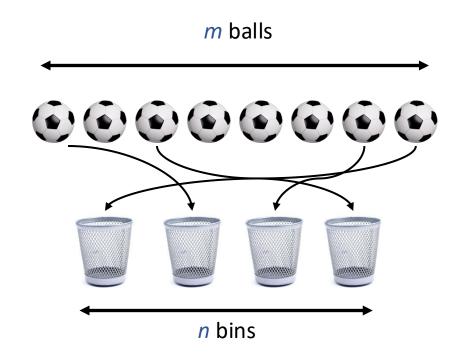
CS 6530: Advanced Database Systems Fall 2024

Lecture 12 Filters

Prashant Pandey prashant.pandey@utah.edu

The balls and bin model

- Resource load balancing is often modeled by the task of throwing balls into bins
 - Hashing, distributed storage, online load balancing, etc.
- Throw *m* balls into *n* bins:
 - Pick a bin uniformly at random
 - Insert a ball into the bin
 - Repeat *m* times.



The single choice paradigm

- Throw *m* balls into *n* bins:
 - Pick a bin uniformly at random
 - Insert a ball into the bin
 - Repeat *m* times.

Number of Balls	m = n	$m \ge n \log n$	
Max Load	$(1+o(1))\frac{\log n}{\log\log n}$	$\frac{m}{n} + \sqrt{\frac{m \log n}{n}}$	

The multiple choice paradigm

- Throw *m* balls into *n* bins:
 - Pick d bins uniformly at random $(d \ge 2)$
 - Insert the ball into the less loaded bin
 - Repeat *m* times.

Number of Balls	m = n	$m \ge n \log n$ independent of m
Max Load with prob. $1 - \frac{1}{n}$	$\frac{\log \log n}{\log d}$ [ABKU94]	$\frac{m}{n} + \frac{\log \log n}{\log d}$ [BCSV00]

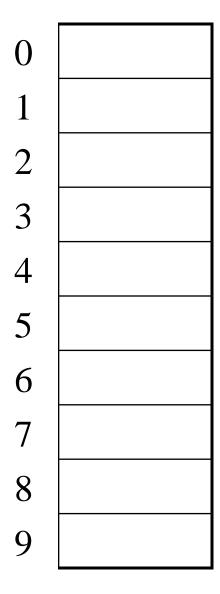
Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

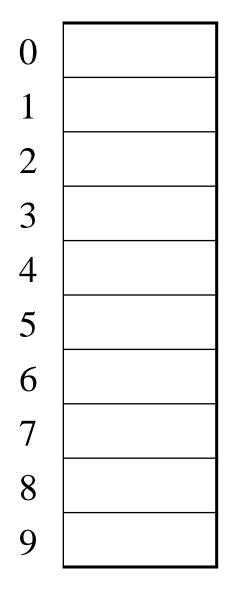
Separate Chaining



Insert:

• Separate chaining: All keys that map to the same hash value are kept in a list (or "bucket").

Open Addressing



Insert:

• Linear Probing: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Existing hash table techniques

Separate chaining

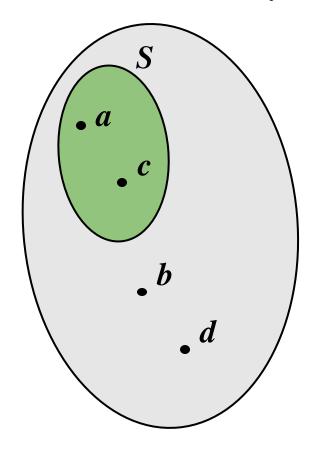
- Chaining with linked-list
- Chaining with binary tree

Open addressing

- Linear probing
- Coalesced chaining
- Double hashing
- Cuckoo hashing
- Hopscotch hashing
- Robin Hood hashing
- 2-choice hashing
- d-left hashing
- Cuckoo hashing suffers from random hopping
- Linear probing/Robin Hood hashing suffer from *long chains*
- 2-choice/d-left hashing suffer from *multiple probes*

Dictionary data structure

A dictionary maintains a set S from universe U.



membership(*a*): ✓

membership(b): X

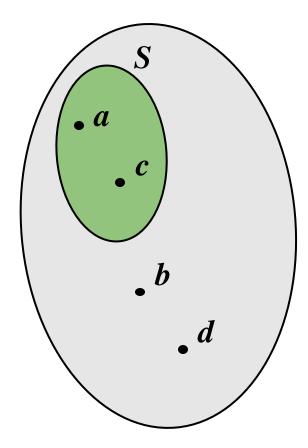
membership(c):

membership(d):

A dictionary supports membership queries on S.

Filter data structure

A filter is an approximate dictionary.



membership(a):

membership(b):

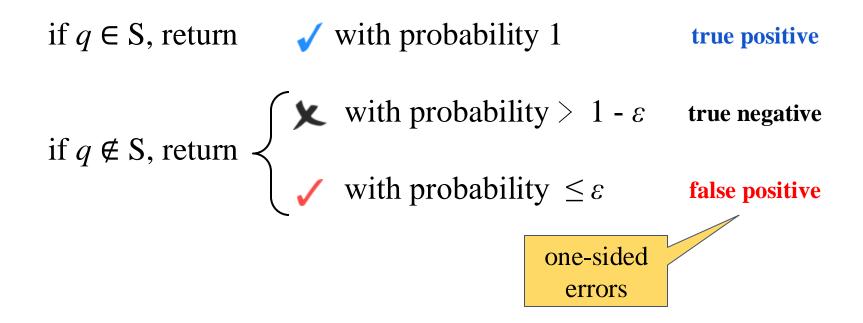
membership(c):

membership(d):

false positive

A filter supports <u>approximate</u> membership queries on S.

