
Lecture 12
Logging & Recovery Protocols I

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

A=1

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

A=1

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

A=A=2

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

A=A=2

Schedule

T1

T
I
M

E
MOTIVATION

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
age

Schedule

T1

CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that

the DBMS can recover from a failure.
→ Actions after a failure to recover the database to a

state that ensures atomicity, consistency, and
durability.

OBSERVATION

The primary storage location of the database is
on non-volatile storage, but this is much slower
than volatile storage.

Use volatile memory for faster access:
→ First copy target record into memory.
→ Perform the writes in memory.
→ Write dirty records back to disk.

TODAY’ S AGENDA

Buffer Pool Policies

Write-Ahead Log

Logging Schemes

Checkpoints

CRASH RECOVERY

DBMS is divided into different components
based on the underlying storage device.
→ Volatile vs. Non-Volatile

We must also classify the different types of
failures that the DBMS needs to handle.

7

STORAGE TYPES

Volatile Storage:
→ Data does not persist after power loss or program exit.
→ Examples: DRAM, SRAM

Non-volatile Storage:
→ Data persists after power loss and program exit.
→ Examples: HDD, SDD

Stable Storage:
→ A non-existent form of non-volatile storage that

survives all possible failures scenarios.

8

FAILURE CLASSIF ICATION

Type #1 – Transaction Failures

Type #2 – System Failures

Type #3 – Storage Media Failures

9

TRANSACTION FAILURES

Logical Errors:
→ Transaction cannot complete due to some internal

error condition (e.g., integrity constraint violation).

Internal State Errors:
→ DBMS must terminate an active transaction due to an

error condition (e.g., deadlock).

10

SYSTEM FAILURES

Software Failure:
→ Problem with the OS or DBMS implementation (e.g.,

uncaught divide-by-zero exception).

Hardware Failure:
→ The computer hosting the DBMS crashes (e.g., power

plug gets pulled).
→ Fail-stop Assumption: Non-volatile storage contents are

assumed to not be corrupted by system crash.

11

STORAGE MEDIA FAILURE

Non-Repairable Hardware Failure:
→ A head crash or similar disk failure destroys all or part

of non-volatile storage.
→ Destruction is assumed to be detectable (e.g., disk

controller use checksums to detect failures).

No DBMS can recover from this! Database must
be restored from archived version.

12

OBSERVATION

The DBMS needs to ensure the following
guarantees:
→ The changes for any txn are durable once the DBMS

has told somebody that it committed.
→ No partial changes are durable if the txn aborted.

UNDO VS. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-instating the effects of a
committed txn for durability.

How the DBMS supports this functionality
depends on how it manages the buffer pool…

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7

T
I
M

E

Schedule

T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A= B=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=8 C=7

T
I
M

E

Schedule

T1 T2

BUFFER POOL

A=1 B=9 C=7

A= B= C=7B=8

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3

Do we force T2’s changes
to be written to disk?

Buffer Pool

T
I
M

E

Schedule

T1 T2

BUFFER POOL

A=1 B=9 C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?Is T1 allowed to overwrite A even

though it has not committed?

T
I
M

E

Schedule

T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?

B=8A=3

Is T1 allowed to overwrite A even
though it has not committed?

T
I
M

E

Schedule

T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?

B=8A=3

Is T1 allowed to overwrite A even
though it has not committed?

Buffer Pool

T
I
M

E

Schedule

T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

BEGI
N
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8 C=7

What ha
we need

ppens when
to rollback T1?

B=8A=3

STEAL POLICY

Whether the DBMS allows an uncommitted txn
to overwrite the most recent committed value of
an object in non-volatile storage.

STEAL: Is allowed.

NO-STEAL: Is not allowed.

FORCE POLICY

Whether the DBMS requires that all updates
made by a txn are reflected on non-volatile
storage before the txn can commit.

FORCE: Is required.

NO-FORCE: Is not required.

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7

T
I
M

E

Schedule

T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A= B=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=8 C=7

Buffer Pool

T
I
M

E

Schedule

T1 T2

NO- STEAL + FORCE

A=1 B=9 C=7

A= B=

BEGIN
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8 C=7

2FORCE means that T changes must
be written to disk at this point.

T
I
M

E
NO- STEAL + FORCE

A=1 B=9 C=7

A= B= C=7
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3 B=8

2FORCE means that T changes must
be written to disk at this point.

