CS 6530: Advanced Database Systems Fall 2024

Lecture S
Be-tree and SplinterDB

Prashant Pandey
prashant.pandey@utah.edu

Slides taken from Prof. Alex Conway, Cornell Tech

OOOOOOOOOOOOOOOOO
% ;


mailto:prashant.pandey@utah.edu

The Story of SplinterDB

Model the problem:
external memory dictionary

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB
10 4 KiB




The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB
10 4 KiB

Internal A B-sized block can be read or
Memory of size  writtenin 110
M

External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB

_B 10 4 KiB

Here B is the number of
items in an 10:

B=4KiB/48B
If the items were larger, the model Internal A B-sized block can be read or
wouldn’t be as good Memory of size  writtenin 110

M

External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



The Story of SplinterDB

Model the problem:
external memory dictionary

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)



Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in

0@10&1\1) & e 0@) = e

T e
XK Méﬁgqﬁ\\ﬁ

B-Trees B®-Trees

(A= B) (1 = B¥)

Comparison External Memory Model General External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in

A
0 Elog,lN

Lookups in

Q(log;N)

B-Trees

(4= B)

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

B&-Trees

(4 = B%)

lacono-Patrascu Lower Bound

Insertions in

0/1 <+
B

General External Memory Model

Lookups in

Q(log,N)

lacono-Patrascu Hash Table

BoA/BoT
Hash Table



Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in

A <+> A <+>
0 Elog,lN 9(108,11\/) 0 E Q(lOgAN)

lacono-Patrascu Hash Table

B-Trees

B=-Trees BoA/BoT

Hash Table

(A= B) (1 = B¥)

Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018
Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in

A
0 Elog,lN

RARR
i 1 &
MK p—sssdl A M\

Lookups in

Q(log;N)

N

B-Trees

(4= B)

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

B&-Trees

(4 = B%)

lacono-Patrascu Lower Bound

Insertions in Lookups in

A <+
o= Q(log,N)
B
lacono-Patrascu Hash Table
4

=

No scans!

BoA/BoT
Hash Table

General External Memory Model



Lower Bounds

Brodal-Fagerberg Lower Bound

lacono-Patrascu Lower Bound

Insertions in Lookups in

0 (%log,lN> Q(log,N)

Insertions in Lookups in

0 (E) Q(lOgAN)

o

= W=

lacono-Patrascu Hash Table

e
'
|

B-Trees B:-Trees

BoA/BoT

Mapped Bt-Trees Hash Table
(4=B) (1 = B®)

(A = B%,B% = Q(loggeN)

Comparison External Memory Model

General External Memory Model
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in

0 (%log,lN> Q(log,N) 0 (i> Q(log;N)

lacono-Patrascu Hash Table

B-Trees B:-Trees

(A= B) (1 = B¥)

Mapped Bs-Trees ash Table

(A = B%,B% = Q(loggeN)

Comparison External Memory Model General External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



/O Amplification

Read amplification is the ratio of the number of blocks read
from the disk versus the number
of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks
written to the disk versus the number of blocks required to

write the key-value parr.

OOOOOOOOOOOOOOOOO
......



B-Trees

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

27



B-Trees




B-Trees

B-ary Search Tree




B-Trees




B-Trees




B-Trees

nnnnn

B-ary Search Tree

/‘@L@I@I@]\
AW@U‘] A lgEBN)

%

@@@

TTT

OOOOOOOOOOOOOOOOO



B-Trees

Insert

B-ary Search Tree

24 37 186 |90

@@@@

W oo MO(IO%BN)
/'&f =

N

OOOOOOOOOOOOOOOOO



B-Trees




B-Trees

B-ary Search Tree

4+

O(logg N)
Insertion Cost < 0(loggN)
Lookup Cost < O(loggN) H

OOOOOOOOOOOOOOOOO

35



BE-Trees

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

36



BE-Trees

37

LA

\ AR |

¥

/4

99 (6 |77 |44

\
~—~

DOnC

s el




BE-Trees

\
~—~

38

LA

'S
\ AR |

<)