A filter guarantees a false-positive rate ε



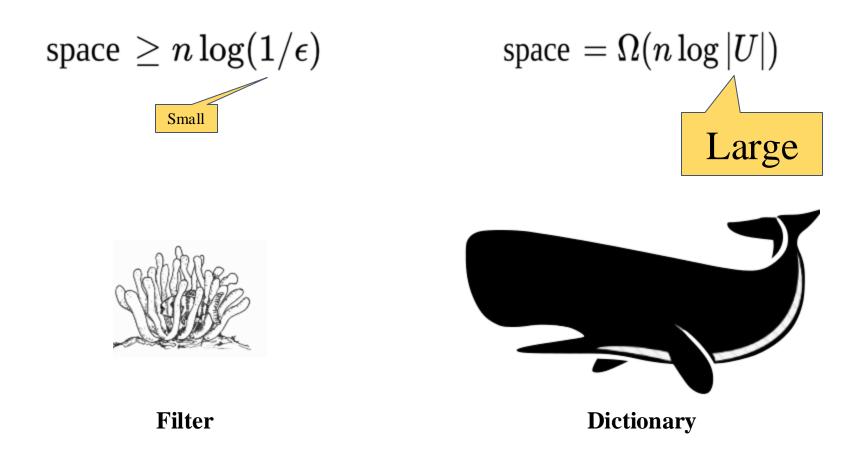
False-positive rate enables filters to be compact

space
$$\geq n \log(1/\epsilon)$$

space
$$= \Omega(n \log |U|)$$

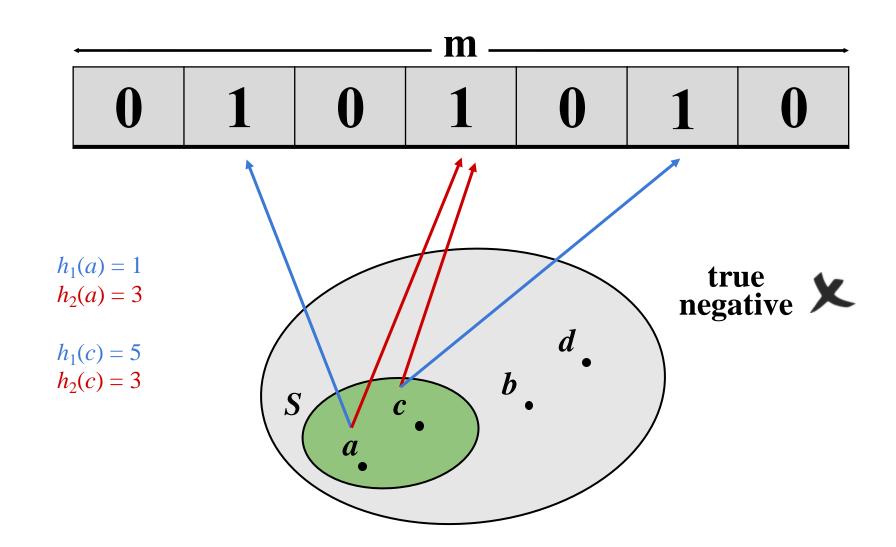
Filter

False-positive rate enables filters to be compact



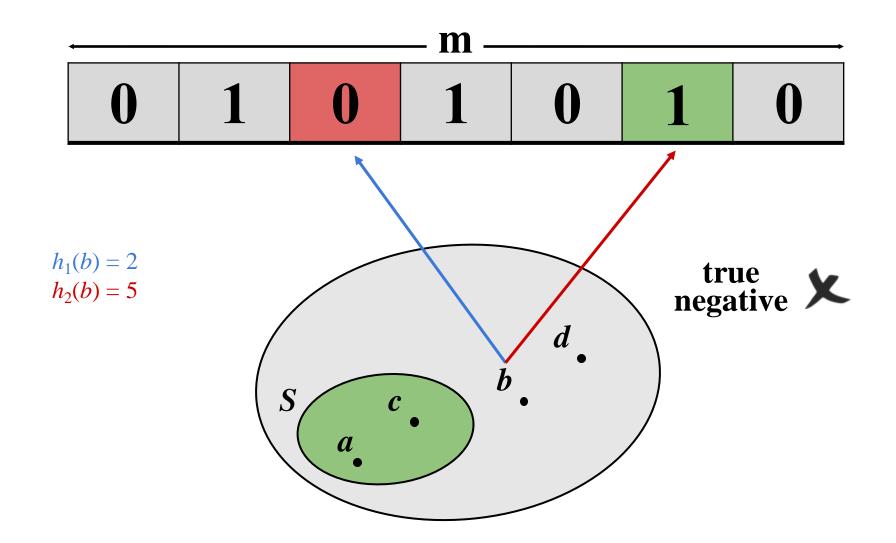
Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + k hash functions (here k=2)



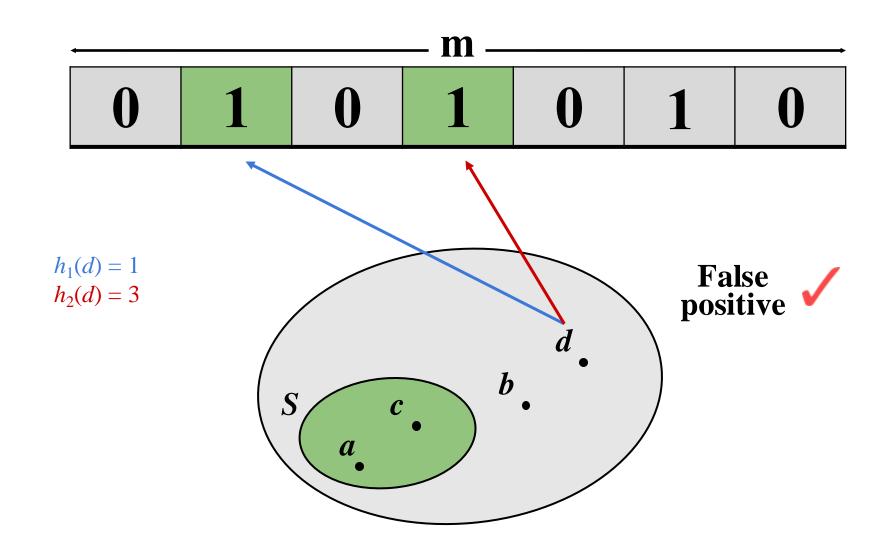
Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + k hash functions (here k=2)



Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + k hash functions (here k=2)