Schedule

T1 T2

NO STEAL means that T1 changes
cannot be written to disk yet.

T
I
M

E
NO- STEAL + FORCE

A=1 B=9 C=7

A= B= C=7B=8
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3

2FORCE means that T changes must
be written to disk at this point.

Schedule

T1 T2

A=1 B=8 C=7

Copy

NO STEAL means that T1 changes
cannot be written to disk yet.

T
I
M

E
NO- STEAL + FORCE

A=1 B=
9

C=7

A= B= C=7B=8
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3

2FORCE means that T changes must
be written to disk at this point.

Schedule

T1 T2

B=8

A=1 B=8 C=7

Copy

NO STEAL means that T1 changes
cannot be written to disk yet.

Buffer Pool

T
I
M

E

Schedule

T1 T2

NO- STEAL + FORCE

A=1 B=
9

C=7

A= B=

BEGI
N
R(A)
W(A) BEGIN

R(B)
W(B)
COMMIT

A=3 B=8 C=7

⋮
ABORT

Now it’s trivial
to rollback T1

B=8

NO- STEAL + FORCE

This approach is the easiest to implement:
→ Never have to undo changes of an aborted txn because

the changes were not written to disk.
→ Never have to redo changes of a committed txn

because all the changes are guaranteed to be written
to disk at commit time (assuming atomic hardware
writes).

Previous example cannot support write sets that
exceed the amount of physical memory
available.

WRITE- AHEAD LOG

Buffer Pool Policy: STEAL + NO-FORCE

Maintain a log file separate from data files that
contains the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the

necessary undo and redo actions to restore the database.

DBMS must write to disk the log file records that
correspond to changes made to a database object
before it can flush that object to disk.

WRITE- AHEAD LOG

Maintain a log file separate from data files that
contains the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the

necessary undo and redo actions to restore the database.

DBMS must write to disk the log file records that
correspond to changes made to a database object
before it can flush that object to disk.

Buffer Pool Policy: STEAL + NO-FORCE

WAL PROTOCOL

The DBMS stages all txn's log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page
itself is over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to
mark its starting point.

When a txn finishes, the DBMS will:
→ Write a <COMMIT> record on the log
→ Make sure that all log records are flushed before it

returns an acknowledgement to application.

WAL PROTOCOL

Each log entry contains information about the
change to a single object:
→ Transaction Id
→ Object Id
→ Before Value (UNDO)
→ After Value (REDO)

Buffer Pool

A=1 B=5 C=7

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

A=1 B=5 C=7

Buffer Pool

A=1 B=5 C=7

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1

WAL – EXAMPLE

WAL Buffer

<T1 BEGIN>

A=1 B=5 C=7

Buffer Pool

A=1 B=5 C=7

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1

WAL – EXAMPLE

WAL Buffer

<T1 BEGIN>

A=1 B=5 C=7

Buffer Pool

A=1 B=5 C=7

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1

Buffer Pool

A=A=8 B=5 C=7

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1

2

Buffer Pool

A= B=

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1

WAL – EXAMPLE

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

A=8 B=9 C=7

A=1 B=5 C=7

Buffer Pool

A= B=

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to
return to application.

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to
return to application.

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

T
I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

WAL – EXAMPLE

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to
return to application.

WAL – EXAMPLE
T

I
M

E

BEGIN
W(A)
W(B)
⋮

COMMIT

Schedule

T1
WAL Buffer

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Everything we need to
restore T1 is in the log!

Buffer PoolTxn result is now safe to
return to application.

WAL – IMPLEMENTATION

When should the DBMS write log entries to
disk?

WAL – IMPLEMENTATION

When should the DBMS write log entries to
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes

together to amortize overhead.

WAL – GROUP COMMIT
T

I
M

E

Schedule

COMM
IT COMM

IT

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

WAL Buffer

WAL – GROUP COMMIT
T

I
M

E

Schedule

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT
T

I
M

E

Schedule

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer

<T1 BEGIN>

WAL – GROUP COMMIT
T

I
M

E

Schedule

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>

WAL – GROUP COMMIT
T

I
M

E

Schedule

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮

Flush the buffer
when it is full.

COMMIT
COMMIT

Buffers

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮

COMMIT
COMMIT

Flush the buffer
when it is full.

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮
<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮
<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮
<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮

COMMIT
COMMIT

Flush after an elapsed
amount of time.

