
Lecture 16
Query optimization

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu


So, what is query optimization and how 

does it work?



Meet Query Optimization

A given LQP could have several possible 

PQPs with very different runtime performance
Basic Idea:

Get the optimal (fastest) PQP for a given LQPGoal (Ideal):

Goal (Realistic): Fine, just avoid the “clearly awful” PQPs!

Query optimization is a metaphor

for life itself! It is often hard to even

know what an optimal plan would

be, but it is feasible to avoid many

obviously bad plans!Jeff Naughton
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❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)
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Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views
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To Scheduler/Executor

Catalog



System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)

❖ For each Relation: 

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

❖ For each Index: 

Index name, Structure (B+ tree vs. hash, etc.); Index key

❖ For each View: 

View name, and View definition



Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)

❖ For each Table R:

Cardinality, i.e., number of tuples, NTuples (R)

Size, i.e., number of pages, NPages (R), or just NR

❖ For each Index X:

Cardinality, i.e., number of distinct keys IKeys (X)

Size, i.e., number of pages IPages (X) (for a B+ tree, 

this is the number of leaf pages only)

Height (for tree indexes) IHeight (X)

Min and max keys in index ILow (X), IHigh (X)
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File Scan

Read Index leaf pages

Movies Table

File Scan

Read heapfile

RatingsTable

Hash Join

Hash-based 

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table Concept: Pipelining

Q: Does the hash-based 

aggregate have to wait 

till the entire output of 

the “upstream” hash join 

is available?

No! We can 

“pipeline” the output

of the join – pass on 

a join output tuple as 

soon as it is obtained!



Concept: Pipelining

Do not force “downstream” physical operators 

to wait till the entire output is available
Basic Idea:

Display output to the user incrementally

CPU Parallelism in multi-core systems!
Benefits:

Tuples

File Scan

Hash Join

Hash-based

Aggregate



Concept: Pipelining

❖ Crucial for PQPs with workflow of many phy. ops.

❖ Common feature of almost all RDBMSs

❖Works for many operators: SCAN, HASH JOIN, etc.

Q: Are all physical operators amenable to pipelining?

No! Some may “stall” the pipeline: “Blocking Op”

Usually, any phy. op. involving sorting is blocking!

A blocking op. requires its output to be Materialized

as a temporary table



File Scan

Read heapfile

Movies Table

File Scan

Read heapfile

RatingsTable

Sort-Merge Join

Hash-based 

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table Blocking Op

This phy. op. is blocking 

because we need to sort 

Movies and sort Ratings 

(materialize the output) 

before we can start any 

aggregate computations!
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Mechanism: Iterator Interface

❖ Software API to process PQP; makes pipelining easy to impl.

❖ Enables us to abstract away individual phy. op. impl. details

❖ Three main functions in usage interface of each phy. op.:

Open(): Initialize the phy. op. “state”, get arguments

Allocate input and output buffers 

GetNext(): Ask the phy. op. impl. to “deliver” next

output tuple; pass it on; if blocking, wait

Close(): Clear phy. op. state, free up space



Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views



Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan

(Optimized)

Parser

Plan 

Enumerator

Plan Cost

Estimator

Optimizer

To Scheduler/Executor

Catalog



Enumerating Alternative PQPs

❖ Plan Enumerator explores various PQPs for a given LQP

❖ Challenge: Space of plans is huge! How to make it 

feasible?

❖ RDBMS Plan Enumerator has Rules to help determine what 

plans to enumerate, and also consults Cost models

❖ Two main sources of Rules for enumerating plans:

Logical: Algebraic Rewrites:

Use relational algebra equivalence to rewrite LQP itself!

Physical: Choosing Phy. Op. Impl.:

Use different phy. op. impl. for a given log. op. in LQP
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Algebraic Rewrite Rules

❖ Rewrite a given RA query in to another that is equivalent (a 

logical property) but might be faster (a physical property)

❖ RA operators have some formal properties we can exploit

❖We will cover only a few rewrite rules:

Single-operator Rewrites

Unary operators

Binary operators

Cross-operator Rewrites



Unary Operator Rewrites

Q: Why are cascading rewrites beneficial?

❖ Key unary operators in RA: 

❖ Commutativity of 

❖ Cascading of 

❖ Cascading of 



Binary Operator Rewrites

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

❖ Key binary operator in RA: 

❖ Associativity of

❖ Commutativity of 



Cross-Operator Rewrites

❖ Commuting      and 

❖ Combining      and 

❖ “Pushing the select”

❖ Commuting      with     and 
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Choosing Phy. Op. Impl.

3 options 3 options 4 options = 36 PQPs!

Q: With algebraic 

rewrites?!

❖ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

❖ Recall various RA op. impl. with their I/O (and CPU costs)

File scan vs Indexed (B+ Tree vs Hash)

Hashing-based vs Sorting-based vs Indexed

BNLJ vs INLJ vs SMJ vs HJ

etc.



Phy. Op. Impl.: Other Factors

❖ Are the indexes clustered or unclustered?

❖ Are there multiple matching indexes? Use multiple?

❖ Are index-only access paths possible for some ops?

❖ Are there “interesting orderings” among the inputs?