Bloom filters have suboptimal performance

	Bloom filter	Optimal	
Space (bits)	$pprox 1.44 \ n \log(1/\epsilon)$	$pprox n \; \log(1/\epsilon) + \Omega(n)$	
CPU cost	$\Omega(1/\epsilon)$	O(1)	
Data locality $\Omega(1/\epsilon)$ probes		O(1) probes	

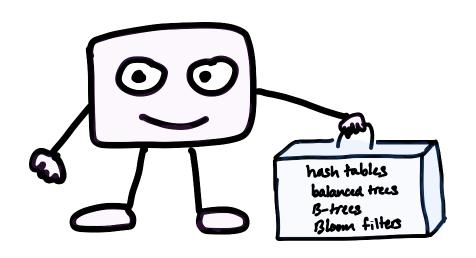
Bloom filters are ubiquitous (> 10K citations)

Computational biology

Networking

Storage systems

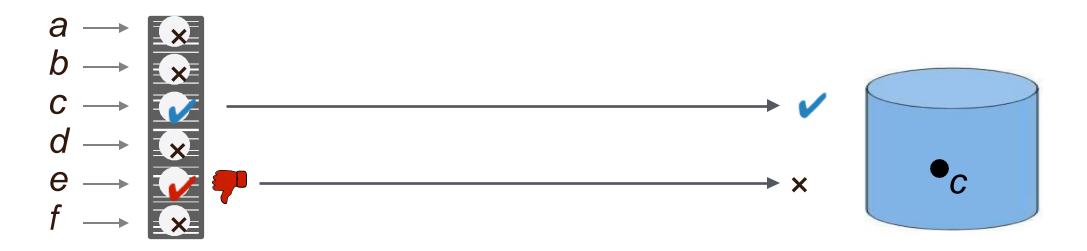
Streaming applications



Most common filter use

Filter out queries to a large remote dictionary.

Only an ϵ -fraction of negative queries don't get filtered out.



Filter

local, e.g., in RAM

Dictionary

remote, e.g., on disk

Speed up from filter use

Workload has P positive and N negative queries.

Dictionaries w/o Bloom Filters Dictionaries w/ Bloom Filters

$$P+\varepsilon N$$

Remote Accesses of Dictionary

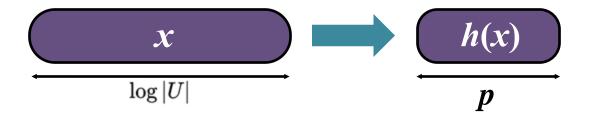
Applications often work around Bloom filter limitations

Limitations	Workarounds	
No deletes	Rebuild	
No resizes	Guess <i>N</i> , and rebuild if wrong	
No filter merging or enumeration	???	
No values associated with keys	Combine with another data structure	

Bloom filter limitations increase system complexity, waste space, and slow down application performance

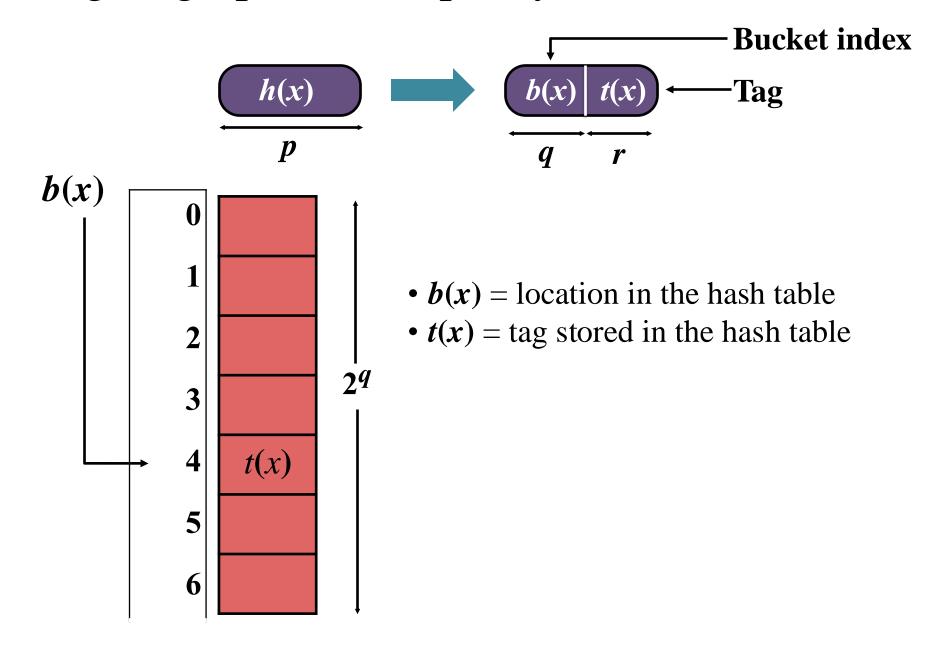
Quotienting is an alternative to Bloom filters [Knuth. Searching and Sorting Vol. 3, '97]

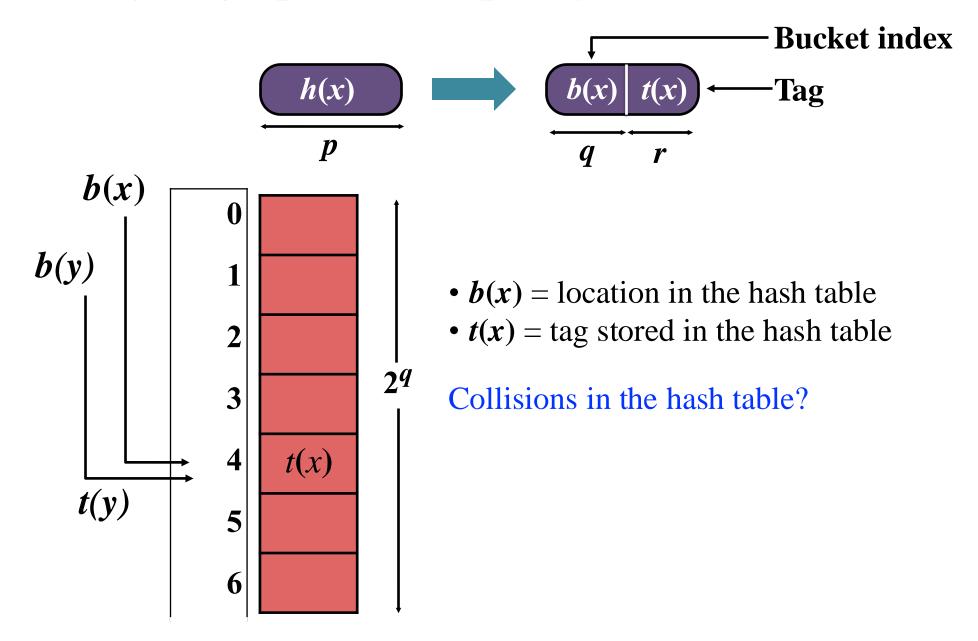
- Store fingerprints compactly in a hash table.
 - \circ Take a fingerprint h(x) for each element x.

