CS 6530: Advanced Database Systems Fall 2024

Lecture 15
Vectorization

Prashant Pandey

prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO
% ;

http://prashant.pandey@utah.edu

VECTORIZATION

* The process of converting an algorithm's scalar implementation that
processes a single pair of operands at a time, to a vector
implementation that processes one operation on multiple pairs of
operands at once.

OOOOOOOOOOOOOOOOO

WHY THIS MATTERS

e Say we can parallelize our algorithm over 32 cores.
* Each core has a 4-wide SIMD registers.

* Potential Speed-up: 32x x 4x = 128x

OOOOOOOOOOOOOOOOO

MULTI-CORE CPUS

e Use a small number of high-powered cores.

* Intel Xeon Skylake / Kaby Lake
* High power consumption and area per core.

* Massively superscalar and aggressive out-of-order execution
* Instructions are issued from a sequential stream.
e Check for dependencies between instructions.
* Process multiple instructions per clock cycle.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SINGLE INSTRUCTION, MULTIPLE DATA

A class of CPU instructions that allow the processor to perform the
same operation on multiple data points simultaneously.

* All major ISAs have microarchitecture support SIMD operations.
* x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512

* PowerPC: Altivec
* ARM: NEON, SVE

OOOOOOOOOOOOOOOOO
......

https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve

SIMD EXAMPLE

X+Y=2
X1] [V
X2 (4| Y2
%] Vs

X11Y,
X1y,

for (i=0; i<n; i++) {
Z[1] = X[1] + Y[1];

\

128-bit SIMD Register

SN NN M SN NI NN NN JEY = INDWIA OO | |00

8[7]6]5
413[2] 1 Z
D
» 9[8[7]6[5]4]3]2
7/ 128-bit SIMD Register
111111
128-bit SIMD Register

SIMD INSTRUCTIONS (1)

* Data Movement
* Moving data in and out of vector registers

* Arithmetic Operations

* Apply operation on multiple data items (e.g., 2 doubles, 4 floats, 16 bytes)
 Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

* Logical Instructions

* Logical operations on multiple data items
 Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS

OOOOOOOOOOOOOOOOO
% ;

SIMD INSTRUCTIONS (2)

 Comparison Instructions

 Comparing multiple data items (==,<,<=,>,>=, ! =)
* Shuffle instructions

 Move data in between SIMD registers

* Miscellaneous
* Conversion: Transform data between x86 and SIMD registers.

e Cache Control: Move data directly from SIMD registers to memory (bypassing
CPU cache).

OOOOOOOOOOOOOOOOO

Source: James Reinders

INTEL SIMD EXTENSIONS

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Width Integers Single-P Double-P
1997 MMX 64 bits v
1999 SSE 128 bits v v (x4)
2001 SSE2 128 bits v v v (x2)
2004 SSE3 128 bits v v v
2006 SSSE 3 128 bits v v v
2006 SSE 4.1 128 bits v v v
2008 SSE 4.2 128 bits v v v
2011 AVX 256 bits v v (x8) v (x4)
2013 AVX2 256 bits v v v
2017 AVX-512 512 bits v Vv (x16) Vv (x8)

https://www.youtube.com/watch?v=_OJmxi4-twY

SIMD TRADE-OFFS

* Advantages:

* Significant performance gains and resource utilization if an algorithm can be
vectorized.

* Disadvantages:
* Implementing an algorithm using SIMD is still mostly a manual process.

* SIMD may have restrictions on data alignment.

* Gathering data into SIMD registers and scattering it to the correct locations is
tricky and/or inefficient.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

VECTORIZATION

* Choice #1: Automatic Vectorization Ease of Use

* Choice #2: Compiler Hints

* Choice #3: Explicit Vectorization Programmer
Control

Source: James Reinders

https://www.youtube.com/watch?v=_OJmxi4-twY

AUTOMATIC VECTORIZATION

* The compiler can identify when instructions inside of a loop can be
rewritten as a vectorized operation.

* Works for simple loops only and is rare in database operators.
Requires hardware support for SIMD instructions.

OOOOOOOOOOOOOOOOO
......

AUTOMATIC VECTORIZATION

void add(int =X, * This loop is not legal to
int Y, automatically vectorize.
int *72) {&—— *7=%X+]

for (int i=0; i<MAX; i++) {

Z[il = X[il + Y[il: * The code is written such that the
} ‘\'\ / addition is described sequentially.
)
N
These might point
to the same

address!

OOOOOOOOOOOOOOOOO
| SITY

COMPILER HINTS

* Provide the compiler with additional information about the code to
let it know that is safe to vectorize.

* Two approaches:
* Give explicit information about memory locations.
 Tell the compiler to ignore vector dependencies.

OOOOOOOOOOOOOOOOO
......