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

\
~—~

39

LA

\ AR |

¥

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

\
~—~

40

LA

\ AR |

¥

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

\
~—~

41

LA

\ AR |

¥

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

\
~—~

42

LA

\ AR |

¥

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

\
~—~

43

LA

\ AR |

¥

/4

99 (6 |77 |44

DOnC

s el




BE-Trees

oc

86 | 94

44

99 (6 |77 |44

9 |2 |50 (14 |29

s el




BE-Trees

13

1

oc

86 | 94

45

99 (6 |77 |44

9 |2 |50 (14 |29

s el




BE-Trees

Inserts get putin the root buffer

94 T39 T64 T13
4 |2 |8 |1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

46



BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ \ 2

/V\

47



BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ vV \
é’aé

N/ x VX
0 T61 T65 r69 T71 T72 T73 T74 r79 TSO TSl TSZ
0 129 lll - 99 |6

Q|

o

¥

N

\/

o0

4

e

5
SCHOOL OF COMPUTI

UUUUUUUUUUUUUUUU

50 (14 |29 77 |44

rara




BE-Trees

Inserts get putin the root buffer 66

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ vV \
é’aé

N/ x VX
0 T61 T65 r69 T71 T72 T73 T74 r79 TSO TSl TSZ
0 129 lll - 99 |6

Q|

o

¥

N

\/

o0

4

e

5
SCHOOL OF COMPUTI

UUUUUUUUUUUUUUUU

50 (14 |29 77 |44

rara




B-Trees

Inserts get putin the root buffer

When a buffer is full:

37 |86 | 94 Tls TGG 1. Pick child receiving most messages
@@ . Move them to the child’s buffer
92

58 |83
85

—
N / I 2
[79 TSO TSl TSZ

1

¥

N

\/

o0

' 4
rsg

5
SCHOOL OF COMPUTING L
IIIIIIIIIIIIIIII

rara




BE-Trees

Inserts get putin the root buffer 65

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ AR - ~— \ A

48 . 85

" N/ x VN
r59 0 T61 T65 r69 T71 T72 T73 T74 r79 TSO TSl TSZ
0 129 lll - 99 |6

LS 50 |14 |29 77 |44
SCHOOL OF COMPUTI

UUUUUUUUUUUUUUUU

Q|

¥

rara




BE-Trees

Inserts get putin the root buffer

When a buffer is full:

37 |86 | 94 T13 TGG TGS 1. Pick child receiving most messages
2. Move them to the child’s buffer
8 1 |s s

iiIlss

\ "2

DDD0C

50 (14 |29

UUUUUUUUUUUUUUUU

52



BE-Trees

Inserts get putin the root buffer

66 65 When a buffer is full:
37 |86 | 94 T13 1. Pick child receiving most messages
6 . Move them to the child’s buffer

o0
4/58 . 92
\ A / \ 2

48 . 85

3 N/ . xvx

59 0 |61 T65 69 T71 T72 T73 T74 79 TSO T81 TSZ
0 |29 lll

¥

\
~—~

5 50 (14 |29 99 (6 |77 |44

SCH OO OF COM UTIl
UUUUUUUUUUUUUUUU

*A—T,*"




BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

1

\

4

/ —
/
/

G
@

¥

\ AR

' 4 X

a0

8

#

\gz
\ \ 2R

/V\

N\

59 0

61 T65

DDD0C

BonC

5 0

SCH OO OF COM UTIl
UUUUUUUUUUUUUUUU

*A—T,*"

29 lll

50 (14 |29 77 |44



BE-Trees

Inserts get putin the root buffer

/
/
~

0 61<T65
0 29<lll

¥

\ AR

4

59

5
SCHOOL OF COMPUTI
IIIIIIIIIIIIIIII

*A—T,*"

37 86 94 13

64 66 65

58 83 /39 s le |1

2

\

67 75

\
DDD0C

50 (14 |29

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

iiil .

ii'l 85

¥ ¥\

55



BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

58 |83

¥

\ AR

/

67 |75

2

*ﬁ

\gz
~— \ AR

64 |66 |65

85

+ o s

' 4 X

4

/V\

59

0 |61 T65

69 T71 T72

4

73 T74

5
SCHOOL OF COMPUTI
IIIIIIIIIIIIIIII

*A—T,*"

0 |29 lll

50 (14 |29




Lookups in BE-Trees

OOOOOOOOOOOOOOOOO
------



BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |86

)

|

58 |83 | 39

9.

67 |75

0
DDD0C

79 |80 TS]JBZ

LS 140 129 lll
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH




BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |86

(L)

58 183 |39 |40

9.

67 |75

0
DDD0C

79 |80 TS]JBZ

LS 140 129 lll
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH




BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |86

)

a0
5

o8l

67 |75

-]

Oooon - faoac

LS 140 129 lll
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

60



BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

13

37 |86

-

58 183 |39 |40

9.