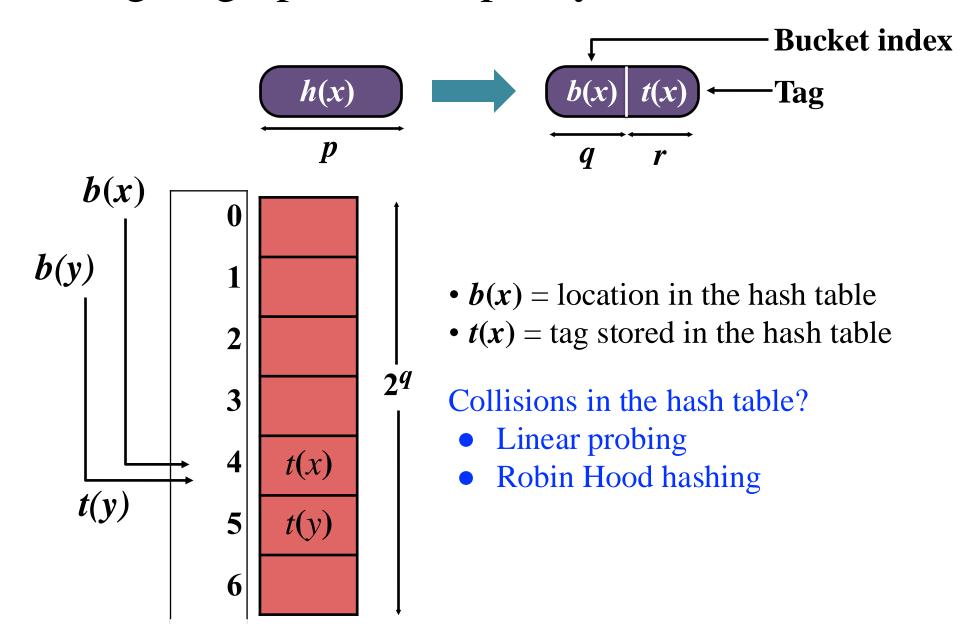


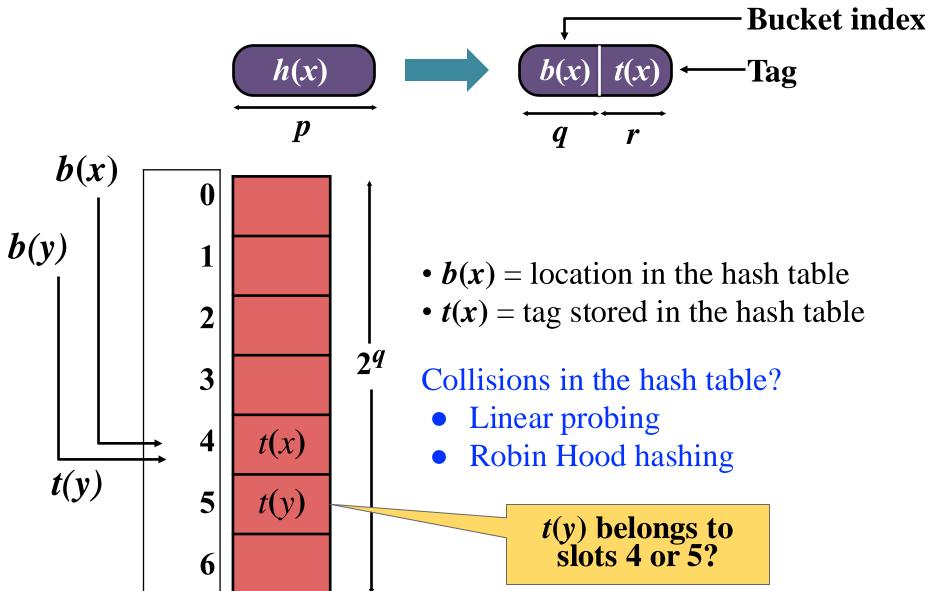
- Only source of false positives:
 - Two distinct elements x and y, where h(x) = h(y)
 - \circ If x is stored and y isn't, query(y) gives a false positives

$$\Pr[x \text{ and } y \text{ collide}] = \frac{1}{2^p}$$



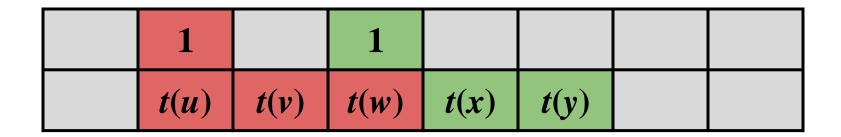






Resolving collisions in the QF

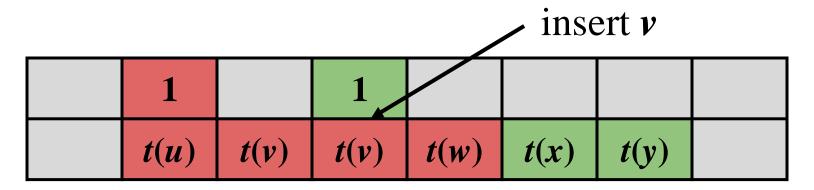
• QF uses two metadata bits to resolve collisions and identify home bucket



• The metadata bits group tags by their home bucket

Resolving collisions in the QF

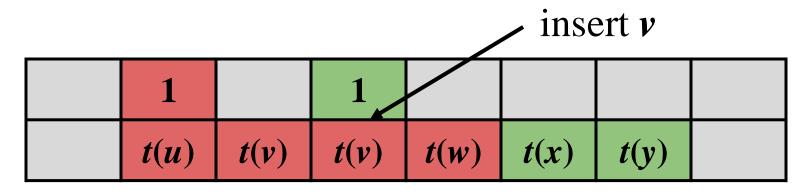
 QF uses two metadata bits to resolve collisions and identify home bucket



• The metadata bits group tags by their home bucket

Resolving collisions in the QF

 QF uses two metadata bits to resolve collisions and identify home bucket



• The metadata bits group tags by their home bucket

The metadata bits enable us to identify the slots holding the contents of each bucket.

