CS 6530: Advanced Database Systems Fall 2024

Lecture 15 Query processing and optimization

Prashant Pandey

prashant.pandey@utah.edu

SCHOOL OF COMPUTING UNIVERSITY OF UTAH Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

Lifecycle of a Query

The Netflix Schema

Ratings

1	3.5	08/27/15	79	20

<u>UID</u>	Name	Age	JoinDate	Users
79	Alice	23	01/10/13	
80	Bob	41	05/10/13	

Movies

MID	Name	Year	Director
20	Inception	2010	Christopher Nolan
16	Avatar	2009	Jim Cameron

Example SQL Query

<u>RatingID</u>	Stars	RateDate		UID	MID	
<u>UID</u>	Name		Age JoinDate		oinDate	
MID	Name		Ye	ar	Dir	rector

SELECT	M.Year, COUNT(*) AS NumBest
FROM	Ratings R, Movies M
WHERE	R.MID = M.MID
	AND R.Stars = 5
GROUP BY	M.Year
ORDER BY	NumBest DESC

Suppose, we also have a B+Tree Index on Ratings (Stars)

Logical-Physical Separation in DBMSs

Logical = Tells you "what" is computed Physical = Tells you "how" it is computed

Declarativity!

Declarative "querying" (logical-physical separation) is a key system design principle from the RDBMS world: Declarativity often helps improve <u>user productivity</u> Enables behind-the-scenes <u>performance optimizations</u>

People are still (re)discovering the importance of this key system design principle in diverse contexts...(MapReduce/Hadoop, networking, file system checkers, interactive data-vis, graph systems, large-scale ML, etc.)

Operator Implementations

SelectNeed scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!JoinGroup By Aggregate(Optional) Set Operations

But first, what metadata does the RDBMS have?

System Catalog

Set of pre-defined relations for metadata about DB (schema)

For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

For each Index:

Index name, Structure (B+ tree vs. hash, etc.); IndexKey

For each View:

View name, and View definition

Statistics in the System Catalog

RDBMS periodically collects stats about DB (instance)

For each Table R:

Cardinality, i.e., number of tuples, **NTuples (R)**

Size, i.e., number of pages, **NPages (R)**, or just **N**_R or **N**

For each Index X:

Cardinality, i.e., number of distinct keys **IKeys (X)** Size, i.e., number of pages **IPages (X)** (for a B+ tree, this is the number of leaf pages only) Height (for tree indexes) **IHeight (X)** Min and max keys in index **ILow (X)**, **IHigh (X)**

Operator Implementations

Selection: Access Path

$\sigma_{SelectCondition}(\mathbf{R})$

- Access path: <u>how exactly is a table read</u> ("accessed")
- Two common access paths:

File scan:

- Read the heap/sorted file; apply SelectCondition
- I/O cost: O(N)

Indexed:

Use an index that matches the SelectCondition

I/O cost: Depends! For equality check, O(1) for hash index,

and O(log(N)) for B+-tree index

Indexed Access Path

 $\sigma_{SelectCondition}(\mathbf{R})$

An Index <u>matches</u> a predicate if it can avoid accessing most tuples that violate the predicate (reduces I/O!)

MID

Examples:

 $\sigma_{\text{Stars}=5}$ (R) R <u>RatingID</u> Stars RateDate UID

Hash index on R(Stars) matches this predicate

CI. B+ tree on R(Stars) matches too

What about uncl. B+ tree on R(Stars)?

Selectivity of a Predicate

$$\sigma_{SelectCondition}(\mathbf{R})$$

Selectivity of SelectionCondition = percentage of number of tuples in R satisfying it (in practice, count pages, not tuples)

$$\sigma_{Stars=5}(\mathbf{R}) \quad \mathsf{R}$$
Selectivity = 2/7 ~ 28%
$$\sigma_{Stars=2.5}(\mathbf{R})$$
Selectivity = 3/7 ~ 43%
$$\sigma_{Stars<2}(\mathbf{R})$$
Selectivity = 1/7 ~ 14%

2	3.0	 	
39	5.0	 	
12	2.5	 	
402	5.0	 	
293	2.5	 	
49	1.0	 	
66	2.5	 	

Selectivity and Matching Indexes

- An Index <u>matches</u> a predicate if it brings I/O cost very close to
 - (N * predicate's selectivity); compare to file scan!

R

$$\sigma_{Stars=5}(\mathbf{R})$$

N x Selectivity = 2

Hash index on R(Stars) CI. B+ tree on R(Stars) Uncl. B+ tree on R(Stars)?

