
Lecture 11
Log-Structured Merge (LSM) Trees

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

http://prashant.pandey@utah.edu

How Should I Organize My Stuff (Data)?

Different people approach the problem differently…

How Should I Organize My Data?

[https://pbfcomics.com/comics/game-boy/]

https://pbfcomics.com/comics/game-boy/

How Should I Organize My Data?

“Logging” “Indexing”

? ?

? ?

How Should I Organize My Data?

Logging Indexing

Inserting

Searching

Append at

end of log

Insert at leaf

(traverse root-

to-leaf path)

Scan through

entire log

Locate in leaf

(traverse root-

to-leaf path)

How Should I Organize My Data?

Logging Indexing

Inserting

Searching

O(1/B)

O(N/B)

O(logBN)

O(logBN)

Assuming

B-tree

It appears we have a tradeoff between insertion and searching

• B-trees have
‣ fast searches: O(logBN) is the optimal search cost

‣ slow inserts

• Logging has
‣ fast insertions

‣ slow searches: cannot get worse than exhaustive scan

Are We Forced to Choose?

B-tree searches are optimal

B-tree updates are not

• We want a data structure with inserts that beat B-tree inserts without sacrificing on
queries

Goal: Data Structural Search for Optimality

> This is the promise of write-optimization

Data structure proposed by O’Neil,Cheng, and Gawlick in 1996

• Uses write-optimized techniques to significantly speed up inserts

Hundreds of papers on LSM-trees (innovating and using)

To get some intuition for the data structure, let’s break it down

Log-Structured Merge Trees

Log-structured Merge Tree• •

Log-Structured Merge Trees

Log-structured

Merge Tree•

• All data is written sequentially, regardless of logical ordering

Log-Structured Merge Trees

Log-structured

Merge

Tree

• All data is written sequentially, regardless of logical ordering

• As data evolves, sequentially written runs of key-value pairs are merged
‣Runs of data are indexed for efficient lookup

‣Merges happen only after much new data is accumulated

Log-Structured Merge Trees

Log-structured

Merge

Tree

• All data is written sequentially, regardless of logical ordering

• As data evolves, sequentially written runs of key-value pairs are merged
‣Runs of data are indexed for efficient lookup

‣Merges happen only after much new data is accumulated

• The hierarchy of key-value pair runs form a tree
‣Searches start at the root, progress downwards

Log-Structured Merge Trees

Start with [O’Neil 96], then describe LevelDB

We will discuss:

• Compaction strategies

• Notable “tweaks” to the data structure

• Commonly cited drawbacks

• Potential applications

An LSM-tree comprises a hierarchy of trees of increasing size

• All data inserted into in-memory tree (C0)

• Larger on disk trees (Ci>0) hold data that does not fit into memory

[O’Neil, Cheng, Gawlick ’96]

(D)

When a tree exceeds its size limit, its data is merged and rewritten

• Higher level is always merged into next lower level (Ci merged with Ci+1)
‣Merging always proceeds top down

[O’Neil, Cheng, Gawlick ’96]

• Recall mergesort from data structures/algorithms
‣We can efficiently merge two sorted structures in linear time using iterators

• When merging two levels, newer key-value pair versions replace older (GC)
‣ LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

[O’Neil, Cheng, Gawlick ’96]

Maintain a set of key-value pairs (kv pairs)

• Support the following operations (at minimum):
‣ insert(k, v) - insert a new kv pair, (possibly) replacing old value

‣ delete(k) - remove all values associated with key k

‣ (k,v) = query(k) - return latest value v associated with key k

‣ {(k1, v1), (k2, v2), …, (kj,vj)} = query(ki, kl) - return all key-value pairs in the range from ki to kl

LSM-trees implement the dictionary interface

> Question: How do we implement each of these operations?

We insert the key-value pair into the in-memory level, C0

• Don’t care about lower levels, as long as newest version is one closest to top

• But if an old version of kv-pair exists in the top level, we must replace it

• If inserting into C0 causes C0 to exceed its size limit, compact (merge)

Insert(k)

> Inserts are fast! Only touch C0 in common case.

