CS 6530: Advanced Database Systems Fall 2024

Lecture 16 Query optimization

Prashant Pandey prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

So, what is query optimization and how does it work?

Meet Query Optimization

- A given LQP could have several possible PQPs with very different runtime performance **Basic Idea:**
- **Goal (Ideal):** Get the optimal (fastest) PQP for a given LQP

- ◆ Overview of Query Optimizer
- ❖ Physical Query Plan (PQP) Concept: Pipelining Mechanism: Iterator Interface
- ❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
- ❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)

❖ For each **Relation**:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

❖ For each **Index**:

Index name, Structure (B+ tree vs. hash, etc.); Index key

❖ For each **View**:

View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)

❖ For each **Table R**:

Cardinality, i.e., number of tuples, **NTuples (R)** Size, i.e., number of pages, **NPages (R)**, or just N_R

❖ For each **Index X**:

Cardinality, i.e., number of distinct keys **IKeys (X)** Size, i.e., number of pages **IPages (X)** (for a B+ tree, this is the number of leaf pages only) Height (for tree indexes) **IHeight (X)** Min and max keys in index **ILow (X)**, **IHigh (X)**

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP) Concept: Pipelining

Mechanism: Iterator Interface

- ❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
- ❖ Costing PQPs

❖ Materialized Views

Concept: Pipelining

Do not force "downstream" physical operators to wait till the entire output is available **Basic Idea:**

Display output to the user incrementally CPU Parallelism in multi-core systems! **Benefits:**

Tuples

Concept: Pipelining

❖ Crucial for PQPs with workflow of many phy. ops.

- ❖ Common feature of almost all RDBMSs
- ❖ Works for many operators: SCAN, HASH JOIN, etc.

Q: Are all physical operators amenable to pipelining?

No! Some may "stall" the pipeline: "**Blocking Op**"

A blocking op. requires its output to be **Materialized** as a temporary table

Usually, any phy. op. involving sorting is blocking!

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- ❖ Enumerat Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
- ❖ Costing PQPs

❖ Materialized Views

Mechanism: Iterator Interface

- ❖ Software API to process PQP; makes pipelining easy to impl.
- ❖ Enables us to abstract away individual phy. op. impl. details
- ❖ Three main functions in usage interface of each phy. op.:
	- **Open(): Initialize the phy. op. "state", get arguments** Allocate input and output buffers
	- **GetNext(): Ask the phy. op. impl. to "deliver" next output tuple; pass it on; if blocking, wait**
	- **Close(): Clear phy. op. state, free up space**

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

Enumerating Alternative PQPs

❖ Plan Enumerator explores various PQPs for a given LQP

- ❖ **Challenge: Space of plans is huge! How to make it feasible?**
- ❖ RDBMS Plan Enumerator has **Rules** to help determine what plans to enumerate, and also consults **Cost models**
- ❖ Two main sources of Rules for enumerating plans:

Logical: Algebraic Rewrites:

Use relational algebra equivalence to rewrite LQP itself!

Physical: Choosing Phy. Op. Impl.:

Use different phy. op. impl. for a given log. op. in LQP

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Algebraic Rewrite Rules

- **❖ Rewrite a given RA query in to another that is equivalent (a** logical property) but might be faster (a physical property) ❖ RA operators have some formal properties we can exploit ❖ We will cover only a few rewrite rules: **Single-operator** Rewrites
	- **Unary** operators
	- **Binary** operators
	- **Cross-operator** Rewrites

Unary Operator Rewrites

- \leftrightarrow Key unary operators in RA: $\sigma \pi$
- \triangleleft Commutativity of σ

$$
\sigma_{p_1}(\sigma_{p_2}({\bf R})) = \sigma_{p_2}(\sigma_{p_1}({\bf R}))
$$

- \triangle Cascading of σ $\sigma_{p_1}(\sigma_{p_2}(\ldots \sigma_{p_n}(\mathbf{R})\ldots)) = \sigma_{p_1 \wedge p_2 \wedge \cdots \wedge p_n}(\mathbf{R})$
- $A_i \subseteq A_{i+1} \forall i = 1 \dots (n-1)$ \triangleleft Cascading of π $\pi_{A_1}(\pi_{A_2}(\ldots \pi_{A_n}(\mathbf{R})\ldots))=\pi_{A_1}(\mathbf{R})$

Q: Why are cascading rewrites beneficial?