2	3.0	 	
39	5.0	 	
12	2.5	 	
402	5.0	 	
293	2.5	 	
49	1.0	 	
66	2.5	 	

Assume only one tuple per page

Matching an Index: More Examples

RRatingIDStarsRateDateUIDMID

$\sigma_{Stars>4}(\mathbf{R})$

Hash index on R(Stars) does not match! Why?

CI. B+ tree on R(Stars) still matches it! Why?

Cl. B+ tree on R(Stars,RateDate)?

CI. B+ tree on R(Stars,RateDate,MID)?

CI. B+ tree on R(RateDate,Stars)?

Uncl. B+ tree on R(Stars)?

B+ tree has a nice "prefix-match" property!

UNIVERSITY OF UTAH

Operator Implementations

Group By Aggregate (Optional) Set Operations

Project

R RatingID Stars RateDate UID MID

SELECT R.MID, R.Stars FROM Ratings R Trivial to implement! Read R and <u>discard</u> other attributes <u>I/O cost:</u> N_R, i.e., Npages(R) (ignore output write cost)

* SELECT DISTINCT R.MID, R.Stars FROM Ratings R Relational Project! $\pi_{MID,Stars}(\mathbf{R})$

Need to <u>deduplicate</u> tuples of (MID,Stars) after discarding other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

 $\pi_{ProjectionList}(\mathbf{R})$

Sorting-based:

Idea: Sort R on ProjectionList (External Merge Sort!)

In Sort Phase, discard all other attributes
 In Merge Phase, eliminate duplicates
 Let T be the temporary "table" after step 1
 I/O cost: N_R + N_T + EMSMerge(N_T)

Hashing-based:

Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

$\pi_{ProjectionList}(\mathbf{R})$

To build a hash table on R(ProjectionList), read R and discard other attributes on the fly

♦ If the hash table fits entirely in memory:

Done!

I/O cost: N_R

Needs $B \ge F \times N_R$

If not, 2-phase algorithm:

Deduplication

Partition

Q: What is the size of a hash table built on a P-page file? F x P pages ("Fudge factor" F ~ 1.4 for overheads)

Assuming uniformity, size of a T partition $= N_T / (B-1)$ Size of a hash table on a partition $= F \times N_T / (B-1)$

Thus, we need: (B-2) >= F x N_T / (B-1) Rough: $B > \sqrt{F \times N_T}$

<u>I/O cost: $N_{R} + N_{T} + N_{T}$ </u>

If B is smaller, need to partition <u>recursively</u>!

CHOOL OF COMPUTING

Project: Comparison of Algorithms

Sorting-based vs. Hashing-based:

1. Usually, I/O cost (excluding output write) is the same:

 N_R + 2 N_T (why is EMSMerge(N_T) only 1 read?)

2. Sorting-based gives sorted result ("nice to have")

- 3. I/O could be higher in many cases for hashing (why?)
- In practice, sorting-based is popular for Project
- If we have any index with ProjectionList as <u>subset</u> of IndexKey Use only leaf/bucket pages as the "T" for sorting/hashing
- If we have tree index with ProjectionList as prefix of IndexKey Leaf pages are already sorted on ProjectionList (why?)!

Just scan them in order and deduplicate on-the-fly!

Operator Implementations

Group By Aggregate (Optional) Set Operations

Join

This course: we focus primarily on <u>equi-join</u> (the most common, important, and well-studied form of join)

We study 4 major (equi-) join implementation algorithms:

Page/Block Nested Loop Join (PNLJ/BNLJ)

Index Nested Loop Join (INLJ)

Sort-Merge Join (SMJ)

Hash Join (HJ)

Nested Loop Joins: Basic Idea

"Brain-dead" idea: nested for loops over the tuples of R and U!

- 1. For each tuple in Users, t_U :
- 2. For each tuple in Ratings, t_R :
- 3. If they match on join attribute, "stitch" them, output

But we read <u>pages</u> from disk, not single tuples!

Page Nested Loop Join (PNLJ)

"Brain-dead" nested for loops over the pages of R and U!

- 1. For each <u>page</u> in Users, p_U :
- 2. For each <u>page</u> in Ratings, p_R :
- 3. Check each pair of tuples from p_R and p_U
- 4. If any pair of tuples match, stitch them, and output

U is called "<u>Outer</u> table" R is called "<u>Inner</u> table"

Outer table should be the smaller one:

<u>I/O Cost:</u> $N_U + N_U \times N_R$

 $N_U \le N_R$

Q: How many buffer pages are needed for PNLJ?

