Lecture 11 Log-Structured Merge (LSM) Trees

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

How Should I Organize My Stuff (Data)?

Different people approach the problem differently…

How Should I Organize My Data?

[[https://pbfcomics.com/comics/game-boy/\]](https://pbfcomics.com/comics/game-boy/)

How Should I Organize My Data?

"Logging" "Indexing"

How Should I Organize My Data?

Logging lndexing

Append at end of log

Searching

Inserting

 $\frac{1}{2}$. The set of Insert at leaf (traverse rootto-leaf path)

Scan through entire log

SCHOOL OF COMPUTING

through through $($ fraverse root-Locate in leaf to-leaf path)

How Should I Organize My Data?

Logging Indexing

Inserting

Searching

It appears we have a tradeoff between insertion and searching

- B-trees have
- \triangleright fast searches: O(logBN) is the optimal search cost
- ‣ slow inserts
- Logging has
- **Seconomer Figure 1.5 For F**
- ‣ slow searches: cannot get worse than exhaustive scan

Are We Forced to Choose?

B-tree searches are optimal

B-tree updates are not

• We want a data structure with inserts that beat B-tree inserts without sacrificing on

queries

Goal: Data Structural Search for Optimality

> This is the promise of write-optimization

Data structure proposed by O'Neil,Cheng, and Gawlick in 1996

• Uses write-optimized techniques to significantly speed up inserts

Hundreds of papers on LSM-trees (innovating and using)

To get some intuition for the data structure, let's break it down

Log-structured • Merge • Tree

Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of logical ordering

Merge • Tree

Log-structured

Merge

• All data is written sequentially, regardless of logical ordering

• As data evolves, sequentially written runs of key-value pairs are merged

Tree

-
- ‣ Runs of data are indexed for efficient lookup
- ‣ Merges happen only after much new data is accumulated

Log-structured

Merge

Tree

• All data is written sequentially, regardless of logical ordering

• As data evolves, sequentially written runs of key-value pairs are merged

-
- ‣ Runs of data are indexed for efficient lookup
- ‣ Merges happen only after much new data is accumulated

- The hierarchy of key-value pair runs form a tree
	- ‣ Searches start at the root, progress downwards

Start with [O'Neil 96], then describe LevelDB We will discuss:

- Compaction strategies
- Notable "tweaks" to the data structure
- Commonly cited drawbacks
- Potential applications

An LSM-tree comprises a hierarchy of trees of increasing size • *All* data inserted into in-memory tree (C0)

-
- Larger on disk trees (C_{i>0}) hold data that does not fit into memory

[O'Neil, Cheng, Gawlick '96]

When a tree exceeds its size limit, its data is merged and rewritten

• Higher level is always merged into next lower level (C_i merged with C_{i+1})

‣ Merging always proceeds top down

Figure 3.1. An LSM-tree of K+1 components

[O'Neil, Cheng, Gawlick '96]

- Recall mergesort from data structures/algorithms • We can efficiently merge two sorted structures in linear time using iterators
- When merging two levels, newer key-value pair versions replace older (GC)
- ‣ LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

[O'Neil, Cheng, Gawlick '96]

Maintain a set of key-value pairs (kv pairs)

- Support the following operations (at minimum):
- \triangleright insert(k, v) insert a new kv pair, (possibly) replacing old value
- \blacktriangleright delete(k) remove all values associated with key k
- ‣ (k,v) = query(k) return latest value **v** associated with key k
- \blacktriangleright {(k₁, v₁), (k₂, v₂), ..., (k_j,v_j)} = query(k_i, k_i) return all key-value pairs in the range from k_i to k

LSM-trees implement the dictionary interface

> Question: How do we implement each of these operations?

We insert the key-value pair into the in-memory level, C⁰

- Don't care about lower levels, as long as newest version is one closest to top
- But if an old version of kv-pair exists in the top level, we must replace it
- If inserting into C₀ causes C₀ to exceed its size limit, compact (merge)

Insert(k)

> Inserts are fast! Only touch C⁰ in common case.

We insert a tombstone into the in-memory level, C⁰

- A tombstone is a "logical delete" of all key-value pairs with key *k*
	- ‣ When we merge a tombstone with a key-value pair, we delete the key-value pair
	- ‣ When we merge a tombstone with a tombstone, just keep one copy
	- ‣ When can we delete a tombstone?
	- ▶ At the lowest level
	- ‣ When merging a *newer* key-value pair with key *k*

Delete(k)

> Deletes are fast! Only touch C0.