Quotient filters use less space than Bloom filters for all practical configurations

	Quotient filter	Bloom filter	Optimal
Space (bits)	$pprox n \log(1/\epsilon) + 2.125 n$	$pprox 1.44 \ n \log(1/\epsilon)$	$pprox n \; \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1) expected	$\Omega(1/\epsilon)$	O(1)
Data locality	1 probe + scan	$\Omega(1/\epsilon)$ probes	O(1) probes

The quotient filter has theoretical advantages over the Bloom filter

Types of filters

• Bloom filters [Bloom '70]

[Pagh et al. '05, Dillinger et al. '09, Bender et al. '12, Einziger et al. '15, Pandey et al. '17]

Quotient filters

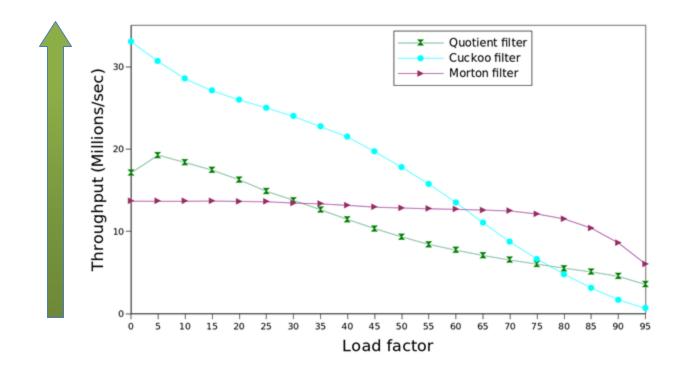
• Cuckoo/Morton filters [Fan et al. '14, Breslow & Jayasena '18]

State of the art in practical dynamic filters.

- Others
 - Mostly based on perfect hashing and/or linear algebra
 - Mostly static
 - o e.g., Xor filters [Graf & Lemire '20]

Current filters have a problem..

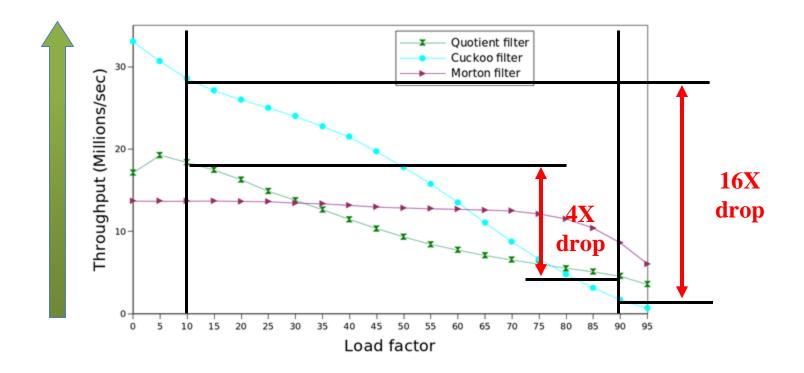
Performance suffers due to high-overhead of *collision resolution*



Applications must choose between space and speed.

Current filters have a problem..

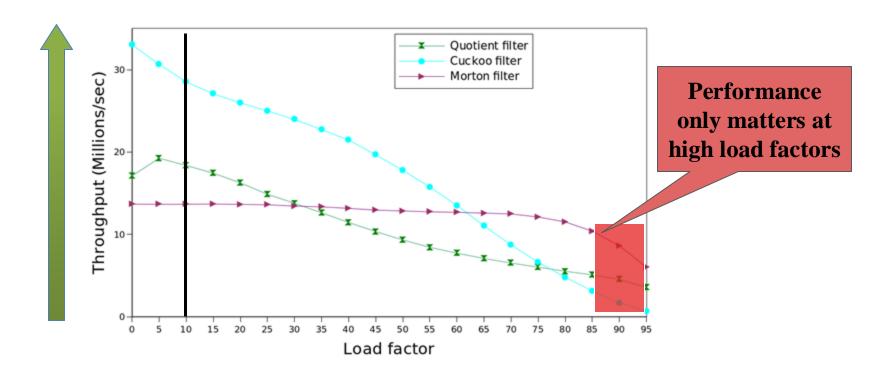
Performance suffers due to high-overhead of *collision resolution*



Applications must choose between space and speed.

Current filters have a problem..

Performance suffers due to high-overhead of *collision resolution*



Update intensive applications maintain filters close to full.

Why quotient filters slow down

Quotient filters use Robin-Hood hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of runs.

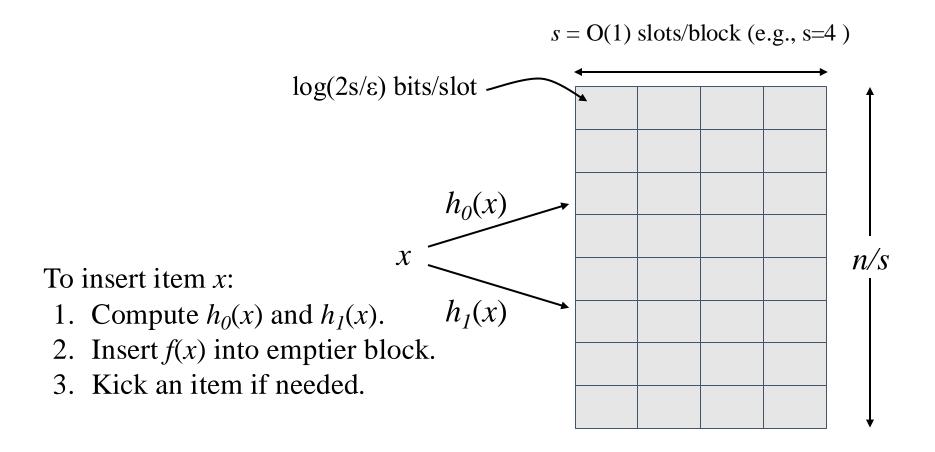
To insert item *x*:

