
Lecture 15
Query processing and optimization

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu

Query

Query Result

Database Server

Select R.te xt fro m

Repor t R, Weat her W
wher e W.image .rain()

and W.city = R.city

and W.date = R.dat e

and

R.text .
ma tches(“ insuran ce claims”)

Query

Syntax Tree and

Logical Query Plan

Parser

Physical

Query Plan

Optimizer

Segments

Query

Scheduler |…|……|………..|………. .|

|…|……|………..|………. .|
|…|……|………..|………. .|

|…|……|………..|………. .|

|…|……|………..|………. .|

|…|……|………..|………. .|

|…|……|………..|………. .|
|…|……|………..|………. .|

|…|……|………..|………. .|

|…|……|………..|………. .|

|…|……|………..|………. .|

Query
Result

Execute

Operators

Lifecycle of a Query

The Netflix Schema

RatingID Stars RateDate UID MID

1 3.5 08/27/15 79 20

… … … … …

UID Name Age JoinDate

79 Alice 23 01/10/13

80 Bob 41 05/10/13

MID Name Year Director

20 Inception 2010 Christopher Nolan

16 Avatar 2009 Jim Cameron

Ratings

Users

Movies

Example SQL Query

RatingID Stars RateDate UID MID

UID Name Age JoinDate

MID Name Year Director

SELECT M.Year, COUNT(*) AS NumBest

FROM Ratings R, Movies M

WHERE R.MID = M.MID

AND R.Stars = 5

GROUP BY M.Year

ORDER BY NumBest DESC

Suppose, we also have a B+Tree Index on Ratings (Stars)

SELECT

R.stars = 5

Ratings Table

SELECT

No predicate

Movies Table

JOIN

R.MID = M.MID

GROUP BY AGGREGATE

M.Year, COUNT(*)

SORT

On NumBest

Result Table

Called “Logical”

Operators

From extended RA

Each one has

alternate “physical”

implementations

Logical Query Plan

Indexed Access

Use Index on Stars

Ratings Table

File Scan

Read heapfile

Movies Table

Index-Nested

Loop Join

Sort-based

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table

Called “Physical”

Operators

Specifies exact

algorithm/code to

run for each logical

operator, with all

parameters (if any)

Aka “Query

Evaluation Plan”

Physical Query Plan

File Scan

Read Index leaf pages

Ratings Table

File Scan

Read heapfile

Movies Table

Hash Join

Hash-based

Aggregate

External Merge-Sort

In-mem quicksort; B=50

Result Table

This is also a correct

PQP for the given LQP!

Q: Which PQP is faster?

This is a key job of the

RDBMS Query Optimizer!

Physical Query Plan

Logical = Tells you “what” is computed

Physical = Tells you “how” it is computed

Logical-Physical Separation in DBMSs

Declarative “querying” (logical-physical separation) is a

key system design principle from the RDBMS world:

Declarativity often helps improve user productivity

Enables behind-the-scenes performance optimizations

People are still (re)discovering the importance of this key

system design principle in diverse contexts…

(MapReduce/Hadoop, networking, file system checkers,

interactive data-vis, graph systems, large-scale ML, etc.)

Declarativity!

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

But first, what metadata does the

RDBMS have?

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)

❖ For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

❖ For each Index:

Index name, Structure (B+ tree vs. hash, etc.); IndexKey

❖ For each View:

View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)

❖ For each Table R:

Cardinality, i.e., number of tuples, NTuples (R)

Size, i.e., number of pages, NPages (R), or just NR or N

❖ For each Index X:

Cardinality, i.e., number of distinct keys IKeys (X)

Size, i.e., number of pages IPages (X) (for a B+ tree, this

is the number of leaf pages only)

Height (for tree indexes) IHeight (X)

Min and max keys in index ILow (X), IHigh (X)

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Selection: Access Path

❖ Access path: how exactly is a table read (“accessed”)

❖ Two common access paths:

File scan:

Read the heap/sorted file; apply SelectCondition

I/O cost: O(N)

Indexed:

Use an index that matches the SelectCondition

I/O cost: Depends! For equality check, O(1) for hash index,

and O(log(N)) for B+-tree index

Indexed Access Path

RatingID Stars RateDate UID MIDR

Selectivity of a Predicate

❖ Selectivity of SelectionCondition = percentage of number of

tuples in R satisfying it (in practice, count pages, not tuples)

RatingID Stars RateDate UID MID

2 3.0 … … …

39 5.0 … … …

12 2.5 … … …

402 5.0 … … …

293 2.5 … … …

49 1.0 … … …

66 2.5 … … …

R

Selectivity = 2/7 ~ 28%

Selectivity = 3/7 ~ 43%

Selectivity = 1/7 ~ 14%

Selectivity and Matching Indexes

❖ An Index matches a predicate if it brings I/O cost very close to

(N * predicate’s selectivity); compare to file scan!