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

- 1. For each sequence of B-2 pages of Users at-a-time :
- 2. For each page in Ratings, p_R :
- 3. Check if any p_R tuple matches any U tuple in memory
- 4. If any pair of tuples match, stitch them, and output

I/O Cost:
$$N_U + \left[\frac{N_U}{B-2}\right] \times N_R$$

Step 3 ("brain-dead" in-memory all-pairs comparison) could be quite slow (high CPU cost!)

In practice, a <u>hash table</u> is built on the U pages in-memory to reduce #comparisons (how will I/O cost change above?)

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it?

Suppose there is an index (tree or hash) on R (UID)

- 1. For each sequence of B-2 pages of Users at-a-time :
- 2. Sort the U tuples (in memory) on UserID
- 3. For each U tuple t_U in memory :
- 4. Lookup/probe index on R with the UserID of t_U
- 5. If any R tuple matches it, stitch with t_U , and output

I/O Cost: Nu + NTuples(U) x IR

Index lookup cost IR depends on index properties (what all?) A.k.a *Block* INLJ (tuple/page INLJ are just silly!)

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

- 1. Sort R on UID
- 2. Sort U on UserID
- 3. Merge sorted R and U and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

<u>I/O Cost: EMS(N_R) + EMS(N_U) + N_R + N_U</u>

If we have "enough" buffer pages, an improvement possible: No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

- 1. Obtain runs of R sorted on UID (only Sort phase)
- 2. Obtain runs of U sorted on UserID (only Sort phase)
- Merge all runs of R and U together and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

 $I/O Cost: 3 \times (N_R + N_U)$

How many buffer pages needed?

runs after steps 1 & 2 ~ N_R/2B + N_U/2B So, we need B > $(N_R + N_U)/2B$ Just to be safe: $B > \sqrt{N_R}$ $N_U \le N_R$

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

- 1. Partition U on UserID using h1()
- 2. Partition R on UID using h1()
- 3. For each partition of Ui :
- 4. Build hash table in memory on Ui
- 5. Probe with Ri alone and check for matching tuple pairs
- 6. If any pair matches, stitch them, and output

<u>I/O Cost: 3 x (N_U + N_R)</u>

U becomes "<u>Inner</u> table" R is now "<u>Outer</u> table"

 $N_{II} \leq N_{R}$

This is very similar to the hashing-based Project!

Hash Join

Similarly, partition R with same h1 on UID

 $N_{IJ} \leq N_{R}$ Memory requirement: $(B-2) >= F \times N_{\cup} / (B-1)$ Rough: $B > \sqrt{F \times N_U}$

<u>I/O cost: $3 \times (N_U + N_R)$ </u>

Q: What if B is lower? **Q:** What about skews? **Q:** What if $N_{II} > N_R$?

OUTPUT

Partitions of U

exploits memory better and has slightly lower I/O cost

Original U

Join: Comparison of Algorithms

Block Nested Loop Join vs Hash Join:

Identical if $(B-2) > F \times N_U!$ Why? I/O cost?

Otherwise, BNLJ is potentially much higher! Why?

Sort Merge Join vs Hash Join:

To get I/O cost of 3 x (Nu + N_R), SMJ needs: $B > \sqrt{N_R}$ But to get same I/O cost, HJ needs only: $B > \sqrt{F \times N_U}$ Thus, HJ is often more memory-efficient and faster

 $N_{IJ} \leq N_{R}$

B buffer pages

Other considerations:

HJ could become much slower if data has skew! Why? SMJ can be faster if input is sorted; gives sorted output Query optimizer considers all these when choosing phy. plan

Join: Crossovers of I/O Costs

More General Join Conditions

$$A \bowtie_{JoinCondition} B$$
 $N_A \leq N_B$

If JoinCondition has only equalities, e.g., A.a1 = B.b1 and A.a2 = B.b2

HJ: works fine; hash on (a1, a2)

SMJ: works fine; sort on (a1, a2)

INLJ: use (build, if needed) a *matching* index on A What about disjunctions of equalities?

If JoinCondition has inequalities, e.g., A.a1 > B.b1
 HJ is useless; SMJ also mostly unhelpful! Why?
 INLJ: build a B+ tree index on A
 Inequality predicates might lead to large outputs!