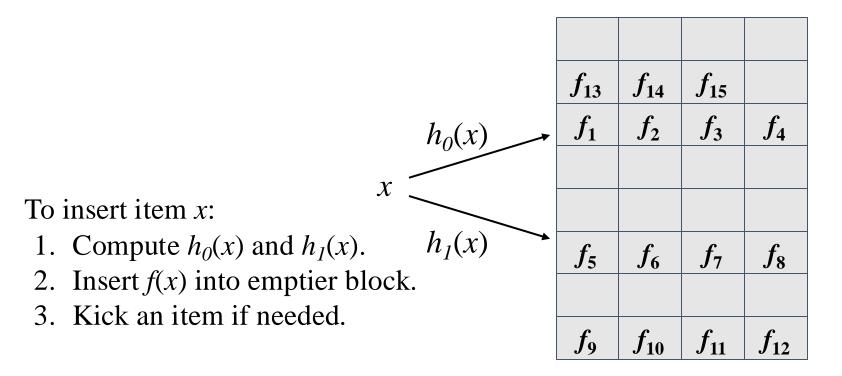
- 1. Find its run.
- 2. Shift other items down by 1 slot.
- 3. Store f(x).

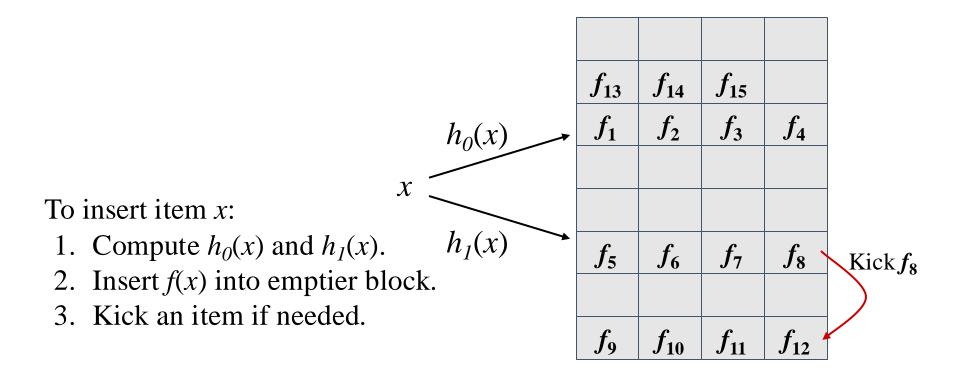
 $log(1/\epsilon)$ bits/slot h(x)n slots shift

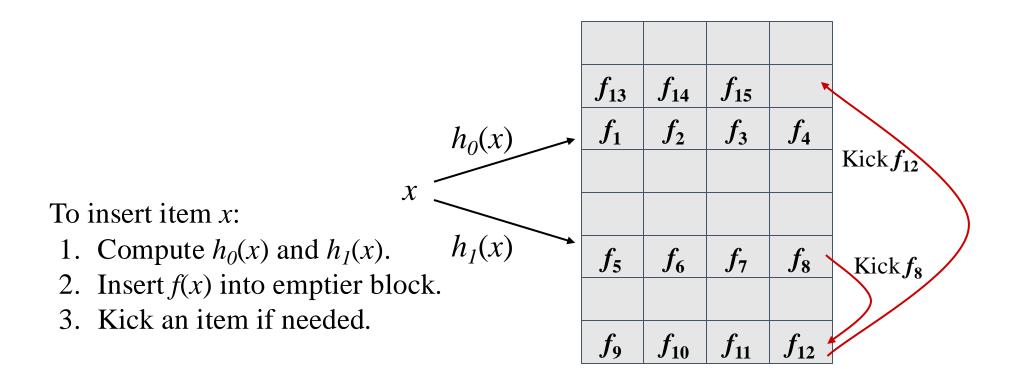
As the QF fills, inserts have to do more shifting.

Why cuckoo filters slow down

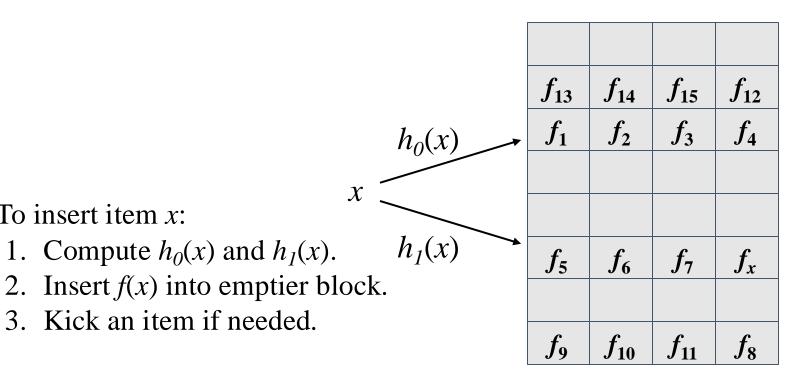








Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.



As the CF fills, inserts have to do more kicking.

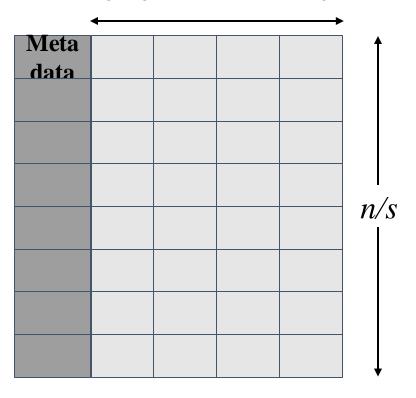
To insert item *x*:

Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.

