
Lecture 16
Query optimization

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu

So, what is query optimization and how

does it work?

Meet Query Optimization

A given LQP could have several possible

PQPs with very different runtime performance
Basic Idea:

Get the optimal (fastest) PQP for a given LQPGoal (Ideal):

Goal (Realistic): Fine, just avoid the “clearly awful” PQPs!

Query optimization is a metaphor

for life itself! It is often hard to even

know what an optimal plan would

be, but it is feasible to avoid many

obviously bad plans!Jeff Naughton

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan

(Optimized)

Parser

Plan

Enumerator

Plan Cost

Estimator

Optimizer

To Scheduler/Executor

Catalog

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)

❖ For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

❖ For each Index:

Index name, Structure (B+ tree vs. hash, etc.); Index key

❖ For each View:

View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)

❖ For each Table R:

Cardinality, i.e., number of tuples, NTuples (R)

Size, i.e., number of pages, NPages (R), or just NR

❖ For each Index X:

Cardinality, i.e., number of distinct keys IKeys (X)

Size, i.e., number of pages IPages (X) (for a B+ tree,

this is the number of leaf pages only)

Height (for tree indexes) IHeight (X)

Min and max keys in index ILow (X), IHigh (X)

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

File Scan

Read Index leaf pages

Movies Table

File Scan

Read heapfile

RatingsTable

Hash Join

Hash-based

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table Concept: Pipelining

Q: Does the hash-based

aggregate have to wait

till the entire output of

the “upstream” hash join

is available?

No! We can

“pipeline” the output

of the join – pass on

a join output tuple as

soon as it is obtained!

Concept: Pipelining

Do not force “downstream” physical operators

to wait till the entire output is available
Basic Idea:

Display output to the user incrementally

CPU Parallelism in multi-core systems!
Benefits:

Tuples

File Scan

Hash Join

Hash-based

Aggregate

Concept: Pipelining

❖ Crucial for PQPs with workflow of many phy. ops.

❖ Common feature of almost all RDBMSs

❖Works for many operators: SCAN, HASH JOIN, etc.

Q: Are all physical operators amenable to pipelining?

No! Some may “stall” the pipeline: “Blocking Op”

Usually, any phy. op. involving sorting is blocking!

A blocking op. requires its output to be Materialized

as a temporary table

File Scan

Read heapfile

Movies Table

File Scan

Read heapfile

RatingsTable

Sort-Merge Join

Hash-based

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table Blocking Op

This phy. op. is blocking

because we need to sort

Movies and sort Ratings

(materialize the output)

before we can start any

aggregate computations!

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerat Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Mechanism: Iterator Interface

❖ Software API to process PQP; makes pipelining easy to impl.

❖ Enables us to abstract away individual phy. op. impl. details

❖ Three main functions in usage interface of each phy. op.:

Open(): Initialize the phy. op. “state”, get arguments

Allocate input and output buffers

GetNext(): Ask the phy. op. impl. to “deliver” next

output tuple; pass it on; if blocking, wait

Close(): Clear phy. op. state, free up space

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan

(Optimized)

Parser

Plan

Enumerator

Plan Cost

Estimator

Optimizer

To Scheduler/Executor

Catalog

Enumerating Alternative PQPs

❖ Plan Enumerator explores various PQPs for a given LQP

❖ Challenge: Space of plans is huge! How to make it

feasible?

❖ RDBMS Plan Enumerator has Rules to help determine what

plans to enumerate, and also consults Cost models

❖ Two main sources of Rules for enumerating plans:

Logical: Algebraic Rewrites:

Use relational algebra equivalence to rewrite LQP itself!

Physical: Choosing Phy. Op. Impl.:

Use different phy. op. impl. for a given log. op. in LQP

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Algebraic Rewrite Rules

❖ Rewrite a given RA query in to another that is equivalent (a

logical property) but might be faster (a physical property)

❖ RA operators have some formal properties we can exploit

❖We will cover only a few rewrite rules:

Single-operator Rewrites

Unary operators

Binary operators

Cross-operator Rewrites

Unary Operator Rewrites

Q: Why are cascading rewrites beneficial?

❖ Key unary operators in RA:

❖ Commutativity of

❖ Cascading of

❖ Cascading of

Binary Operator Rewrites

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

❖ Key binary operator in RA:

❖ Associativity of

❖ Commutativity of

Cross-Operator Rewrites

❖ Commuting and

❖ Combining and

❖ “Pushing the select”

❖ Commuting with and

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Choosing Phy. Op. Impl.

3 options 3 options 4 options = 36 PQPs!

Q: With algebraic

rewrites?!

❖ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

❖ Recall various RA op. impl. with their I/O (and CPU costs)

File scan vs Indexed (B+ Tree vs Hash)

Hashing-based vs Sorting-based vs Indexed

BNLJ vs INLJ vs SMJ vs HJ

etc.

Phy. Op. Impl.: Other Factors

❖ Are the indexes clustered or unclustered?

❖ Are there multiple matching indexes? Use multiple?

❖ Are index-only access paths possible for some ops?

❖ Are there “interesting orderings” among the inputs?

❖Would sorted outputs benefit downstream ops?

❖ Estimation of cardinality of intermediate results!

❖ How best to reorder multi-table joins?

Still a hard, open

research problem!
Query optimizers are complex beasts!