Binary Operator Rewrites

- **❖ Key binary operator in RA:** \bowtie
- ❖ Commutativity of \boxtimes $R \bowtie S = S \bowtie R$
- Associativity of \bowtie $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

Cross-Operator Rewrites

❖ Commuting σ **and** π $A\subseteq B$ $\sigma_{p(A)}(\pi_B(R)) = \pi_B(\sigma_{p(A)}(R))$ \triangleleft Combining σ and \times $\sigma_p(R \times S) = R \bowtie_p S$ ❖ "Pushing the select" $A\subseteq R.*$ $\sigma_{p(A)}(R \bowtie S) = \sigma_{p(A)}(R) \bowtie S$ $\sigma_{p(A)}(R \times S) = \sigma_{p(A)}(R) \times S$ **❖ Commuting** π **with X and** \bowtie $\pi_A(R \times S) = \pi_{A \cap R,*}(R) \times \pi_{A \cap S,*}(S)$ $B \subset A$ $\pi_A(R \bowtie_{p(B)} S) = \pi_{A \cap R,*}(R) \bowtie_{p(B)} \pi_{A \cap S,*}(S)$

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Choosing Phy. Op. Impl.

❖ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

❖ Recall various RA op. impl. with their I/O (and CPU costs)

- σ File scan vs Indexed (B+ Tree vs Hash)
- π Hashing-based vs Sorting-based vs Indexed

 \bowtie BNLJ vs INLJ vs SMJ vs HJ

etc.
\n
$$
\pi_B(\sigma_{p(A)}(R) \bowtie S)
$$

Phy. Op. Impl.: Other Factors

- ❖ Are the indexes clustered or unclustered?
- **❖ Are there multiple matching indexes? Use multiple?**
- ❖ Are index-only access paths possible for some ops?
- **❖ Are there "interesting orderings" among the inputs?**
- ❖ Would sorted outputs benefit downstream ops?
- **❖ Estimation of cardinality of intermediate results!**
- **❖ How best to reorder multi-table joins?**

research problem! Query optimizers are complex beasts!

Still a hard, open

Phy. Op. Impl.: Join Orderings

❖ Since joins are associative, exponential number of orderings!

 $R \bowtie S \bowtie T \bowtie U$

- ❖ Almost all RDBMSs consider only left deep join trees Enables easy pipelining! Why?
- ❖ "Interesting orderings" idea from System R optimizer paper
- ❖ Dynamic program to combine enumeration and costing "Access Path Selection in a Relational Database Management System" SIGMOD'79

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- ❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
-
- ❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

Costing PQPs

- ❖ For each PQP considered by the Plan Enumerator, the Plan Cost Estimator computes "**Cost**" of the PQP Weighted sum of I/O cost and CPU cost (Distributed RDBMSs also include Network cost) ❖ **Challenge: Given a PQP, compute overall cost**
- ❖ **Issues to consider:**

Pipelining vs. blocking ops; cannot simply add costs! **Cardinality estimation** for intermediate tables!

Q: What statistics does the catalog have to help?

Costing PQPs

❖ Most RDBMSs use various heuristics to make costing tractable; so, it is approximate!

❖ **Example: Complex predicates**

Suppose selectivity of p_1 is 5% $\sigma_{p_1 \wedge p_2}(R)$ and selectivity of p_2 is 10%

Q. What is the selectivity of $p_1 \wedge p_2$? Not enough info!

But, most RDBMSs use the **independence** heuristic!

Selectivity of conjunction = Product of selectivities

Thus, $\approx 0.05 * 0.1 = 0.005$, i.e., 0.5%

Query Optimization: Summary

❖ Plan Enumerator and Cost Estimator work in lock step: Rules determine what PQPs are enumerated Logical: Algebraic rewrites of LQP Physical: Op. Impl. and ordering alternatives **Cost models** and **heuristics** help cost the PQPs **❖ Still an active research area!** Parametric Q.O., Multi-objective Q.O., Multi-objective parametric Q.O., Multiple Q.O., Online/Adaptive Q.O., Dynamic re-optimization, etc.

Review Question

RatingID Stars RateDate UID MID 10m pages

Page size 8KB; Buffer memory 4GB; 8B for each field

SELECT COUNT(DISTINCT UID) FROM Ratings

Propose an efficient physical plan and compute its I/O cost.

Q: What if there was an unclustered B+ tree index on UID? (RecordID pointers can be assumed to be 8B too)

Review Question

Propose an efficient physical plan that does not materialize any intermediate data (fully pipelined) and compute its I/O cost.