¥

Oooon - faoac

LS 140 129 lll
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

61



BE-Trees

Query(71) — 2

Lookups follow pivots, but check buffers along the way

13

37 |86

-

58 183 |39 |40

9. [

67 |75

-]

79 |80 TS]JBZ

LS 140 129 lll
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH




BE-Trees

Query(71) — 2

Lookups follow pivots, but check buffers along the way

37 |86 |94 |13

a6 .

|

12 (24 58 183 |39 |40 90 92
0 Q. | )
41 48 67 |75 ||79 84 |85

9 DO 0

71
r59 TGO T61 T65 69 2 72 (73 |74 79 |80 T8]J82

LS 140 129 lll 9 50 (14 |29
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH




Insertions in B&-Trees are more expensive than they look

OOOOOOOOOOOOOOOOO
------



Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

65



Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

65 72 80

11 50 6

58 |83 |39 T64 TGG
e

Read the
node

OOOOOOOOOOOOOOOOO

66



Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

65 72 80

Merge the -~
11 50 6 data 4 A

58 |83 |39 T64 TGG
e

Read the
node

OOOOOOOOOOOOOOOOO

67



Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the -~
\data % |
58 (83 /39 |64 |65 |66 |72 |80
B Bz -
@@ 2 8 11 |6 50 |6

Read the
node

5

OOOOOOOOOOOOOOOOO

68



Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the -~
\data % |
58 (83 /39 |64 |65 |66 |72 |80
B Bz -
@@ 2 8 11 |6 50 |6

Read the
node

5

Write the
node

OOOOOOOOOOOOOOOOO

69



Insertions in BE-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the _ o CPU Work = O(old + new)
data & (S .\\
N Volume of IO = O(old + new)

58 |83 | 39 T64 T65 T66 T72 TSO
@B|. s [11]c [50]6

Read the
node

5

Write the
node

OOOOOOOOOOOOOOOOO

70



Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

B Merge the P\ CPU Work = O(old + new)
1 3 data & .
Volume of I0 = O(old + new)

58 |83 | 39 T64 T65 T66 T72 TSO
@ @ 2 |8 11 |6 50 (6

Read the
node

5

Older data gets written over

and over again
Write the

node

OOOOOOOOOOOOOOOOO
rne

71



Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the o CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

58 |83 | 39 T44 T64 T65 TGG T72 TSO T98
@@ 2 |3 8 11 |6 50 |6 1

Read the
node

-

Older data gets written over

and over again
Write the

node

OOOOOOOOOOOOOOOOO
rne

72



Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

28 91

B Merge the _
o e data . \ CPU Work = O(old + new)
Volume of I0 = O(old + new)

58 |83 | 39 T44 T64 T65 TGG T72 TSO T98
@@ 2 |3 8 11 |6 50 |6 1

Read the
node

-

Older data gets written over

and over again
Write the

node

OOOOOOOOOOOOOOOOO
; -

73



Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the o CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

72 T30<T§1<T58
2 DS G Older data gets written over
and over again

58 |83 | 28

9.

Read the
node

65

11

B

Write the
node

OOOOOOOOOOOOOOOOO

74



Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the - ~\ CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

72 T30<T§1<T58
2 DS G Older data gets written over
and over again

58 |83 | 28

9.

Read the
node

65

11

B

Write the
node

Up to B¢ times per node!

OOOOOOOOOOOOOOOOO
rne

75



Size-Tiered B&-Trees

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots

¥

37 |58 |93

Recall:

a Be-tree node has pivots and a buffer @ @ @

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

the rest buffer

¥

77



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots the rest buffer

¥ ¥

37 58 |93
Recall:

a Be-tree node has pivots and a buffer @ @ @ .

nanset-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

78



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots the rest buffer

¥ 4
3 Tos [os | —>

e —> I
a Be-tree node has pivots and a buffer @ @ @

nanset-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

and in several discontiguous pieces

79



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

trunk [node]

Bf pivots
37 58 93

Recall:

a Be-tree node has pivots and a buffer @ @ @

the rest buffer

4
—>
—>
—>

nanset-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

and in several discontiguous pieces

80



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

trunk [node]

BE pivots the rest buffer

37 |53 1oz | — D
e —> I
a Be-tree node has pivots and a buffer @ @ @

nanset-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

branches

and in several discontiguous pieces

81



Insertions in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO
------



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

When new data is flushed into the trunk node...