Phy. Op. Impl.: Join Orderings

❖ Since joins are associative, exponential number of orderings!

Left Deep tree Right Deep tree

“Bushy” tree

❖ Almost all RDBMSs consider only left deep join trees

Enables easy pipelining! Why?

❖ “Interesting orderings” idea from System R optimizer paper

❖ Dynamic program to combine enumeration and costing
“Access Path Selection in a Relational Database Management System” SIGMOD’79

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan

(Optimized)

Parser

Plan

Enumerator

Plan Cost

Estimator

Optimizer

To Scheduler/Executor

Catalog

Costing PQPs

❖ For each PQP considered by the Plan Enumerator, the Plan

Cost Estimator computes “Cost” of the PQP

Weighted sum of I/O cost and CPU cost

(Distributed RDBMSs also include Network cost)

❖ Challenge: Given a PQP, compute overall cost

❖ Issues to consider:

Pipelining vs. blocking ops; cannot simply add costs!

Cardinality estimation for intermediate tables!

Q: What statistics does the catalog have to help?

Costing PQPs

❖Most RDBMSs use various heuristics to make costing

tractable; so, it is approximate!

❖ Example: Complex predicates

Not enough info!

But, most RDBMSs use the independence heuristic!

Selectivity of conjunction = Product of selectivities

Thus, ≈ 0.05 * 0.1 = 0.005, i.e., 0.5%

Query Optimization: Summary

❖ Plan Enumerator and Cost Estimator work in lock step:

Rules determine what PQPs are enumerated

Logical: Algebraic rewrites of LQP

Physical: Op. Impl. and ordering alternatives

Cost models and heuristics help cost the PQPs

❖ Still an active research area!

Parametric Q.O., Multi-objective Q.O.,

Multi-objective parametric Q.O., Multiple Q.O.,

Online/Adaptive Q.O., Dynamic re-optimization, etc.

Review Question

RatingID Stars RateDate UID MID

SELECT COUNT(DISTINCT UID) FROM Ratings

Page size 8KB; Buffer memory 4GB; 8B for each field

Propose an efficient physical plan and compute its I/O cost.

10m pages

Q: What if there was an unclustered B+ tree index on UID?

(RecordID pointers can be assumed to be 8B too)

Review Question

RatingID Stars RateDate UID MID

MID Name Year Director

SELECT AVG(Stars) FROM Ratings R, Movies M

WHERE R.MID = M.MID AND

M.Director = “Christopher Nolan” AND

R.UID = 1234;

10m pages

100k pages

Page size 8KB; Buffer memory 4GB

Propose an efficient physical plan that does not materialize any

intermediate data (fully pipelined) and compute its I/O cost.

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

Introducing Materialized Views

❖ A View is a “virtual table” created with an SQL query

❖ A Materialized View is a physically instantiated/stored view

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

SELECT AVG(Stars)

FROM Ratings R, Movies M, Users U

WHERE R.MID = M.MID AND R.UID = U.UID

M.Director = “Christopher Nolan” AND

U.Age >= 20 AND U.Age < 30;

Requires file scans of R, M, and U and, say, hash joins

Materialized Views Example

CREATE MATERIALIZED VIEW NolanRatings AS

SELECT RatingID, Stars, UID, MID

FROM Ratings R, Movies M

WHERE R.MID = M.MID AND

M.Director = “Christopher Nolan”;

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

Creates a subset of R with ratings for only Nolan’s movies

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

Given the materialized view V, RDBMS optimizer can

automatically rewrite to use V to avoid scans of R and M

Likely much faster since V is likely much smaller than R,

but this depends on data statistics; leave it to optimizer!

Q: How did DBA know to materialize a view for Nolan ratings?

Materialized Views Example

RatingID Stars RateDate UID MID

UID Name Age JoinDate MID Name Year Director
Example:

We are given this materialized view V over R and M

Q: What if new ratings are inserted to R for Nolan’s movies?

Materialized View Maintenance

❖ RDBMS will automatically “trigger” updates to V

❖ Such updates are called Materialized View Maintenance

❖ 2 alternatives: Recompute whole view from scratch vs

Incremental View Maintenance (IVM)

Recomputing V from scratch may be an overkill

Try to incrementally update parts that change

Incremental View Maintenance (IVM)

Basic Idea:

❖ D’ can be the outcome of inserts and/or deletes to D

❖ Q can be a unary query or involve multiple tables

❖ Computing V’ may require inserts and/or deletes to V;

realized as algebraic rewrite rules at LQP level

❖Whether or not IVM of V is feasible and/or efficient depends

on form of Q, nature of updates to D, data statistics, etc.

❖We will focus only on inserts to D triggering inserts to V

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Select:

Project:

Select and Project can be composed and reordered as before

Can be just an append (union with “bag” semantics)

Requires full set union with V for deduplication

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Group By Agg:

Feasibility of IVM Depends on Agg() function!

Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags

AVG not possible in general; needs deeper system changes

Incremental View Maintenance (IVM)

Join IVM for insertions:

Alternatively, we can just append the output of the

following query to V (union below is just append too):

IVM for complex queries compose such op-level rewrites

Assume no duplicate inserts

Query Optimization

❖ Overview of Query Optimizer

❖ Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs

❖ Materialized Views

	Slide 1: Lecture 16 Query optimization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