RatingID Stars RateDate UID MID

2 3.0 … … …

39 5.0 … … …

12 2.5 … … …

402 5.0 … … …

293 2.5 … … …

49 1.0 … … …

66 2.5 … … …

R

Hash index on R(Stars)

Cl. B+ tree on R(Stars)

Uncl. B+ tree on R(Stars)?

Assume only one tuple per page

N x Selectivity = 2

Matching an Index: More Examples

RatingID Stars RateDate UID MIDR

B+ tree has a

nice “prefix-match”

property!

Hash index on R(Stars) does not match! Why?

Cl. B+ tree on R(Stars) still matches it! Why?

Cl. B+ tree on R(Stars,RateDate)?

Cl. B+ tree on R(Stars,RateDate,MID)?

Cl. B+ tree on R(RateDate,Stars)?

Uncl. B+ tree on R(Stars)?

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Project

❖ SELECT R.MID, R.Stars FROM Ratings R

Trivial to implement! Read R and discard other attributes

I/O cost: NR, i.e., Npages(R) (ignore output write cost)

❖ SELECT DISTINCT R.MID, R.Stars FROM Ratings R

Relational Project!

RatingID Stars RateDate UID MIDR

Need to deduplicate tuples of (MID,Stars) after discarding

other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

❖ Sorting-based:

Idea: Sort R on ProjectionList (External Merge

Sort!)

1. In Sort Phase, discard all other attributes

2. In Merge Phase, eliminate duplicates

Let T be the temporary “table” after step 1

I/O cost: NR + NT + EMSMerge(NT)

❖ Hashing-based:

Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

❖ To build a hash table on R(ProjectionList), read R and

discard other attributes on the fly

❖ If the hash table fits entirely in memory:

Done!

I/O cost: NR

❖ If not, 2-phase algorithm:

Partition

Deduplication

F x P pages

(“Fudge factor” F ~ 1.4

for overheads)

Q: What is the size of a hash

table built on a P-page file?
Needs B >= F x NR

Hashing

Partitions

of T

Input buffer

for partition i

Hash table for

partition i

B buffer pagesDisk

Output

buffer

Disk

Output

hash

func.

h2

h2

B buffer pages DiskDisk

Original

R OUTPUT

2INPUT

1

hash

func.

h1
B-1

Partitions

of T

1

2

B-1

. . .

Partition phase

Deduplication phase

Assuming uniformity,

size of a T partition

= NT / (B-1)

Size of a hash table

on a partition

= F x NT / (B-1)

If B is smaller, need to

partition recursively!

I/O cost: NR + NT + NT

Thus, we need:

(B-2) >= F x NT / (B-1)

Rough:

Project: Comparison of Algorithms

❖ Sorting-based vs. Hashing-based:

1. Usually, I/O cost (excluding output write) is the same:

NR + 2NT (why is EMSMerge(NT) only 1 read?)

2. Sorting-based gives sorted result (“nice to have”)

3. I/O could be higher in many cases for hashing (why?)

❖ In practice, sorting-based is popular for Project

❖ If we have any index with ProjectionList as subset of IndexKey

Use only leaf/bucket pages as the “T” for sorting/hashing

❖ If we have tree index with ProjectionList as prefix of IndexKey

Leaf pages are already sorted on ProjectionList (why?)!

Just scan them in order and deduplicate on-the-fly!

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Join

This course: we focus primarily on equi-join

(the most common, important, and well-studied form of join)

R RatingID Stars RateDate UID MID

UserID Name Age JoinDateU

We study 4 major (equi-) join implementation algorithms:

Page/Block Nested Loop Join (PNLJ/BNLJ)

Index Nested Loop Join (INLJ)

Sort-Merge Join (SMJ)

Hash Join (HJ)

Nested Loop Joins: Basic Idea

“Brain-dead” idea: nested for loops over the tuples of R and U!