83



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

When new data is flushed into the trunk node...

84



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

N

T T

When new data is flushed into the trunk node...

..itis added as a new branch

85



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

N

a000

42 |5 7 1

T T

When new data is flushed into the trunk node...

..itis added as a new branch

86



ze-Tiered B&-Trees

A Size-Tiered B8 tree isa Be tree where the buf eris store
discontiguously

37 |58 93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

N

When new data is flushed into the trunk node...

..itis added as a new branch

The old branches do not need to be rewritten

87



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

P = ..itisadded as a new branch
37 |58 |93 45 TSS T75 T76

ans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Branches may have overlapping key ranges




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

P = ..itisadded as a new branch
37 |58 |93 45 TSB T75 T76

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Branches may have overlapping key ranges




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

AOOD00
LTLhLL]

P = ..itisadded as a new branch
37 |58 |93 45 TSB T75 T76

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Branches may have overlapping key ranges




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

; ~ When new data is flushed into the trunk node...
41 T42 T43 T79 85 T91 ]

2 (5 |11 |1 2 9

/ ..itisadded as a new branch

r ) |
37 |58 93 45 TSB T75 T76
Branches may have overlapping key ranges

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the nOde iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

; ~ When new data is flushed into the trunk node...
41 T42 T43 T79 85 T91 ]

2 (5 |11 |1 2 9

/ ..itisadded as a new branch

r ) |
37 |58 93 45 T58 T75 T76
Branches may have overlapping key ranges

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the nOde iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

; 79 | 85 I 91 I When new data is flushed into the trunk node...
41T424T43

/ 58 | 75 | 76 I ..itisadded as a new branch

37 |58 |93 45

@@@_»425 7 |1

\ The old branches do not need to be rewritten
94
8
ii | | |

Branches may have overlapping key ranges

> |
w
oo

—
W
o

(2]

H

a

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the node iS fu " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

’v

41 T42 T43
/ ..itisadded as a new branch

37 |58 |93

00

="
o e

R
L L L

When new data is flushed into the trunk node...

Branches may have overlapping key ranges

The old branches do not need to be rewritten

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the node iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

’v
41T424T43

When new data is flushed into the trunk node...

..itisadded as a new branch

37 |58 93
Branches may have overlapping key ranges

[

A4
Each key-value pair is read/written once per trunk node
8<Té4<T}5<T56<T39<T85<T§1
‘ |8 |7 1 |1 2 |9

/ 4\

The old branches do not need to be rewritten

2

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 95




Lookups in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO
------



Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(71)

97



Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(71)

98



Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(71)

99



Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

13 |27 |34 |94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 100




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 101




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 102




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 103




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 104




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 105




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 106




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

58 |67 |75

T e—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 107




Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 108



Size-Tiered B&-Trees

Query(71) — 2

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
L)

12 |24 37 |58 |83

L= )

37 (41 |48 -> 58 (67 |75 _
Y ne— (LYY

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

69

71

72

(UL

73 |74

50

14 |29

109



Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
0%

37 |58 |83

1 (12 |24 -

@I@I@L U] N L —
N

B* —Tree Lookup Cost= 0 (logBeM)

N
Size—Tiered B* —Tree Lookup Cost= 0O (BglOng M)

OOOOOOOOOOOOOOOOO
1 SITY

110



Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 (37 |6 |=>

(DI )

\@‘@l@' o oS .>_
B¢ X more

' 4

B* —Tree Lookup Cost= 0 (logBe 7

N
Size—Tiered B* —Tree Lookup Cost= 0O (BglOng M)

OOOOOOOOOOOOOOOOO
1 SITY

111



Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
0%

1 |12 (24 37 |58 83 . Q
\@‘@[@L I N o —

N
B® —Tree Lookup Cost= 0 (longM) B* X more

N
Size—Tiered B* —Tree Lookup Cost= 0O (Bglong M) @

OOOOOOOOOOOOOOOOO
1 SITY

112



Fixing Lookups (almost)

OOOOOOOOOOOOOOOOO
------



Fixing Lookups (almost)

r v
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

@@@ 42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

37 |58 |93 1!45 TSS T75 T76 ]
N

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 114



Fixing Lookups (almost)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

| 4 |
45 TSS T75 T76
42 |5 7 1
r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

115



Fixing Lookups (almost)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| 4 ) | (plus rare false positives)
45 |58 |75 |76