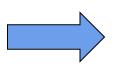
Cuckoo filter performance

	Optimal	Cuckoo filter
Space (bits)	$pprox n \log(1/\epsilon) + \Omega(n)$	$pprox n \log(1/\epsilon) + 3n$
CPU cost	O(1)	up to 500
Data locality	O(1) probes	random probes

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

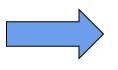


Each block is a small quotient filter with false-positive rate $\varepsilon/2$ and capacity s.

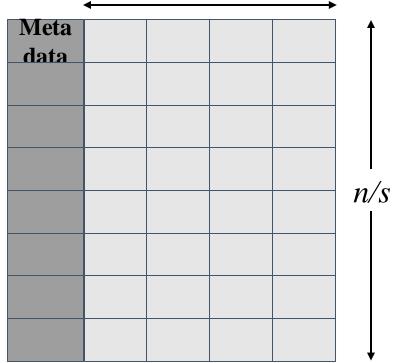




Each block is a small quotient filter with false-positive rate $\varepsilon/2$ and capacity s.



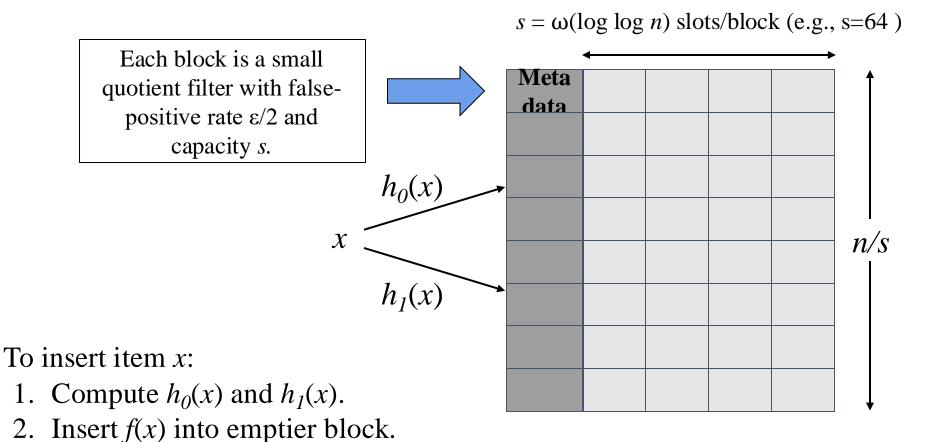
 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

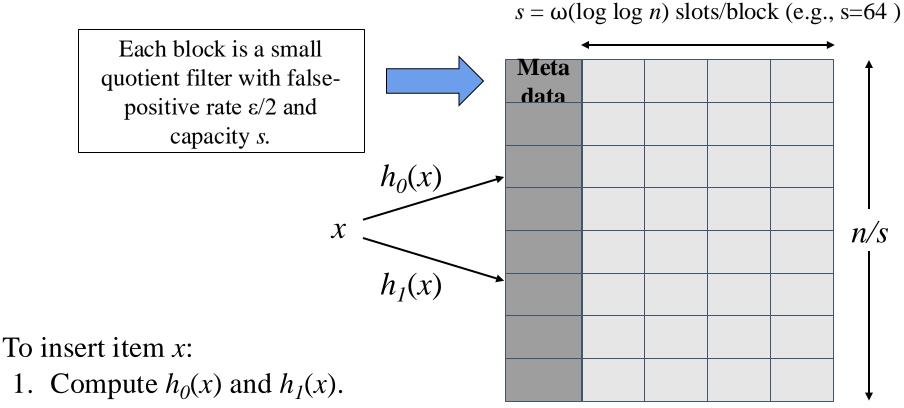


To insert item *x*:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

3. Kick an item if needed.

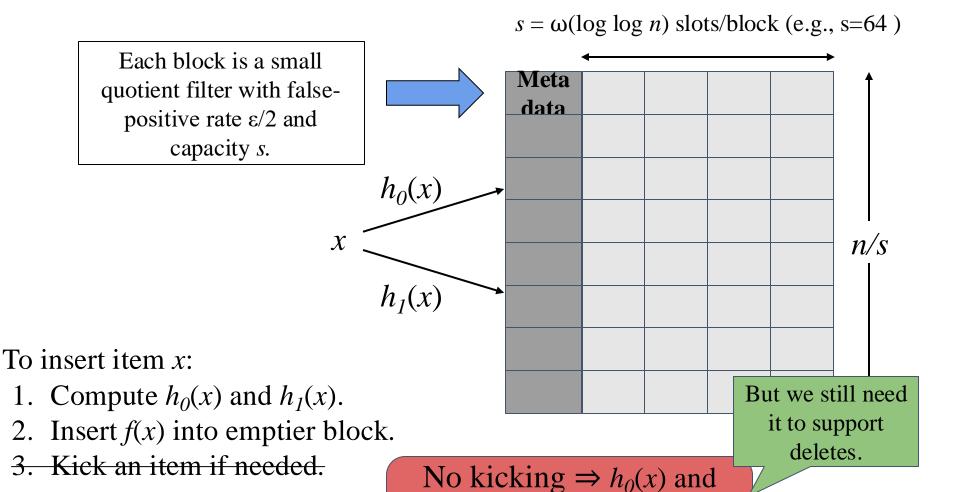




2. Insert f(x) into emptier block.

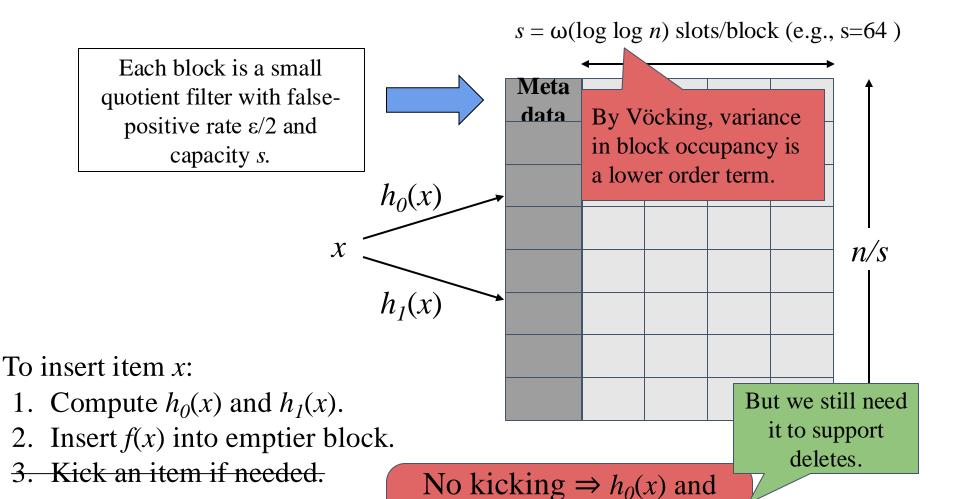
3. Kick an item if needed.

