
Lecture 12
Filters

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

http://prashant.pandey@utah.edu

The balls and bin model

• Resource load balancing is often modeled by the task of throwing
balls into bins
• Hashing, distributed storage, online load balancing, etc.

• Throw m balls into n bins:
• Pick a bin uniformly at random

• Insert a ball into the bin

• Repeat m times.

m balls

n bins

The single choice paradigm

• Throw m balls into n bins:
• Pick a bin uniformly at random

• Insert a ball into the bin

• Repeat m times.

Acknowledgement: Udi Wieder

The multiple choice paradigm

• Throw m balls into n bins:
• Pick d bins uniformly at random (d >= 2)

• Insert the ball into the less loaded bin

• Repeat m times.

Acknowledgement: Udi Wieder

8

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, quadratic probing, double
hashing)

9

Separate Chaining

• Separate chaining: All
keys that map to the
same hash value are
kept in a list (or
“bucket”).

0

1

2

3

4

5

6

7

8

9

Insert:

10

22

107

12

42

10

Open Addressing

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

• Linear Probing: after
checking spot h(k), try
spot h(k)+1, if that is
full, try h(k)+2, then
h(k)+3, etc.

Existing hash table techniques

Separate chaining

● Chaining with linked-list

● Chaining with binary tree

Open addressing

● Linear probing

● Coalesced chaining

● Double hashing

● Cuckoo hashing

● Hopscotch hashing

● Robin Hood hashing

● 2-choice hashing

● d-left hashing

● Cuckoo hashing suffers from random hopping

● Linear probing/Robin Hood hashing suffer from long chains

● 2-choice/d-left hashing suffer from multiple probes

Dictionary data structure

a

c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d):

S

Filter data structure

a

c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d):
false
positive

S

A filter guarantees a false-positive rate ε

if q ∈ S, return with probability 1

 with probability ﹥1 - ε

if q ∉ S, return

 with probability ≤ ε false positive

true negative

true positive

one-sided

errors

False-positive rate enables filters to be compact

DictionaryFilter

False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes:

ε = 2%, a Bloom filter requires ≈ 8 bits/item

Classic filter: The Bloom filter [Bloom ‘70]

0 1 0 1 0 1 0

m

a

c
b

d

S

h1(a) = 1

h2(a) = 3

h1(c) = 5

h2(c) = 3

true
negative

Bloom filter: a bit array + k hash functions (here k=2)

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0

m

a

c
b

d

S

h1(b) = 2

h2(b) = 5
true

negative

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0

m

a

c
b

d

S

h1(d) = 1

h2(d) = 3
False

positive

Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

Computational biology

Databases

Networking

Storage systems

Streaming applications

Bloom filters are ubiquitous (> 10K citations)

Most common filter use

Filter out queries to a large remote dictionary.
Only an ε-fraction of negative queries don’t get filtered out.

a
b
c
d
e
f

Filter

local, e.g., in RAM

Dictionary

remote, e.g., on disk

c⨯
⨯

⨯
⨯

⨯

Speed up from filter use

Workload has P positive and N negative queries.

Dictionaries w/o

Bloom Filters

Dictionaries w/

Bloom Filters

P+N P+εN

Remote Accesses of Dictionary

Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter

limitations

Bloom filter limitations increase system complexity, waste

space, and slow down application performance

● Store fingerprints compactly in a hash table.

○ Take a fingerprint h(x) for each element x.

● Only source of false positives:

○ Two distinct elements x and y, where h(x) = h(y)

○ If x is stored and y isn’t, query(y) gives a false positives

h(x)x

Quotienting is an alternative to Bloom filters
[Knuth. Searching and Sorting Vol. 3, ‘97]

p

• b(x) = location in the hash table

• t(x) = tag stored in the hash table

q r

b(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag

Bucket index

Storing fingerprints compactly

p

• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag

Bucket index

p

• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?

● Linear probing

● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag

Bucket index

p

• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?

● Linear probing

● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag

Bucket index

p

t(y) belongs to
slots 4 or 5?

46

● QF uses two metadata bits to resolve collisions

and identify home bucket

● The metadata bits group tags by their home

bucket

Resolving collisions in the QF

1 1

t(u) t(v) t(w) t(x) t(y)

● QF uses two metadata bits to resolve collisions

and identify home bucket

● The metadata bits group tags by their home

bucket

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF

● QF uses two metadata bits to resolve collisions

and identify home bucket

● The metadata bits group tags by their home

bucket

The metadata bits enable us to identify the slots holding

the contents of each bucket.

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF

Quotient filters use less space than Bloom filters

for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the

Bloom filter

Types of filters

● Bloom filters [Bloom ‘70]

● Quotient filters

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et

al. ‘12, Einziger et al. ‘15, Pandey et al. ‘17]
State of the art in

practical dynamic

filters.

Performance suffers due to high-overhead of collision resolution

Current filters have a problem..

Applications must choose between space and speed.

16X

drop4X

drop

Performance suffers due to high-overhead of collision resolution

Current filters have a problem..

Applications must choose between space and speed.

Performance suffers due to high-overhead of collision resolution

Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance

only matters at

high load factors

Why quotient filters slow down

Quotient filters use Robin-Hood

hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of

runs.

To insert item x:

1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

f1 f2 f3 f4 f5 f6

x

h(x)
log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts

have to do more shifting.

Why cuckoo filters slow down

s = O(1) slots/block (e.g., s=4)

n/sx

h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Kick f8

Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Kick f8

Kick f12

Note: h0(x) and h1(x) need to be

dependent to support kicking.

Why cuckoo filters slow down

f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

As the CF fills, inserts

have to do more kicking.

Note: h0(x) and h1(x) need to be

dependent to support kicking.

Cuckoo filter performance

Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for

insert-only workload.

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for

insert-only workload.

But we still need

it to support

deletes.

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for

insert-only workload.

But we still need

it to support

deletes.

By Vöcking, variance

in block occupancy is

a lower order term.

Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta

data

Each block is a small

quotient filter with false-

positive rate ε/2 and

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for

insert-only workload.

But we still need

it to support

deletes.

By Vöcking, variance

in block occupancy is

a lower order term.

No kicking ⇒
easier concurrency

Vector quotient filter design

A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are

stored together.

We keep a bit vector of bucket

boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is

maximized when b=s/ln2.
Implemented

using PDEP

Implemented using

PSHUFB or

VCMPB

Each block has b logical buckets.

Fingerprints of each bucket are

stored together.

We keep a bit vector of bucket

boundaries. 0010100

11
f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is

maximized when b=s/ln2.
Implemented

using PDEP

Operations take constant time in a vector model of

computation for vectors of size ⍵(log log n) [Bellloch ‘90].

Example, using AVX-512 instructions.

Implemented using

PSHUFB or

VCMPB

A vectorizable mini quotient filter

Vector quotient filter (VQF) performance

Optimal VQF

Space (bits)

CPU cost

Data locality

Evaluation: insertion

Evaluation: lookups

	Slide 1: Lecture 12 Filters
	Slide 2: The balls and bin model
	Slide 3: The single choice paradigm
	Slide 4: The multiple choice paradigm
	Slide 8: Collision Resolution
	Slide 9: Separate Chaining
	Slide 10: Open Addressing
	Slide 11
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Most common filter use
	Slide 40: Speed up from filter use
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 79
	Slide 80

