h4 >
\\’TTM +1 > +1
S —

# of Vector Lanes
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JOINS

* No Partitioning

* Build one shared hash table using atomics
 Partially vectorized

* Min Partitioning
 Partition building table

* Build one hash table per thread
 Fully vectorized

* Max Partitioning

e Partition both tables repeatedly
* Build and probe cache-resident hash tables
 Fully vectorized

OOOOOOOOOOOOOOOOO
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