COMPILER HINTS

void add(int *restrict X, * The restrict keyword in C++
int *restrict v, tells the compiler that the arrays
int *restrict 7) { are distinct locations in memory.

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
}
}

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

COMPILER HINTS

void add(int =X, * This pragma tells the compiler to
int =Y, ignore loop dependencies for the
int *Z) { vectors.

#pragma ivdep
for (int i=0; i<MAX; i++) { o
Z[i1 = X[i] + Y[il; * It’s up to you make sure that this is
} correct.
3

OOOOOOOOOOOOOOOOO
% ;

EXPLICIT VECTORIZATION

* Use CPU intrinsics to manually marshal data between SIMD registers
and execute vectorized instructions.

e Potentially not portable.

OOOOOOOOOOOOOOOOO

EXPLICIT VECTORIZATION

void add(int *X, . Sto!'e the vectors in 128-bit SIMD
int xY, registers.

int *Z2) {

—-mm128i *vecX = (__m128ix)X; Then invoke the intrinsic to add
__mm128i *vecY = (__m128ix*)Y;

T Im28i *vecZ = (_m1281%)Z; together the vectors and.wrlte
for (int i=0; i<MAX/4: i++) { them to the output location.
_mm_store_si128(vecZ++,

Y _mm_add_epi32(*vecX++,
G xvecY++)):

OOOOOOOOOOOOOOOOO
1 SITY

VECTORIZATION DIRECTION

* Approach #1: Horizontal L
* Perform operation on all elements _.
together within a single vector.
* Approach #2: Vertical ol11213
* Perform operation in an elementwise
manner on elements of each vector. ID Aa’ —

IERENEN

Source: Przemystaw Kar pinski

https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

EXPLICIT VECTORIZATION

* Linear Access Operators
* Predicate evaluation
* Compression

e Ad-hoc Vectorization
* Sorting
* Merging

 Composable Operations

* Multi-way trees
 Bucketized hash tables

Source: Orestis Polychroniou

http://www.cs.columbia.edu/~orestis

VECTORIZED DBMS ALGORITHMS

* Principles for efficient vectorization by using fundamental vector
operations to construct more advanced functionality.
* Favor vertical vectorization by processing different input data per lane.

* Maximize lane utilization by executing unique data items per lane subset (i.e.,
no useless computations).

~~ | RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

FUNDAMENTAL OPERATIONS

e Selective Load
* Selective Store
e Selective Gather

* Selective Scatter

OOOOOOOOOOOOOOOOO

FUNDAMENTAL VECTOR OPERATIONS

Selective Load

Vector

Mask

Memory

OOOOOOOOOOOOOOOOO

A

C

V

|

0

|

0

1

=

U

V

W

X

Memory

Mask

Vector

Selective Store

B

D

W

N

%)

%)

A

00 |—b I

C

O [— R

FUNDAMENTAL VECTOR OPERATIONS

Selective Gather Selective Scatter

|

@ 1 2 3 4
Memory |U|B|A|D]|Y

i

) |u
°
°
°

Value Vector

R — <
9 [S———) N
W f——p1 XX

Index Vector | 2 Index Vector | 211|5]| 3
\A \A
~ L 111
Memory (U|VIW|[X|Y|Z|oee Value Vector |A|B|C|D
© 1 2 3 4 5

OOOOOOOOOOOOOOOOO

ISSUES

e Gathers and scatters are not really executed in parallel because the L1
cache only allows one or two distinct accesses per cycle.

e Gathers are only supported in newer CPUs.

* Selective loads and stores are also implemented in Xeon CPUs using
vector permutations.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

https://software.intel.com/en-us/node/683481

VECTORIZED OPERATORS

e Selection Scans
 Hash Tables
e Partitioning / Histograms

* Paper provides additional vectorized algorithmes:
* Joins, Sorting, Bloom filters.

~~ | RETHINKING SIMD VECTORIZATION FOR IN-

MEMORY DATABASES

SIGMOD 2015

OOOOOOOOOOOOOOOOO

https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
1 =0 1 =20
for t in table: for t in table:
key = t.key copy(t, output[i])
if (key=low) &% (keyshigh): key = t.key
copy(t, outputl[i]) m = (key=low ? 1 : 0) &
i=1+1 Y (key<high ? 1 : 0)
1 =1 +m

SELECT * FROM table
WHERE key >= $low AND key <= $high

Source: Bogdan Raducanu

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

)

o 12 l

§ 10 | R branching —

™~ g | - —nobranching ——

Q5|

>

O 4+ — S R o

o> 27

o 0 . . .