No kicking $\Rightarrow h_0(x)$ and $h_1(x)$ can be independent for insert-only workload.



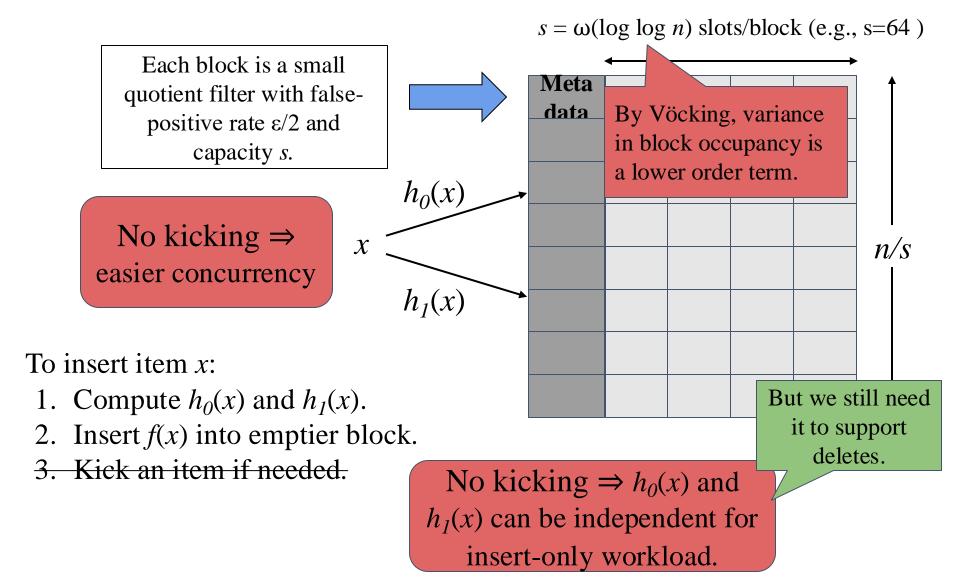
 $h_1(x)$ can be independent for

insert-only workload.



 $h_1(x)$ can be independent for

insert-only workload.



A vectorizable mini quotient filter

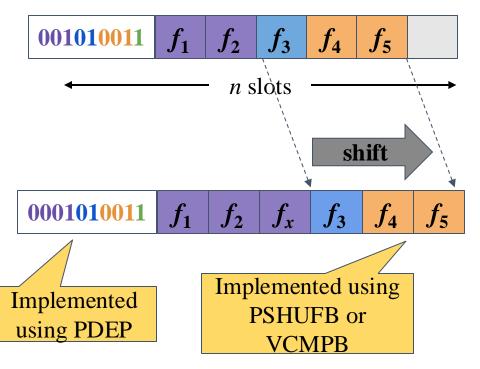
Each block has b logical buckets.

Fingerprints of each bucket are stored together.

We keep a bit vector of bucket boundaries.

Insert x, where $\beta(x)=0$.

Space efficiency is maximized when $b=s/\ln 2$.



A vectorizable mini quotient filter

Each block has b logical buckets.

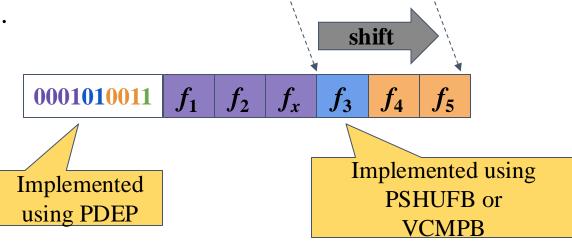
Fingerprints of each bucket are

stored together

Operations take constant time in a vector model of computation for vectors of size $\omega(\log\log n)^{[Bellloch '90]}$. Example, using AVX-512 instructions.

Insert x, where $\beta(x)=0$.

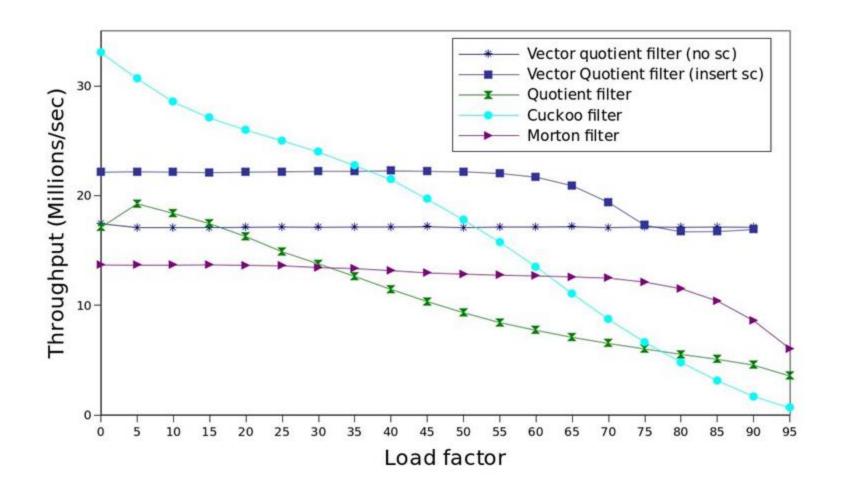
Space efficiency is maximized when $b=s/\ln 2$.



Vector quotient filter (VQF) performance

	Optimal	VQF
Space (bits)	$pprox n \; \log(1/\epsilon) + \Omega(n)$	$pprox n \log(1/\epsilon) + 2.91n$
CPU cost	O(1)	O(1)
Data locality	O(1) probes	2 probes

Evaluation: insertion



Evaluation: lookups

