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The balls and bin model

• Resource load balancing is often modeled by the task of throwing 
balls into bins
• Hashing, distributed storage, online load balancing, etc.

• Throw m balls into n bins:
• Pick a bin uniformly at random

• Insert a ball into the bin

• Repeat m times.

m balls

n bins



The single choice paradigm

• Throw m balls into n bins:
• Pick a bin uniformly at random

• Insert a ball into the bin

• Repeat m times.

Acknowledgement: Udi Wieder



The multiple choice paradigm

• Throw m balls into n bins:
• Pick d bins uniformly at random (d >= 2)

• Insert the ball into the less loaded bin

• Repeat m times.

Acknowledgement: Udi Wieder
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Collision Resolution

Collision: when two keys map to the same location in the hash table.  

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, quadratic probing, double 
hashing)
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Separate Chaining

• Separate chaining: All 
keys that map to the 
same hash value are 
kept in a list (or 
“bucket”).
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Open Addressing
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• Linear Probing: after 
checking spot h(k), try 
spot h(k)+1, if that is 
full, try h(k)+2, then 
h(k)+3, etc.



Existing hash table techniques

Separate chaining

● Chaining with linked-list

● Chaining with binary tree

Open addressing

● Linear probing

● Coalesced chaining

● Double hashing

● Cuckoo hashing

● Hopscotch hashing

● Robin Hood hashing

● 2-choice hashing

● d-left hashing

● Cuckoo hashing suffers from random hopping

● Linear probing/Robin Hood hashing suffer from long chains

● 2-choice/d-left hashing suffer from multiple probes 



Dictionary data structure

a

c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):

S



Filter data structure

a

c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):
false 
positive

S



A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

                                     with probability ﹥1 - ε 

if q ∉ S, return 

                                     with probability  ≤ ε false positive

true negative

true positive

one-sided 

errors



False-positive rate enables filters to be compact

DictionaryFilter



False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 

ε = 2%, a Bloom filter requires ≈ 8 bits/item



Classic filter: The Bloom filter [Bloom ‘70]
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true 
negative

Bloom filter: a bit array + k hash functions (here k=2)



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)
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h1(b) = 2

h2(b) = 5
true 

negative



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
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h1(d) = 1

h2(d) = 3
False 

positive



Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality



Computational biology

Databases 

Networking 

Storage systems

Streaming applications

Bloom filters are ubiquitous (> 10K citations)



Most common filter use

Filter out queries to a large remote dictionary.
Only an ε-fraction of negative queries don’t get filtered out.

a
b
c
d
e
f

Filter

local, e.g., in RAM

Dictionary

remote, e.g., on disk

c⨯
⨯

⨯
⨯

⨯



Speed up from filter use

Workload has P positive and N negative queries.

Dictionaries w/o 

Bloom Filters

Dictionaries w/ 

Bloom Filters

P+N P+εN

Remote Accesses of Dictionary



Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter 

limitations

Bloom filter limitations increase system complexity, waste 

space, and slow down application performance



● Store fingerprints compactly in a hash table.

○ Take a fingerprint h(x) for each element x.

● Only source of false positives:

○ Two distinct elements x and y, where h(x) = h(y)

○ If x is stored and y isn’t, query(y) gives a false positives

h(x)x

Quotienting is an alternative to Bloom filters 
[Knuth. Searching and Sorting Vol. 3, ‘97]

p



• b(x) = location in the hash table

• t(x) = tag stored in the hash table

q r
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Storing fingerprints compactly

p



• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?
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• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?

● Linear probing

● Robin Hood hashing
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Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag

Bucket index
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• b(x) = location in the hash table

• t(x) = tag stored in the hash table

Collisions in the hash table?

● Linear probing

● Robin Hood hashing
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Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag

Bucket index

p

t(y) belongs to 
slots 4 or 5?

46



● QF uses two metadata bits to resolve collisions 

and identify home bucket

● The metadata bits group tags by their home 

bucket

Resolving collisions in the QF

1 1

t(u) t(v) t(w) t(x) t(y)



● QF uses two metadata bits to resolve collisions 

and identify home bucket

● The metadata bits group tags by their home 

bucket

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF



● QF uses two metadata bits to resolve collisions 

and identify home bucket

● The metadata bits group tags by their home 

bucket

The metadata bits enable us to identify the slots holding 

the contents of each bucket.

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF



Quotient filters use less space than Bloom filters 

for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the 

Bloom filter



Types of filters

● Bloom filters [Bloom ‘70]

● Quotient filters 

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et 

al. ‘12, Einziger et al. ‘15, Pandey et al. ‘17]
State of the art in 

practical dynamic 

filters.



Performance suffers due to high-overhead of collision resolution 

Current filters have a problem..

Applications must choose between space and speed.
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Performance suffers due to high-overhead of collision resolution 

Current filters have a problem..

Applications must choose between space and speed.



Performance suffers due to high-overhead of collision resolution 

Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance 

only matters at 

high load factors



Why quotient filters slow down

Quotient filters use Robin-Hood 

hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of 

runs.

To insert item x:

1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

f1 f2 f3 f4 f5 f6

x

h(x)
log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts 

have to do more shifting.



Why cuckoo filters slow down

s = O(1) slots/block (e.g., s=4 )

n/sx

h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.



Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.



Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Kick f8 



Why cuckoo filters slow down

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Kick f8 

Kick f12 

Note: h0(x) and h1(x) need to be 

dependent to support kicking.



Why cuckoo filters slow down

f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x

h0(x)

h1(x)
To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

As the CF fills, inserts 

have to do more kicking.

Note: h0(x) and h1(x) need to be 

dependent to support kicking.



Cuckoo filter performance

Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality



Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data



Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 

insert-only workload. 

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 

insert-only workload. 

But we still need 

it to support 

deletes.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 

insert-only workload. 

But we still need 

it to support 

deletes.

By Vöcking, variance 

in block occupancy is 

a lower order term.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta

data

Each block is a small 

quotient filter with false-

positive rate ε/2 and 

capacity s.

x

h0(x)

h1(x)

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 

insert-only workload. 

But we still need 

it to support 

deletes.

By Vöcking, variance 

in block occupancy is 

a lower order term.

No kicking ⇒ 
easier concurrency

Vector quotient filter design



A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are 

stored together.

We keep a bit vector of bucket 

boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 

maximized when b=s/ln2.
Implemented 

using PDEP

Implemented using 

PSHUFB or

VCMPB



Each block has b logical buckets.

Fingerprints of each bucket are 

stored together.

We keep a bit vector of bucket 

boundaries. 0010100

11
f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 

maximized when b=s/ln2.
Implemented 

using PDEP

Operations take constant time in a vector model of 

computation for vectors of size ⍵(log log n) [Bellloch ‘90]. 

Example, using AVX-512 instructions. 

Implemented using 

PSHUFB or

VCMPB

A vectorizable mini quotient filter



Vector quotient filter (VQF) performance

Optimal VQF

Space (bits)

CPU cost

Data locality



Evaluation: insertion



Evaluation: lookups
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