© 0 20 40 60 80
Selectivity

100

Source: Bogdan Raducanu

https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Vectorized
ID @ KEY Key Vector
i=0 1 J
[for v, in table: 2 0
simdLoad(v,.key, V) 2 \S(
v, = (vi2low 2 1 : 0) &
Y (ve<shigh 21 @ 0) 5 U Mask
simdStore(v,, v,, output[i]) 6 X E
i=1+ |v#false| All Offsets

SELECT * FROM table

WHERE key >= "0" AND key <= "U" Matched Offsets

OOOOOOOOOOOOOOOOO 32

UNIVERSITY OF UTAH

SELECTION SCANS

@ Scalar (Branching)
@ Scalar (Branchless)
MIC (Xeon Phi 7120P — 61 Cores + 4xHT)

A

Memory
. Bandwidth

Throughput
(billion tuples / sec)

4 R Selectivity (%) Selectivity (%)

HASH TABLES — PROBING

Scalar))
Limewmr Pratbimy
Input Key hash(key) Hash Index Buckéd{tixsld Tdodb Table

k1l — hl

i

k1 | =|k9|k3|k8|k1

Vectorized (Horizontal)

Input Key hash(key) Hash Index /
) B 0lo|o|1}

Matc
Maslk k1 ——
Four Keys Four Values

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

HASH TABLES — PROBING

Vectorized (Vertical)

Linear Probing

Input Key hash{key) Hash Index Hash Table
k99
k5 h5
k2 h2+1 BT K1 = 1 —
k3 h3+1 = N9~ 9
k6 he F———k3ps 8 » k6
kd | = | kA= 1)
SIMD Compo\ =
k88

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

HASH TABLES — PROBING

@ Scalar A Vectorized (Horizontal) l Vectorized (Vertical)

MIC (Xeon Phi 7120P — 61 Cores + 4xHT) Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
12 2
1.8
- -
§ 9 - § 1.6
£3 £512
D Q ¢ - D Q 1
5 2 § 2 0.8
S S Out of Cache S 8,6
= 3 : . =
S S 0.4 Out of Cache
0.2
O T T T T T T 1 0 T T T T T T 1
I I I R R T XUOL® OO RN ® W
SN ,L%‘O* IS IR R WG b ,f;o\'* AN NG

36

SCHOOL OF COMPUTING Ha sh Ta b Ie S i ze H a$h Table SiZ e

UNIVERSITY OF UTAH

PARTITIONING — HISTOGRAM

* Use scatter and gathers to increment counts.
* Replicate the histogram to handle collisions.

'"ﬁé’cttgfy Ha‘s}g Clttz,ar’ex HisReghmoted Histogram Histogram
k1 » hl =
k2 » h2 & +1 o o +1
k3 » h3 y—ﬁ? +1 +1 o +2
k4 » h4 >
\\’TTM +1 > +1
S —

of Vector Lanes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

JOINS

* No Partitioning

* Build one shared hash table using atomics
 Partially vectorized

* Min Partitioning
 Partition building table

* Build one hash table per thread
 Fully vectorized

* Max Partitioning

e Partition both tables repeatedly
* Build and probe cache-resident hash tables
 Fully vectorized

OOOOOOOOOOOOOOOOO
......

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

	Slide 1: Lecture 15 Vectorization
	Slide 2: VECTORIZATION
	Slide 3: WHY THIS MATTERS
	Slide 4: MULTI-CORE CPUS
	Slide 7: SINGLE INSTRUCTION, MULTIPLE DATA
	Slide 8: SIMD EXAMPLE
	Slide 10: SIMD INSTRUCTIONS (1)
	Slide 11: SIMD INSTRUCTIONS (2)
	Slide 12: INTEL SIMD EXTENSIONS
	Slide 13: SIMD TRADE-OFFS
	Slide 14: VECTORIZATION
	Slide 15: AUTOMATIC VECTORIZATION
	Slide 16: AUTOMATIC VECTORIZATION
	Slide 17: COMPILER HINTS
	Slide 18: COMPILER HINTS
	Slide 19: COMPILER HINTS
	Slide 20: EXPLICIT VECTORIZATION
	Slide 21: EXPLICIT VECTORIZATION
	Slide 22: VECTORIZATION DIRECTION
	Slide 23: EXPLICIT VECTORIZATION
	Slide 24: VECTORIZED DBMS ALGORITHMS
	Slide 25: FUNDAMENTAL OPERATIONS
	Slide 26: FUNDAMENTAL VECTOR OPERATIONS
	Slide 27: FUNDAMENTAL VECTOR OPERATIONS
	Slide 28: ISSUES
	Slide 29: VECTORIZED OPERATORS
	Slide 30: SELECTION SCANS
	Slide 31: SELECTION SCANS
	Slide 32: SELECTION SCANS
	Slide 33: SELECTION SCANS
	Slide 34: HASH TABLES – PROBING
	Slide 35: HASH TABLES – PROBING
	Slide 36: HASH TABLES – PROBING
	Slide 37: PARTITIONING – HISTOGRAM
	Slide 38: JOINS
	Slide 42