Begin our search in the in-memory level, C⁰

- Continue until:
- ‣ We find a key-value pair with key *k* (return that value)
- ‣ We find a tombstone with key *k* (return "not found")
- ‣ We reach the lowest level and fail-to-find (return "not found")

Query(k)

> Searches traverse (worst case) every level in the LSM-tree

We must search *every* level, Co...Cn

- Return all keys in range, taking care to:
	- **(***ki***,** *vi***)**

‣ Common strategy is to create an iterator for each level and use merge-esque logic

> Range queries must scan every level in the LSM-tree (although not all ranges in every level)

Query(k_{i,} kı)

Return newest (k_i , v_i) where $k_j < k_i < k_l$ such that there are no tombstones with key k_i that are newer than

LevelDB

Google's Open Source *LSM-tree-ish* KV-store

LevelDB consists of a hierarchy of SSTables

• An SSTable is a sorted set of key-value pairs (Sorted Strings Table) ‣ Typical SSTable size is 2MiB

- Let F be the growth factor (fanout)
- Let M be the size of the first level (e.g., 10MiB)
- Then the ith level, C_i has size FⁱM

The growth factor describes how the size of each level scales

- {**key**i, **offset**i} for a all SSTables in a level (plus other metadata TBD)
- Spine cached for fast searches of a given level \triangleright (if too big, a B-tree can be used to hold the spine for optimal searches)

The spine stores metadata about each level

Some Definitions

LevelDB Example

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

How do we manage the levels of our LSM?

- Ideal data management strategy would:
	- ‣ Write all data sequentially for fast inserts
	- ‣ Keep all data sorted for fast searches
	-
	- ‣ Minimize the number of levels we must search per query (low read amplification) ‣ Minimize the number of times we write each key-value pair (low write amplification)
- Good luck balancing so many competing interests in a single policy! ‣… but let's talk about some common approaches
-

Compaction

Option 1: Size-tiered

- Each "tier" is a collection SSTables with similar sizes
- SSTable in the next tier

• When we compact, we merge some number of SSTables with the same size to create an

Compaction Strategies

Option 2: Level-tiered

- All SSTables are fixed size
- Each level is a collection SSTables with **non-overlapping** key ranges
- To compact, pick SSTable(s) from L_i and merge them with SSTable(s) in L_{i+1}
- ▶ Rewrite merged SSTables into L_{i+1} (redistributing key ranges if necessary)
- \blacktriangleright Possibly continue (cascading merge) of L_{i+1} to L_{i+2}
- ‣ Several ways to choose candidate SSTables for merge (e.g., round-robin or ChooseBest)
- ▶ Possibly add invariants to our LSM to control merging (e.g., an SSTable at L_{i+1} can cover at most X SSTables at L_{i+1})

Compaction Strategies

(Note: This picture shows the aggregate size of individual levels, not the size of individual SSTables in a level.)

We write a lot of data during compaction

- Not all data is new
- ‣ We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
	- ▶ VT-trees [shetty FAST '13]: if a long run of kv-pairs would be rewritten unchanged to the next level, instead write a pointer
- Problems with VT-trees?
- **Example Fragmentation**
- ‣ Scanning a level might mean jumping up and down the tree, following pointers

LSM-tree Problems?

> There is a tension between locality and rewriting

We write a lot of data during compaction

- Not all data written during a compaction is new data at that level
- ‣ We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
	- ‣ Fragmented LSM-Tree [Raju SOSP '17]: each level can contain up to *F* fragments
	- ‣ Fragments can be appended to a level without merging with SSTables in that level
	- ‣ Saves the work of doing a "merge" until there is enough work to justify the I/Os
- Problems with fragments?
	-
- ▶ Need to be careful about returning newest values

‣ Fragments can have overlapping key ranges, so may need to search through multiple fragments

LSM-tree Problems?

> Again, we see a tension between locality and rewriting

We read a lot of data during searches

- We may need to search every level of our LSM-tree
- ‣ Caching the spine & binary search both help (SSTables are sorted), but still many I/Os in worst case
- How might we save extra reads?
	- ‣ Bloom filters!
- ‣ By adding a Bloom filter, we only search if the data exists in that level (or false positive) ▶ Bloom filters for large data sets can fit into memory, so approximately 1+e I/Os per query
-
- Problems with Bloom filters? ‣ Do they help with range queries?
	- ▶ Not really...

LSM-tree Problems?

How might you design:

- an LSM-tree for an SSD?
- an LSM-tree for a HDD?
- ‣ how would your designs be different?
- ▶ Different concerns (e.g., wear leveling & endurance, parallelism, gap between sequential and random I/O)

Should we store the data inside the index, or separating the data from the index (clustered vs. declustered index)

- How might you design a system that separates keys from values? • Wisckey [Lu FAST 16]: Store keys in LSM-tree, values in a log
- What are the advantages/disadvantages?
- ▶ Can fit most of the LSM-tree (keys) in memory -> 1 I/O per search
- ‣Need to GC your value log, just like LFS

Thought Questions

Final Thoughts

LSM-trees are a write-optimized data structure:

• Many updates are batched and committed in a sequential I/O

- Boom filters help avoid unnecessary searches in a given level
- Metadata in "spine" helps to target searches within a level

Although we may need to search for data in multiple levels, we can avoid unnecessary I/Os with additional metadata

I/O amplification is one of the biggest challenges for LSM-trees

- Leveled-design causes read amplification ‣ Searches may require I/Os at each level in worst case
- Compaction causes write amplification ‣ Different compaction strategies favor write vs. read performance