We insert a tombstone into the in-memory level, C0

• A tombstone is a “logical delete” of all key-value pairs with key k
‣When we merge a tombstone with a key-value pair, we delete the key-value pair

‣When we merge a tombstone with a tombstone, just keep one copy

‣When can we delete a tombstone?
‣ At the lowest level

‣ When merging a newer key-value pair with key k

Delete(k)

> Deletes are fast! Only touch C0.

Begin our search in the in-memory level, C0

• Continue until:
‣We find a key-value pair with key k (return that value)

‣We find a tombstone with key k (return “not found”)

‣We reach the lowest level and fail-to-find (return “not found”)

Query(k)

> Searches traverse (worst case) every level in the LSM-tree

We must search every level, C0…Cn

• Return all keys in range, taking care to:
‣Return newest (ki, vi) where kj < ki < kl such that there are no tombstones with key ki that are newer than

(ki, vi)
‣ Common strategy is to create an iterator for each level and use merge-esque logic

Query(kj, kl)

> Range queries must scan every level in the LSM-tree (although not all ranges in every level)

LevelDB

Google’s Open Source LSM-tree-ish KV-store

LevelDB consists of a hierarchy of SSTables

• An SSTable is a sorted set of key-value pairs (Sorted Strings Table)
‣ Typical SSTable size is 2MiB

The growth factor describes how the size of each level scales

• Let F be the growth factor (fanout)

• Let M be the size of the first level (e.g., 10MiB)

• Then the ith level, Ci has size FiM

The spine stores metadata about each level

• {keyi, offseti} for a all SSTables in a level (plus other metadata TBD)

• Spine cached for fast searches of a given level
‣ (if too big, a B-tree can be used to hold the spine for optimal searches)

Some Definitions

LevelDB Example

L0: 8 MiB

L1: 10 MiB

L2: 100 MiB

L6: 1 TiB

In-memory

SSTable

Operation Log

Memory

Disk

(k1,v1)

1

2

3

In-memory

SSTable

4

1
Write operation to log

(immediate persistence)

2 Update in-memory SSTable

3
(Eventually) promote full SSTable

and initialize new empty SSTable

4
Merge/write in-memory

SSTables to L0

How do we manage the levels of our LSM?

• Ideal data management strategy would:
‣Write all data sequentially for fast inserts

‣ Keep all data sorted for fast searches

‣Minimize the number of levels we must search per query (low read amplification)

‣Minimize the number of times we write each key-value pair (low write amplification)

• Good luck balancing so many competing interests in a single policy!
‣… but let’s talk about some common approaches

Compaction

Option 1: Size-tiered

• Each “tier” is a collection SSTables with similar sizes

• When we compact, we merge some number of SSTables with the same size to create an
SSTable in the next tier

Compaction Strategies

Merge

Merge

3 Tiers:

Option 2: Level-tiered

• All SSTables are fixed size

• Each level is a collection SSTables with non-overlapping key ranges

• To compact, pick SSTable(s) from Li and merge them with SSTable(s) in Li+1

‣Rewrite merged SSTables into Li+1 (redistributing key ranges if necessary)

‣ Possibly continue (cascading merge) of Li+1 to Li+2

‣ Several ways to choose candidate SSTables for merge (e.g., round-robin or ChooseBest)
‣ Possibly add invariants to our LSM to control merging (e.g., an SSTable at Li+1 can cover at most X SSTables at Li+1)

Compaction Strategies

(Note: This picture shows the aggregate size of individual levels,

not the size of individual SSTables in a level.)

We write a lot of data during compaction

• Not all data is new
‣We may rewrite a key-value pair to the same level multiple times

• How might we save extra writes?
‣VT-trees [Shetty FAST ’13]: if a long run of kv-pairs would be rewritten unchanged to the next level, instead write

a pointer

• Problems with VT-trees?
‣ Fragmentation
‣ Scanning a level might mean jumping up and down the tree, following pointers

LSM-tree Problems?