1. For each tuple in Users, tU :

2. For each tuple in Ratings, tR :

3. If they match on join attribute, “stitch” them, output

But we read pages from disk, not single tuples!

Page Nested Loop Join (PNLJ)

“Brain-dead” nested for loops over the pages of R and U!

1. For each page in Users, pU :

2. For each page in Ratings, pR :

3. Check each pair of tuples from pR and pU

4. If any pair of tuples match, stitch them, and output

U is called “Outer table”

R is called “Inner table”

I/O Cost:

Q: How many buffer pages are needed for PNLJ?

Outer table should be

the smaller one:

NU ≤ NR

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

1. For each sequence of B-2 pages of Users at-a-time :

2. For each page in Ratings, pR :

3. Check if any pR tuple matches any U tuple in memory

4. If any pair of tuples match, stitch them, and output

Step 3 (“brain-dead” in-memory all-pairs comparison) could be

quite slow (high CPU cost!)

In practice, a hash table is built on the U pages in-memory to

reduce #comparisons (how will I/O cost change above?)

I/O Cost:

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it?

1. For each sequence of B-2 pages of Users at-a-time :

2. Sort the U tuples (in memory) on UserID

3. For each U tuple tU in memory :

4. Lookup/probe index on R with the UserID of tU

5. If any R tuple matches it, stitch with tU, and output

Suppose there is an index (tree or hash) on R (UID)

I/O Cost: NU + NTuples(U) x IR

Index lookup cost IR depends on index properties (what all?)

A.k.a Block INLJ (tuple/page INLJ are just silly!)

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

I/O Cost: EMS(NR) + EMS(NU) + NR + NU

1. Sort R on UID

2. Sort U on UserID

3. Merge sorted R and U and check for matching tuple pairs

4. If any pair matches, stitch them, and output

If we have “enough” buffer pages, an improvement possible:

No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

I/O Cost: 3 x (NR + NU)

1. Obtain runs of R sorted on UID (only Sort phase)

2. Obtain runs of U sorted on UserID (only Sort phase)

3. Merge all runs of R and U together and check for

matching tuple pairs

4. If any pair matches, stitch them, and output

How many buffer

pages needed?
NU ≤ NR

runs after steps 1 & 2 ~ NR/2B + NU/2B

So, we need B > (NR + NU)/2B

Just to be safe:

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

I/O Cost: 3 x (NU + NR)

1. Partition U on UserID using h1()

2. Partition R on UID using h1()

3. For each partition of Ui :

4. Build hash table in memory on Ui

5. Probe with Ri alone and check for matching tuple pairs

6. If any pair matches, stitch them, and output

This is very similar to the hashing-based Project!

NU ≤ NR

U becomes “Inner table”

R is now “Outer table”

Hash Join

B buffer pages
DiskDisk

Original U OUTPUT

2INPUT

1

hash

func.

h1
B-1

Partitions of U

1

2

B-1

. . .Similarly, partition R

with same h1 on UID

Q: What if B is lower?

Memory requirement:

Partitions

of U and R

Input buffer
for Ri

Hash table on Ui

B buffer pagesDisk

Output

buffer

Disk

Output
hash

func.

h2

h2

NU ≤ NR

Q: What about skews?

“Hybrid” Hash Join algorithm

exploits memory better and has slightly lower I/O cost

Q: What if NU > NR?

Partition phase

Stitching Phase

I/O cost: 3 x (NU + NR)

(B-2) >= F x NU / (B-1)

Rough:

❖ Block Nested Loop Join vs Hash Join:

Identical if (B-2) > F x NU! Why? I/O cost?

Otherwise, BNLJ is potentially much higher! Why?

❖ Sort Merge Join vs Hash Join:

To get I/O cost of 3 x (NU + NR), SMJ needs:

But to get same I/O cost, HJ needs only:

Thus, HJ is often more memory-efficient and faster

❖ Other considerations:

HJ could become much slower if data has skew! Why?

