
Lecture 14
Row Stores vs Column Stores

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, Boston University

mailto:prashant.pandey@utah.edu


Row-stores vs. Col-Stores: How Different Are They Really?

Are column-stores really novel?

If we profile their performance, what is the breakdown? Why?



Row-Stores
Student (sid: string, name: string, login: 
string, year_birth: integer, gpa: real)

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)



header

row1 row2

row3

free space

Row-Stores: slotted page



#rows, row offsets, free space offsets, 
#fixed length attributes, #var length attributes

row1 row2

row3

free space

Row-Stores: slotted page



Row-Stores

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

rows are contiguous
(with possible free space at the end)

file

each page contains entire rows (all their columns)

pages

Easy to add a new record

Might access unnecessary data

pros and cons?



select max(B) from R where A>5 and C<10

A B C D 

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time

Row-stores: query processing



Column-Stores

A B C D
each page contains columns!

row1 

row2

pros and cons?

Read only relevant data

Tuple writes require multiple accesses



Column-stores: query processing

A B C D

C

select max(B) from R where A>5 and C<10 

IDs IDs

max

BA



Let’s revisit the main question

There several studies showing

column-stores outperforming row-stores (~5x better performance in TPCH)

especially for

read-mostly data warehouses that have

1. column scans and aggregations

2. few and batched writes

Key question:

(a) are the benefits inherent to the new column-store design, or

(b)a row-store with a “more columnar” physical design can achieve the same? 

In other words: can you “simulate a col-store in a row-store?”



State-of-the-art Col-Store features

Late Materialization

“stich the column together as late as possible”

Block iteration

“execute the same columnar operation over a block of values”

Compression

“column-specific compression, due to the nature of data”



Late Materialization

A B C D

C

select max(B) from R where A>5 and C<10 

IDs IDs

max

BA

“the full tuple (or the necessary subset) is not materialized until it is needed”



max

whole column?

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10
“Column-at-a-time”

IDs

C

IDs

BA



IDs

C
max

IDs

B

A

whole column?

column at a time

block/vector at a time

A C

B

select max(B) from R where A>5 and C<10
Block Iteration



What is easier to compress?

#1, John, 2/4/88, Boston

#2, Joe, 2/1/87, New York 

#3, Lina, 7/7/93, Boston

#4, Anna, 4/1/92, Chicago 

#5, Tim, 3/9/91, Seattle 

#6, Rose, 9/3/96, Boston

#1 John 2/4/88
#2 Joe 2/1/87
#3 Lina 7/7/93
#4 Anna 4/1/92
#5 Tim 3/9/91
#6 Rose 9/3/96

Boston 
New York 

Boston 
Chicago 
Seattle 
Boston

exploit patterns, duplicates, small differences



How to simulate a col-store with a row-store?

Vertical Partitioning

“physically partition the data per column”

Index-only Plans

“use only indexes in query plans that contain only relevant columns”

Materialized Views

“temporary tables that contain exactly the answer to a query”



A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Vertical Partitioning

D

select max(B) from R where A>5 and C<10

row1 

row2

A B C



A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Index-only plans

A

select max(B) from R where A>5 and C<10

C



A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Materialized Views
select B, C from R where A>5 and C<10

B C 

B C



Benchmarking

When comparing database systems we need a common “language”

Benchmarks from the Transaction Performance Council

TPC-B, TPC-C, TPC-H, TPC-DS etc

Also, a benchmark for data warehousing:

Star Schema Benchmark



Star-Schema Benchmark
13 queries

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey and 

d_year = 1993 and

lo_discount between 1 and 3 and

lo_quantity < 25;

select sum(lo_revenue), d_year, p_brand1 

from lineorder, date, part, supplier 

where lo_orderdate = d_datekey and

lo_partkey = p_partkey and

lo_suppkey = s_suppkey and

p_category = 'MFGR#12' and

s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

Fact table

Dimension tables



Experiments
1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5

4-disk HDD array with 160-200MB/s aggregate bandwidth 

(older paper, so small numbers!)

Report averages with “warm” bufferpool (smaller than data size) 

Focus on SSB averages (the paper has more detailed graphs)



Experimenting with row-stores (SSB averages)
tuple overheads (additional record IDs)
+ could not horizontally partition + more expensive hash joins

select sum(lo_revenue), d_year, p_brand1 

from lineorder, date, part, supplier 

where lo_orderdate = d_datekey and

lo_partkey = p_partkey and

lo_suppkey = s_suppkey and

p_category = 'MFGR#12' and

s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;



Details on Vertical Partitioning

TID Column Data

1

2

3

TID Column Data

1

2

3

Tuple 
Header

TID Column Data

1

2

3

Complete fact table 4GB (compressed)

Vertical partitioned tables are 0.7-1.1GB per column (compressed)

Note that a ”real column-store” would only store the raw values as an array. 
In this example it would be only 240MB.



Vertical Partitioning Interferes With Horizontal Partitioning

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

The fact table is horizontally partitioned (on date, allows to skip lots of data)



Vertical Partitioning Interferes With Horizontal Partitioning

The fact table is horizontally partitioned (on date, allows to skip lots of data)

Cannot horizontally partition because the 
vertical partitions do not contain date info

A B C D



Experimenting with row-stores (SSB averages)

tuple overheads (additional record IDs)
+ could not horizontally partition + more expensive hash joins

select sum(lo_revenue), d_year, p_brand1 

from lineorder, date, part, supplier 

where lo_orderdate = d_datekey and

lo_partkey = p_partkey and

lo_suppkey = s_suppkey and

p_category = 'MFGR#12' and

s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

tuple reconstruction (via expensive joins)
prior to the join between tables



Details on All Indexes
A common query pattern:

SELECT store_name, SUM(revenue)

FROM Facts, Stores

WHERE fact.store_id = stores.store_id AND 

stores.country = “Canada”

GROUP BY store_name

All qualifying tuples (based on where clause) are selected and reconstructed (“stitched together”) 

Note that indexes map to TIDs, and then from TIDs we get the column’s value

Tuple reconstruction is SLOW!