> There is a tension between locality and rewriting

We write a lot of data during compaction

• Not all data written during a compaction is new data at that level
‣We may rewrite a key-value pair to the same level multiple times

• How might we save extra writes?
‣ Fragmented LSM-Tree [Raju SOSP ’17]: each level can contain up to F fragments

‣ Fragments can be appended to a level without merging with SSTables in that level
‣ Saves the work of doing a “merge” until there is enough work to justify the I/Os

• Problems with fragments?
‣ Fragments can have overlapping key ranges, so may need to search through multiple fragments

‣Need to be careful about returning newest values

LSM-tree Problems?

> Again, we see a tension between locality and rewriting

We read a lot of data during searches

• We may need to search every level of our LSM-tree
‣Caching the spine & binary search both help (SSTables are sorted), but still many I/Os in worst case

• How might we save extra reads?
‣Bloom filters!

‣By adding a Bloom filter, we only search if the data exists in that level (or false positive)

‣Bloom filters for large data sets can fit into memory, so approximately 1+e I/Os per query

• Problems with Bloom filters?
‣Do they help with range queries?
‣ Not really…

LSM-tree Problems?

How might you design:

• an LSM-tree for an SSD?

• an LSM-tree for a HDD?
‣ how would your designs be different?
‣ Different concerns (e.g., wear leveling & endurance, parallelism, gap between sequential and random I/O)

Should we store the data inside the index, or separating the data from the
index (clustered vs. declustered index)

• How might you design a system that separates keys from values?
‣Wisckey [Lu FAST 16]: Store keys in LSM-tree, values in a log

• What are the advantages/disadvantages?
‣Can fit most of the LSM-tree (keys) in memory -> 1 I/O per search

‣Need to GC your value log, just like LFS

Thought Questions

Final Thoughts

LSM-trees are a write-optimized data structure:

• Many updates are batched and committed in a sequential I/O

Although we may need to search for data in multiple levels, we can

avoid unnecessary I/Os with additional metadata

• Boom filters help avoid unnecessary searches in a given level

• Metadata in “spine” helps to target searches within a level

I/O amplification is one of the biggest challenges for LSM-trees

• Leveled-design causes read amplification
‣Searches may require I/Os at each level in worst case

• Compaction causes write amplification
‣Different compaction strategies favor write vs. read performance

	Slide 1: Lecture 11 Log-Structured Merge (LSM) Trees
	Slide 2: How Should I Organize My Stuff (Data)?
	Slide 3: How Should I Organize My Data?
	Slide 4: How Should I Organize My Data?
	Slide 5: How Should I Organize My Data?
	Slide 7: How Should I Organize My Data?
	Slide 8: Are We Forced to Choose?
	Slide 9: Goal: Data Structural Search for Optimality
	Slide 10: Log-Structured Merge Trees
	Slide 11: Log-Structured Merge Trees
	Slide 12: Log-Structured Merge Trees
	Slide 13: Log-Structured Merge Trees
	Slide 14: Log-Structured Merge Trees
	Slide 15: [O’Neil, Cheng, Gawlick ’96]
	Slide 16: [O’Neil, Cheng, Gawlick ’96]
	Slide 17: [O’Neil, Cheng, Gawlick ’96]
	Slide 18: LSM-trees implement the dictionary interface
	Slide 19: Insert(k)
	Slide 20: Delete(k)
	Slide 21: Query(k)
	Slide 22: Query(kj, kl)
	Slide 23: LevelDB
	Slide 24: Some Definitions
	Slide 25: LevelDB Example
	Slide 27: Compaction
	Slide 28: Compaction Strategies
	Slide 29: Compaction Strategies
	Slide 30: LSM-tree Problems?
	Slide 31: LSM-tree Problems?
	Slide 32: LSM-tree Problems?
	Slide 33: Thought Questions
	Slide 34: Final Thoughts