SMJ can be faster if input is sorted; gives sorted output

❖ Query optimizer considers all these when choosing phy. plan

Join: Comparison of Algorithms

NU ≤ NR

B buffer pages

Join: Crossovers of I/O Costs

We plot the I/O costs of BNLJ, SMJ, and HJ

Arity of both R and U = 408GB memory; 8KB pages

(So, B = 1024)

I/
O

 c
o

s
t

in
 p

a
g

e
s

|U| = 5m; NU ~ 195K

|U| = 5m; NU ~ 195K

|R| = 500m; NR ~ 19.5M

NTuples(R) / 5m Vary buffer memory

fails
Usually, HJ

dominates!

More General Join Conditions

❖ If JoinCondition has only equalities, e.g., A.a1 = B.b1

and A.a2 = B.b2

HJ: works fine; hash on (a1, a2)

SMJ: works fine; sort on (a1, a2)

INLJ: use (build, if needed) a matching index on A

What about disjunctions of equalities?

❖ If JoinCondition has inequalities, e.g., A.a1 > B.b1

HJ is useless; SMJ also mostly unhelpful! Why?

INLJ: build a B+ tree index on A

Inequality predicates might lead to large outputs!

NA ≤ NB

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

❖ Easy case: X is empty!

Simply aggregate values of Y

Q: How to scale this to larger-than-memory data?

❖ Difficult case: X is not empty

“Collect” groups of tuples that match on X, apply Agg(Y)

3 algorithms: sorting-based, hashing-based, index-based

“Grouping Attributes”

(Subset of R’s attributes)

A numerical attribute in R

“Aggregate Function”

(SUM, COUNT, MIN, MAX, AVG)

Group By Aggregate: Easy Case

❖ All 5 SQL aggregate functions computable incrementally, i.e.,

one tuple at-a-time by tracking some “running information”

RatingID Stars

2 3.0

39 5.0

12 2.5

402 5.0

293 2.5

49 1.0

66 2.5

SUM: Partial sum so far 3.0; 8.0; 10.5;

15.5; 18.0;

19, 21.5
COUNT is similar

MAX: Maximum seen so far 3.0; 5.0

MIN is similar

Q: What about AVG?

Track both SUM and COUNT!

In the end, divide SUM / COUNT

3.0; 2.5; 1.0

Group By Aggregate: Difficult Case

❖ Collect groups of tuples (based on X) and aggregate each

MID UID Stars

21 3 3.0

55 294 5.0

80 12 2.5

21 32 5.0

55 24 2.0

55 19 1.0

21 11 4.0

55 123 4.0

21 123 3.0

21 294 5.0

21 11 4.0

55 294 5.0

55 24 2.0

55 11 1.0

55 123 4.0

80 123 2.5

AVG for 21 is 4.0

AVG for 55 is 3.0

AVG for 80 is 2.5

Q: How to collect groups? Too large?

Group By Agg.: Sorting-Based

I/O Cost: NR + NT + EMSMerge(NT)

1. Sort R on X (drop all but X U {Y} in Sort phase to get T)

2. Read in sorted order; for every distinct value of X:

3. Compute the aggregate on that group (“easy case”)

4. Output the distinct value of X and the aggregate value

Improvement: Partial aggregations during Sort Phase!

Q: How does this reduce the above I/O cost?

Q: Which other sorting-based op. impl. had this cost?

Group By Agg.: Hashing-Based

I/O Cost: NR

1. Build h.t. on X; bucket has X value and running info.

2. Scan R; for each tuple in each page of R:

3. If h(X) is present in h.t., update running info.

4. Else, insert new X value and initialize running info.

5. H.t. holds the final output in the end!

Q: What if h.t. using X does not fit in memory

(Number of distinct values of X in R is too large)?

Group By Agg.: Index-Based

❖ Given B+ Tree index s.t. X U {Y} is a subset of IndexKey:

Use leaf level of index instead of R for sort/hash algo.!

❖ Given B+ Tree index s.t. X is a prefix of IndexKey:

Leaf level already sorted! Can fetch data records in order

If AltRecord approach used, just one scan of leaf level!

Q: What if X is a non-prefix subset of IndexKey?

Q: What if it does not use AltRecord?

Operator Implementations

Need scalability to larger-than-

memory (on-disk) datasets and

high performance at scale!

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Set Operations

Similar to intersection, but need

to deduplicate upon matches

and output only once!

Sounds familiar?

Union/Difference Algorithms

	Slide 1: Lecture 15 Query processing and optimization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51