Can we simulate a column-store with a row-store?

(a) All Indexes is a poor way to do it

(b) Vertical Partitioning’s problem are NOT fundamental
i. tuple header can be removed

ii. TIDs can be virtual

iii. horizontal partitioning can be based on the values of a different VP

But still, column-stores and row-stores are apples and oranges!!



Row-Stores vs. Column-Stores (SSB average)

MV have the result readily available

A native col-store is faster

Why?



Methodology

Start from a native column-store

Remove column-store-specific performance optimizations 

End with a column-store with a row-oriented query engine



A. Compression

Q1
Q1
Q1
... 
Q2
Q2
...

Q1, 1, 300
Q2, 301, 500
Q3, 501, 550
Q4, 551, 800

Run-length Encoding

Alternative: Dictionary Compression
► Replace variable size with 

minimal fixed length e.g., integer

Benefits of col-store compression

Reduces I/O

Can operate directly on compressed data

How?

Are the same benefits applicable for row-store compression?

Reduces I/O➔ yes, but with lower ratio (less data value locality) 

No! Requires decompression before processing



B. Early vs. Late Materialization

A B C D

C BA

Late: Column-at-a-time

IDs IDs

max



A B C D

row1 

row2

Early: Row-at-a-time

row1 

row2

At what cost?

Poor memory bandwidth utilization

Lose opportunity for vectorized execution

B. Early vs. Late Materialization



IDs

C
max

IDs

B

A

whole column?

column at a time

block/vector at a time

A C

B

select max(B) from R where A>5 and C<10

C. Block Iteration



D. Invisible Joins

Idea: rewrite joins as predicates on foreign keys in fact table

Algorithm:

1. apply each predicate to the appropriate dimension table

2. build a hash table on matching keys

3. compute bitvector with bits set for qualifying positions (tuples)

4. intersect bitvectors (positions) via bitwise AND

5. for each resulting position reconstruct the resulting tuple



1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys

3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND

SELECT c.nation, s.nation, d.year, 

sum(lo.revenue) as revenue

FROM customer AS c, lineorder AS lo, 

supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey AND 

lo.suppkey = s.suppkey AND

lo.orderdate = d.datekey AND

c.region = ’ASIA’ AND s.region = ’ASIA’ AND

d.year >= 1992 and d.year <= 1997 

GROUP BY c.nation, s.nation, d.year 

ORDER BY d.year asc, revenue desc;



5. For each resulting position, extract the values 
from the columns that are in the result

Are invisible joins a general join algorithm?

No! It works only for Star Schemas



Row-Store

25

To make the most of a col-store

1. Efficient support of 
vertical partitioning 
(compression)

2. Column-specific 
execution
(late materialization)



T=tuple-at-a-time processing, t=block processing; 
I=invisible join enabled, i=disabled; 
C=compression enabled, c=disabled;

L=late materialization enabled, l=disabled

T is traditional, T(B) is traditional (bitmap),
MV is materialized views, VP is vertical partitioning, 
and AI is all indexes

C-store appears to do even better than fully materialized joins

Bulk processing buys you 5 to 50%

Invisible join buys you 50-75%

Compression buys you 2X

Late materialization gets you almost 3X



Things to remember

Row-stores vs. Col-stores: fundamental differences

✓Compression

✓Late Materialization

✓Block Iteration

✓Column-store-specific join optimizaitons




	Slide 1: Lecture 14 Row Stores vs Column Stores
	Slide 2: Row-stores vs. Col-Stores: How Different Are They Really?
	Slide 3: Row-Stores
	Slide 4: Row-Stores: slotted page
	Slide 5: Row-Stores: slotted page
	Slide 6: Row-Stores
	Slide 7: Row-stores: query processing
	Slide 8: Column-Stores
	Slide 9: Column-stores: query processing
	Slide 10
	Slide 12: State-of-the-art Col-Store features
	Slide 13: Late Materialization
	Slide 14: “Column-at-a-time”
	Slide 15: Block Iteration
	Slide 16: What is easier to compress?
	Slide 17: How to simulate a col-store with a row-store?
	Slide 18: Vertical Partitioning
	Slide 19: Index-only plans
	Slide 20: Materialized Views
	Slide 21: Benchmarking
	Slide 22: Fact table
	Slide 23: Experiments
	Slide 24: Experimenting with row-stores (SSB averages)
	Slide 25: Details on Vertical Partitioning
	Slide 26: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 27: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 28: Experimenting with row-stores (SSB averages)
	Slide 29: Details on All Indexes
	Slide 30: Can we simulate a column-store with a row-store?
	Slide 31: Row-Stores vs. Column-Stores (SSB average)
	Slide 32: Methodology
	Slide 33: A. Compression
	Slide 34: B. Early vs. Late Materialization
	Slide 35
	Slide 36: C. Block Iteration
	Slide 37: D. Invisible Joins
	Slide 38: 1. apply each predicate to the appropriate dimension table
	Slide 39: 5. For each resulting position, extract the values from the columns that are in the result
	Slide 40: To make the most of a col-store
	Slide 41: C-store appears to do even better than fully materialized joins
	Slide 42: Things to remember
	Slide 45