WAL Buffer

<T2, D, 3, 4>

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮
<T2, D, 3, 4>

Flush after an elapsed
amount of time.

COMMIT
COMMIT

WAL Buffer

WAL – GROUP COMMIT
T

I
M

E

Schedule

T1 T2

BEGI
N
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)

⋮
<T2, D, 3, 4>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>
<T2, D, 3, 4>

Flush after an elapsed
amount of time.

COMMIT
COMMIT

WAL – IMPLEMENTATION

When should the DBMS write log entries to
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes

together to amortize overhead.

When should the DBMS write dirty records to
disk?

WAL – IMPLEMENTATION

When should the DBMS write log entries to
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes

together to amortize overhead.

When should the DBMS write dirty records to
disk?
→ Every time the txn executes an update?
→ Once when the txn commits?

BUFFER POOL POLICIES

NO-STEAL STEAL

NO-FORCE –
Fastest

FORCE Slowest –

NO-STEAL STEAL

NO-FORCE – Slowest

FORCE
Fastest

–

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance

NO-STEAL STEAL

NO-FORCE – Slowest

FORCE
Fastest

–

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance
Undo + Redo

No Undo + No Redo

NO-STEAL STEAL

NO-FORCE –
Fastest

FORCE Slowest –

LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific location in the

database.
→ Example: git diff

Logical Logging
→ Record the high-level operations executed by txns.
→ Not necessarily restricted to single page.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each
log record than physical logging.

Difficult to implement recovery with logical
logging if you have concurrent txns.
→ Hard to determine which parts of the database may

have been modified by a query before crash.
→ Also takes longer to recover because you must re-

execute every txn all over again.

PHYSIOLOGICAL LOGGING

Hybrid approach where log records target a
single page but do not specify organization of
the page.
→ Identify tuples based on their slot number.
→ Allows DBMS to reorganize pages after a log record has

been written to disk.

This is the most popular approach.

LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical

<T1,
Table=X,
Page=99,
Offset=4,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
Page=45,
Offset=9,
Key=(1,Record1)>

LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical

<T1,
Table=X,
Page=99,
Offset=4,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
Page=45,
Offset=9,

Logical

<T1,
Query="UPDATE foo

SET val=XYZ
WHERE id=1">

Key=(1,Record1)>

LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical

<T1,
Table=X,
Page=99,
Offset=4,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
Page=45,
Offset=9,

<T1,
Query="UPDATE foo

SET val=XYZ
WHERE id=1">

Logical Physiological

Key=(1,Record1)>

<T1,
Table=X,
Page=99,
Slot=1,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
IndexPage=45,
Key=(1,Record1)>

CHECKPOINTS

The WAL will grow forever.

After a crash, the DBMS must replay the entire
log, which will take a long time.

The DBMS periodically takes a checkpoint where
it flushes all buffers out to disk.

CHECKPOINTS

Output onto stable storage all log records
currently residing in main memory.

Output to the disk all modified blocks.

Write a <CHECKPOINT> entry to the log and
flush to stable storage.

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS

Any txn that committed before the
checkpoint is ignored (T1).

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Any txn that committed before the
checkpoint is ignored (T1).

T2 + T3 did not commit before the
last checkpoint.

CRASH!

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Any txn that committed before the
checkpoint is ignored (T1).

T2 + T3 did not commit before the
last checkpoint.
→ Need to redo T2 because it committed

after checkpoint.
→ Need to undo T3 because it did not

commit before the crash. CRASH!

CHECKPOINTS – CHALLENGES

The DBMS must stall txns when it takes a
checkpoint to ensure a consistent snapshot.

Scanning the log to find uncommitted txns can
take a long time.

Not obvious how often the DBMS should take a
checkpoint…

CHECKPOINTS – FREQUENCY

Checkpointing too often causes the runtime
performance to degrade.
→ System spends too much time flushing buffers.

But waiting a long time is just as bad:
→ The checkpoint will be large and slow.
→ Makes recovery time much longer.

CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE)
with checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.