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- ❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
- ❖ Costing PQPs

Introducing Materialized Views

❖ A View is a "virtual table" created with an SQL query

[◆] A Materialized View is a physically instantiated/stored view

RatingID Stars RateDate UID MID UID Name Age JoinDate MID Name Year Director Example:

SELECT AVG(Stars)

FROM Ratings R, Movies M, Users U

WHERE R.MID = M.MID AND R.UID = U.UID

M.Director = "Christopher Nolan" AND

U.Age >= 20 AND U.Age < 30;

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Directory= "Christopher Nolan"}(M) \bowtie \sigma_{20 \le Age < 30}(U))$ Requires file scans of R, M, and U and, say, hash joins

Materialized Views Example

RatingID Stars RateDate UID MID UID Name Age JoinDate MID Name Year Director Example:

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Directory-}$ "Christopher Nolan" $(M) \bowtie \sigma_{20 < Age < 30}(U)$

- **CREATE MATERIALIZED VIEW NolanRatings AS**
- **SELECT RatingID, Stars, UID, MID**
- **FROM Ratings R, Movies M**
- **WHERE R.MID = M.MID AND**

M.Director = "Christopher Nolan"; Creates a subset of R with ratings for only Nolan's movies $V \leftarrow \pi_{RatingID, Stars, UID, MID}(R \bowtie \sigma_{Directory= "Christopher Nolan"}(M))$

Materialized Views Example

RatingID Stars RateDate UID MID UID Name Age JoinDate MID Name Year Director Example:

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Directory-}$ "Christopher Nolan" $(M) \bowtie \sigma_{20 \leq Age < 30}(U)$

Given the materialized view V, RDBMS optimizer can automatically *rewrite* to use V to avoid scans of R and M $V \leftarrow \pi_{RatingID, Stars, UID, MID}(R \bowtie \sigma_{Directory= "Christopher Nolan"}(M))$ $\gamma_{AVG(Stars)}(V \bowtie \sigma_{20 < Age < 30}(U))$

Likely much faster since V is likely much smaller than R, but this depends on data statistics; leave it to optimizer! *Q: How did DBA know to materialize a view for Nolan ratings?*

Materialized View Maintenance

RatingID Stars RateDate UID MID UID Name Age JoinDate MID Name Year Director Example:

We are given this materialized view V over R and M

 $V \leftarrow \pi_{RatingID, Stars, UID, MID}(R \bowtie \sigma_{Directory= "Christopher Nolan"}(M))$

Q: What if new ratings are inserted to R for Nolan's movies?

- **❖ RDBMS will automatically "trigger" updates to V**
- ❖ Such updates are called **Materialized View Maintenance**
- **❖ 2 alternatives: Recompute whole view from scratch vs**

Incremental View Maintenance (IVM)

Recomputing V from scratch may be an overkill Try to *incrementally* update parts that change **Basic Idea:**

$$
V = Q(D) \qquad V' = Q(D')
$$

❖ D' can be the outcome of inserts and/or deletes to D

- **❖ Q can be a unary query or involve multiple tables**
- ❖ Computing V' may require inserts and/or deletes to V; realized as *algebraic rewrite rules* at LQP level
- ❖ Whether or not IVM of V is feasible and/or efficient depends on form of Q, nature of updates to D, data statistics, etc.

◆ We will focus only on inserts to D triggering inserts to V

Unary IVM for insertions:

 $R'=R\cup \Delta R$ — Newly inserted tuples Select: $V \leftarrow \sigma_{SelectCondition}(R)$
 $V' = V \cup \sigma_{SelectCondition}(\Delta R)$ Project: $V \leftarrow \pi_{ProjectionList}(R)$
 $V' = V \cup \pi_{ProjectionList}(\Delta R)$ Select and Project can be composed and reordered as before Can be just an *append* (union with "bag" semantics) Requires full set union with V for deduplication

Unary IVM for insertions:

 $R'=R\cup \Delta R$ — Newly inserted tuples Group By Agg: $V \leftarrow \gamma_{AggList,Agg(Y)}(R)$

Feasibility of IVM Depends on Agg() function! Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags AVG not possible in general; needs deeper system changes

$$
V' = \gamma_{Agglist, SUM(Y)}(V \cup \gamma_{Agglist, SUM(Y)} \Delta R)
$$

\n
$$
V' = \gamma_{Agglist, SUM(Y)}(V \cup \gamma_{Agglist, COUNT(Y)} \Delta R)
$$

\n
$$
V' = \gamma_{Agglist, MIN(Y)}(V \cup \gamma_{Agglist, MIN(Y)} \Delta R)
$$

Join IVM for insertions:

Assume no duplicate inserts

 $A' = A \cup \Delta A$ $V \leftarrow A \bowtie B$ $B' = B \cup \Delta B$

$$
V' = V \cup (\Delta A \bowtie B') \cup (A' \bowtie \Delta B)
$$

Alternatively, we can just append the output of the following query to V (union below is just append too):

$$
(\Delta A \bowtie B') \cup (A' \bowtie \Delta B) - (\Delta A \bowtie \Delta B)
$$

IVM for complex queries compose such op-level rewrites

- **❖ Overview of Query Optimizer**
- ❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- ❖ Enumerating Alternative PQPs Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.
- ❖ Costing PQPs

❖ Materialized Views

