CS 6530: Advanced Database Systems Fall 2024

Lecture 12 Filters

Prashant Pandey prashant.pandey@utah.edu

The balls and bin model

- Resource load balancing is often modeled by the task of throwing balls into bins
	- Hashing, distributed storage, online load balancing, etc.
- Throw *m* balls into *n* bins:
	- Pick a bin uniformly at random
	- Insert a ball into the bin
	- Repeat *m* times.

The single choice paradigm

- Throw *m* balls into *n* bins:
	- Pick a bin uniformly at random
	- Insert a ball into the bin
	- Repeat *m* times.

The multiple choice paradigm

- Throw *m* balls into *n* bins:
	- Pick *d* bins uniformly at random (*d* >= 2)
	- Insert the ball into the less loaded bin
	- Repeat *m* times.

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

Separate Chaining

Insert:

• **Separate chaining**: All

keys that map to the same hash value are kept in a list (or "bucket").

Open Addressing

• **Linear Probing**: after checking spot h(k), try spot $h(k)+1$, if that is full, try h(k)+2, then h(k)+3, etc.

Existing hash table techniques

Separate chaining

- Chaining with linked-list
- Chaining with binary tree

Open addressing

- Linear probing
- Coalesced chaining
- Double hashing
- Cuckoo hashing
- Hopscotch hashing
- Robin Hood hashing
- 2-choice hashing
- d-left hashing
- Cuckoo hashing suffers from *random hopping*
- Linear probing/Robin Hood hashing suffer from *long chains*
- 2-choice/d-left hashing suffer from *multiple probes*

Dictionary data structure

A dictionary maintains a set *S* from universe *U*.

membership(*a*): \blacktriangledown membership(b): $\mathsf{\times}$ membership(*c*): membership(*d*):

A dictionary supports membership queries on *S*.

Filter data structure

A filter is an *approximate* dictionary.

A filter supports *approximate* membership queries on *S*.

A filter guarantees a false-positive rate ε

False-positive rate enables filters to be compact

space $\geq n \log(1/\epsilon)$ space $= \Omega(n \log |U|)$

Filter Dictionary

False-positive rate enables filters to be compact

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array $+ k$ hash functions (here $k=2$)

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array $+ k$ hash functions (here $k=2$)

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array $+ k$ hash functions (here $k=2$)

Bloom filters have suboptimal performance

Bloom filters are ubiquitous $($ > 10K citations)

Computational biology

Databases

Networking

Storage systems

NIVERSITY OF UTAH

Streaming applications

Most common filter use

Filter out queries to a large remote dictionary.

Only an ε-fraction of negative queries don't get filtered out.

local, e.g., in RAM

remote, e.g., on disk

Speed up from filter use

Workload has *P* positive and *N* negative queries.

Remote Accesses of Dictionary

Applications often work around Bloom filter limitations

Bloom filter limitations increase system complexity, waste space, and slow down application performance

Quotienting is an alternative to Bloom filters [Knuth. Searching and Sorting Vol. 3, '97]

- **Store fingerprints compactly in a hash table.**
	- \circ Take a fingerprint $h(x)$ for each element *x*.

- **Only source of false positives:**
	- \circ Two distinct elements *x* and *y*, where $h(x) = h(y)$
	- \circ If x is stored and y isn't, query(y) gives a false positives

$$
Pr[x \text{ and } y \text{ collide}] = \frac{1}{2^p}
$$

Resolving collisions in the QF

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

Resolving collisions in the QF

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

Resolving collisions in the QF

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

The metadata bits enable us to identify the slots holding the contents of each bucket.

Quotient filters use less space than Bloom filters for all practical configurations

The quotient filter has theoretical advantages over the Bloom filter

Types of filters

● Bloom filters [Bloom '70]

[Pagh et al. '05, Dillinger et al. '09, Bender et al. '12, Einziger et al. '15, Pandey et al. '17]

- Quotient filters
- Cuckoo/Morton filters [Fan et al. '14, Breslow & Jayasena '18]
- Others
	- Mostly based on perfect hashing and/or linear algebra
	- Mostly static
	- e.g., Xor filters [Graf & Lemire '20]

Current filters have a problem..

Performance suffers due to high-overhead of *collision resolution*

Applications must choose between space and speed.

Current filters have a problem..

Performance suffers due to high-overhead of *collision resolution*

Applications must choose between space and speed.

Current filters have a problem..

Performance suffers due to high-overhead of *collision resolution*

Update intensive applications maintain filters close to full.

HOOL OF COMPUTING IIVERSITY OF UTAH

Why quotient filters slow down

Quotient filters use Robin-Hood hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of runs.

To insert item *x*:

- 1. Find its run.
- 2. Shift other items down by 1 slot.
- 3. Store *f*(*x*).

As the QF fills, inserts have to do more shifting.

Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.

As the CF fills, inserts have to do more kicking.

Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.

Cuckoo filter performance

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

To insert item *x*:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert $f(x)$ into emptier block.
- 3. Kick an item if needed.

3. Kick an item if needed.

insert-only workload.

A vectorizable mini quotient filter

Each block has *b* logical buckets.

Fingerprints of each bucket are stored together.

We keep a bit vector of bucket

A vectorizable mini quotient filter

Each block has *b* logical buckets.

Fingerprints of each bucket are stored together

 \mathbf{V} betations take contract \mathbf{V} t **computation for vectors of size ω**(*f***12** instructions **Operations take constant time in a vector model of computation for vectors of size** ⍵**(log log n) [Bellloch '90] . Example, using AVX-512 instructions.**

Vector quotient filter (VQF) performance

Evaluation: insertion

Evaluation: lookups