	Slide 1: Lecture 12 Logging & Recovery Protocols I
	Slide 2: MOTIVATION
	Slide 3: MOTIVATION
	Slide 4: MOTIVATION
	Slide 5: MOTIVATION
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: MOTIVATION
	Slide 9: CRASH RECOVERY
	Slide 10: OBSERVATION
	Slide 11: TODAY’ S AGENDA
	Slide 12: CRASH RECOVERY
	Slide 13: STORAGE TYPES
	Slide 14: FAILURE CLASSIFICATION
	Slide 15: TRANSACTION FAILURES
	Slide 16: SYSTEM FAILURES
	Slide 17: STORAGE MEDIA FAILURE
	Slide 18: OBSERVATION
	Slide 19: UNDO VS. REDO
	Slide 20: BUFFER POOL
	Slide 21: BUFFER POOL
	Slide 22: BUFFER POOL
	Slide 23: BUFFER POOL
	Slide 24: BUFFER POOL
	Slide 25: BUFFER POOL
	Slide 26: BUFFER POOL
	Slide 27: BUFFER POOL
	Slide 28: BUFFER POOL
	Slide 29: BUFFER POOL
	Slide 30: BUFFER POOL
	Slide 31: STEAL POLICY
	Slide 32: FORCE POLICY
	Slide 33: NO- STEAL + FORCE
	Slide 34: NO- STEAL + FORCE
	Slide 35: NO- STEAL + FORCE
	Slide 36: NO- STEAL + FORCE
	Slide 37: NO- STEAL + FORCE
	Slide 38: NO- STEAL + FORCE
	Slide 39: NO- STEAL + FORCE
	Slide 40: NO- STEAL + FORCE
	Slide 41: NO- STEAL + FORCE
	Slide 42: NO- STEAL + FORCE
	Slide 43: NO- STEAL + FORCE
	Slide 44: NO- STEAL + FORCE
	Slide 80: WRITE- AHEAD LOG
	Slide 81: WRITE- AHEAD LOG
	Slide 82: WAL PROTOCOL
	Slide 83: WAL PROTOCOL
	Slide 84: WAL PROTOCOL
	Slide 85: WAL – EXAMPLE
	Slide 86: WAL – EXAMPLE
	Slide 87: WAL – EXAMPLE
	Slide 88: WAL – EXAMPLE
	Slide 89: WAL – EXAMPLE
	Slide 90: WAL – EXAMPLE
	Slide 91: WAL – EXAMPLE
	Slide 92: WAL – EXAMPLE
	Slide 93: WAL – EXAMPLE
	Slide 94: WAL – EXAMPLE
	Slide 95: WAL – EXAMPLE
	Slide 96: WAL – IMPLEMENTATION
	Slide 97: WAL – IMPLEMENTATION
	Slide 98: WAL – GROUP COMMIT
	Slide 99: WAL – GROUP COMMIT
	Slide 100: WAL – GROUP COMMIT
	Slide 101: WAL – GROUP COMMIT
	Slide 102: WAL – GROUP COMMIT
	Slide 103: WAL – GROUP COMMIT
	Slide 104: WAL – GROUP COMMIT
	Slide 105: WAL – GROUP COMMIT
	Slide 106: WAL – GROUP COMMIT
	Slide 107: WAL – GROUP COMMIT
	Slide 108: WAL – GROUP COMMIT
	Slide 109: WAL – GROUP COMMIT
	Slide 110: WAL – GROUP COMMIT
	Slide 111: WAL – GROUP COMMIT
	Slide 112: WAL – GROUP COMMIT
	Slide 113: WAL – IMPLEMENTATION
	Slide 114: WAL – IMPLEMENTATION
	Slide 115: BUFFER POOL POLICIES
	Slide 116: BUFFER POOL POLICIES
	Slide 117: LOGGING SCHEMES
	Slide 118: PHYSICAL VS. LOGICAL LOGGING
	Slide 119: PHYSIOLOGICAL LOGGING
	Slide 120: LOGGING SCHEMES
	Slide 121: LOGGING SCHEMES
	Slide 122: LOGGING SCHEMES
	Slide 123: LOGGING SCHEMES
	Slide 124: CHECKPOINTS
	Slide 125: CHECKPOINTS
	Slide 126: CHECKPOINTS
	Slide 127: CHECKPOINTS
	Slide 128: CHECKPOINTS
	Slide 129: CHECKPOINTS
	Slide 130: CHECKPOINTS
	Slide 131: CHECKPOINTS – CHALLENGES
	Slide 132: CHECKPOINTS – FREQUENCY
	Slide 133: CONCLUSION