Operator Implementations

SelectNeed scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Join

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

 $\begin{array}{l} & \widehat{\mathcal{N}}_{X,Agg}(Y)(\mathbf{R}) \\ & \text{`Grouping Attributes''} & A numerical attribute in R \\ & (Subset of R's attributes) & ``Aggregate Function'' \\ & (SUM, COUNT, MIN, MAX, AVG) \end{array}$

Easy case: X is empty!

Simply aggregate values of Y

Q: How to scale this to larger-than-memory data?

Difficult case: X is not empty

"Collect" groups of tuples that match on X, apply Agg(Y) 3 algorithms: sorting-based, hashing-based, index-based

Group By Aggregate: Easy Case

All 5 SQL aggregate functions computable *incrementally*, i.e., one tuple at-a-time by tracking some "<u>running information</u>"

2	3.0
39	5.0
12	2.5
402	5.0
293	2.5
49	1.0
66	2.5

SUM: Partial sum so far	3.0; 8.0; 10.5;	
	15.5; 18.0;	
COUNT IS SIMILAR	19, 21.5	

MAX: Maximum seen so far 3.0; 5.0 MIN is similar 3.0; 2.5; 1.0

Q: What about AVG?

Track both SUM and COUNT! In the end, divide SUM / COUNT

Group By Aggregate: Difficult Case

Collect groups of tuples (based on X) and aggregate each

	TMID,					
21	3	3.0				
55	294	5.0				
80	12	2.5				
21	32	5.0				
55	24	2.0				
55	19	1.0				
21	11	4.0				
55	123	4.0				

1	$\gamma_{MID,AVG(Stars)}(\mathbf{R})$						
			21	123	3.0		
	3.0		21	294	5.0		
	5.0		21	11	4.0		
	2.5		55	294	5.0		
	5.0		55	24	2.0		
	2.0		55	11	1.0		
	1.0		55	123	4.0		
	4.0		80	123	2.5		

AVG for 80 is 2.5

Q: How to collect groups? Too large?

Group By Agg.: Sorting-Based

- 1. Sort R on X (drop all but X U {Y} in Sort phase to get T)
- 2. Read in sorted order; for every distinct value of X:
- 3. Compute the aggregate on that group ("easy case")
- 4. Output the distinct value of X and the aggregate value

I/O Cost: N_R + N_T + EMSMerge(N_T)

Q: Which other sorting-based op. impl. had this cost?

Improvement: Partial aggregations during Sort Phase!

Q: How does this reduce the above I/O cost?

Group By Agg.: Hashing-Based

- 1. Build h.t. on X; bucket has X value and running info.
- 2. Scan R; for each tuple in each page of R:
- 3. If h(X) is present in h.t., *update* running info.
- 4. Else, *insert* new X value and *initialize* running info.
- 5. H.t. holds the final output in the end!

I/O Cost: N_R

Q: What if h.t. using X does not fit in memory

(Number of distinct values of X in R is too large)?

Group By Agg.: Index-Based

Given B+ Tree index s.t. X U {Y} is a <u>subset</u> of IndexKey:
Use leaf level of index instead of R for sort/hash algo.!

Given B+ Tree index s.t. X is a <u>prefix</u> of IndexKey: Leaf level already sorted! Can fetch data records in order If AltRecord approach used, just one scan of leaf level!

Q: What if it does not use AltRecord?

Q: What if X is a non-prefix subset of IndexKey?

Operator Implementations

SelectNeed scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!Join

Group By Aggregate

(Optional) Set Operations

Set Operations

Cross Product: A × B Trivial! BNLJ suffices!

♦ Intersection: $A \cap B$

Logically, an equi-join with JoinCondition being a conjunction of all attributes; same tradeoffs as before

- \diamond Union: A \cup B
- ✤ Difference: A B

Similar to intersection, but need to deduplicate upon matches and output only once! Sounds familiar?

Union/Difference Algorithms

Sorting-based: Similar to a SMJ A and B. Twists:

- A ∪ B: *deduplicate* matching tuples during merging
- A B: exclude matching tuples during merging
- **Hashing-based**: Similar to HJ of A and B. Twists:

Build hash table (h.t.) on Bi

 $A \cup B$: probe h.t. with Ai; if pair matches, discard tuple

else, *insert* Ai tuple into h.t.; <u>h.t. holds output</u>!

A – B: probe h.t. with Ai; if pair matches, discard tuple else, *output* Ai tuple <u>directly</u>