❖Would sorted outputs benefit downstream ops?

❖ Estimation of cardinality of intermediate results!

❖ How best to reorder multi-table joins?

Still a hard, open 

research problem!
Query optimizers are complex beasts!



Phy. Op. Impl.: Join Orderings

❖ Since joins are associative, exponential number of orderings!

Left Deep tree Right Deep tree

“Bushy” tree

❖ Almost all RDBMSs consider only left deep join trees

Enables easy pipelining! Why?

❖ “Interesting orderings” idea from System R optimizer paper

❖ Dynamic program to combine enumeration and costing
“Access Path Selection in a Relational Database Management System” SIGMOD’79
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Costing PQPs

❖ For each PQP considered by the Plan Enumerator, the Plan 

Cost Estimator computes “Cost” of the PQP

Weighted sum of I/O cost and CPU cost

(Distributed RDBMSs also include Network cost)

❖ Challenge: Given a PQP, compute overall cost

❖ Issues to consider:

Pipelining vs. blocking ops; cannot simply add costs!

Cardinality estimation for intermediate tables!

Q: What statistics does the catalog have to help?



Costing PQPs

❖Most RDBMSs use various heuristics to make costing 

tractable; so, it is approximate!

❖ Example: Complex predicates

Not enough info!

But, most RDBMSs use the independence heuristic!

Selectivity of conjunction = Product of selectivities

Thus, ≈ 0.05 * 0.1 = 0.005, i.e., 0.5%



Query Optimization: Summary

❖ Plan Enumerator and Cost Estimator work in lock step:

Rules determine what PQPs are enumerated

Logical: Algebraic rewrites of LQP

Physical: Op. Impl. and ordering alternatives

Cost models and heuristics help cost the PQPs

❖ Still an active research area!

Parametric Q.O., Multi-objective Q.O., 

Multi-objective parametric Q.O., Multiple Q.O.,

Online/Adaptive  Q.O., Dynamic re-optimization, etc.



Review Question

RatingID Stars RateDate UID MID

SELECT COUNT(DISTINCT UID) FROM Ratings

Page size 8KB; Buffer memory 4GB; 8B for each field

Propose an efficient physical plan and compute its I/O cost.

10m pages

Q: What if there was an unclustered B+ tree index on UID?

(RecordID pointers can be assumed to be 8B too)



Review Question

RatingID Stars RateDate UID MID

MID Name Year Director

SELECT AVG(Stars) FROM Ratings R, Movies M 

WHERE  R.MID = M.MID AND 

M.Director = “Christopher Nolan” AND

R.UID = 1234;

10m pages

100k pages

Page size 8KB; Buffer memory 4GB

Propose an efficient physical plan that does not materialize any 

intermediate data (fully pipelined) and compute its I/O cost.
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Introducing Materialized Views

❖ A View is a “virtual table” created with an SQL query

❖ A Materialized View is a physically instantiated/stored view

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

SELECT AVG(Stars) 

FROM   Ratings R, Movies M, Users U

WHERE  R.MID = M.MID AND R.UID = U.UID

M.Director = “Christopher Nolan” AND

U.Age >= 20 AND U.Age < 30;

Requires file scans of R, M, and U and, say, hash joins



Materialized Views Example

CREATE MATERIALIZED VIEW NolanRatings AS

SELECT RatingID, Stars, UID, MID 

FROM   Ratings R, Movies M 

WHERE  R.MID = M.MID AND 

M.Director = “Christopher Nolan”;

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

Creates a subset of R with ratings for only Nolan’s movies



RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

Given the materialized view V, RDBMS optimizer can 

automatically rewrite to use V to avoid scans of R and M

Likely much faster since V is likely much smaller than R, 

but this depends on data statistics; leave it to optimizer!

Q: How did DBA know to materialize a view for Nolan ratings?

Materialized Views Example



RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

We are given this materialized view V over R and M

Q: What if new ratings are inserted to R for Nolan’s movies?

Materialized View Maintenance

❖ RDBMS will automatically “trigger” updates to V

❖ Such updates are called Materialized View Maintenance

❖ 2 alternatives: Recompute whole view from scratch vs 

Incremental View Maintenance (IVM)



Recomputing V from scratch may be an overkill

Try to incrementally update parts that change

Incremental View Maintenance (IVM)

Basic Idea:

❖ D’ can be the outcome of inserts and/or deletes to D

❖ Q can be a unary query or involve multiple tables

❖ Computing V’ may require inserts and/or deletes to V; 

realized as algebraic rewrite rules at LQP level 

❖Whether or not IVM of V is feasible and/or efficient depends 

on form of Q, nature of updates to D, data statistics, etc.

❖We will focus only on inserts to D triggering inserts to V



Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Select:

Project:

Select and Project can be composed and reordered as before

Can be just an append (union with “bag” semantics)

Requires full set union with V for deduplication



Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Group By Agg:

Feasibility of IVM Depends on Agg() function!

Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags

AVG not possible in general; needs deeper system changes



Incremental View Maintenance (IVM)

Join IVM for insertions:

Alternatively, we can just append the output of the 

following query to V (union below is just append too):

IVM for complex queries compose such op-level rewrites

Assume no duplicate inserts
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