42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

116



Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| 4 ) | (plus rare false positives)
45 |58 |75 |76

42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

117



Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key
(plus rare false positives)

~
=3
(6}
—4
Ul
o
—
N
wn
—4
N
(2}
ol

93 L4
(LI

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

118



Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key
(plus rare false positives)

~
=3
(6}
—4
Ul
o
—
N
wn
—4
N
(2}
ol

93 |
(LI

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

119



Idea: use filters to avoid searching them

Fixing Lookups (almost)

The problem is that each node has multiple branches

&

'\

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

37 |58 |93

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)

120



Idea: use filters to avoid searching them

Fixing Lookups (almost)

The problem is that each node has multiple branches

&

'\

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

37 |58 |93

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)

121



Idea: use filters to avoid searching them

Fixing Lookups (almost)

The problem is that each node has multiple branches

&

'\

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

37 |58 |93

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)

122



The problem is that each node has multiple branches

Idea: use filters to avoid searching them

&

'\

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

A filter is a probabilistic data structure with

37 |58 |93

o0

answers membership with no false

negatives

Examples: Bloom, cuckoo, quotient

Query(64)

OoO0D00

5 [11 |1

2

9

Now a lookup will only search those branches which contain the key

(plus rare false positives)

123



Fixing Lookups (almost)

The problem is that each node has multiple branches

37 |58 |93

o008

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with

answers membership with no false
w negatives

'\

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(64)

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)

124



Fixing Lookups (almost)

Query(64) — 8

r v
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

11 |1 2 9

Now a lookup will only search those branches which contain the key

= ) | (plus rare false positives)
37 |58 |93 45 |58 |75 |76
00 7 s
Idea: use filters to avoid searching them
64 =]
94
8
4

A filter is a probabilistic data structure with

answers membership with no false
w negatives

'\

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

125



Fixing Lookups (almost)

Query(64) — 8

r ) 4
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key

- r ) | (plus rare false positives)
37 |58 |93 45 T58 T75 T75

oo L
r 64 Y
38 |39 94
8
1 2 4

Idea: use filters to avoid searching them

:
Ll e )

g
False Positive Rate < O
BéloggN )

UNIVERSITY OF UTAH 126



Fixing Lookups (almost)

Query(64) — 8

r ) 4
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key

- r ) | (plus rare false positives)
37 |58 |93 45 T58 T75 T75

oo L
r 64 Y
38 |39 94
8
1 2 4

Idea: use filters to avoid searching them

:
Ll e )

&E
F ] P .t' R t S O Lookupsin O(1) 10s
dise rositive ndlte BglogBN> :

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 127



Conclusion

« Be-trees are asymptotically faster than B-trees for
Insertions.

* They are appropriate for OLTP workloads

« Size-tiered Be-trees help reduce write amplification

« Filter data structure can help reduce read amplification

OOOOOOOOOOOOOOOOO
......



	Slide 1: Lecture 9 Be-tree and SplinterDB
	Slide 2: The Story of SplinterDB
	Slide 3: The Story of SplinterDB
	Slide 4: The Story of SplinterDB
	Slide 5: The Story of SplinterDB
	Slide 6: The Story of SplinterDB
	Slide 20: Lower Bounds
	Slide 21: Lower Bounds
	Slide 22: Lower Bounds
	Slide 23: Lower Bounds
	Slide 24: Lower Bounds
	Slide 25: Lower Bounds
	Slide 26: I/O Amplification
	Slide 27: B-Trees
	Slide 28: B-Trees
	Slide 29: B-Trees
	Slide 30: B-Trees
	Slide 31: B-Trees
	Slide 32: B-Trees
	Slide 33: B-Trees
	Slide 34: B-Trees
	Slide 35: B-Trees
	Slide 36: Bε-Trees
	Slide 37
	Slide 38: Bε-Trees
	Slide 39: Bε-Trees
	Slide 40: Bε-Trees
	Slide 41: Bε-Trees
	Slide 42: Bε-Trees
	Slide 43: Bε-Trees
	Slide 44: Bε-Trees
	Slide 45: Bε-Trees
	Slide 46: Bε-Trees
	Slide 47: Bε-Trees
	Slide 48: Bε-Trees
	Slide 49: Bε-Trees
	Slide 50
	Slide 51: Bε-Trees
	Slide 52: Bε-Trees
	Slide 53: Bε-Trees
	Slide 54: Bε-Trees
	Slide 55: Bε-Trees
	Slide 56: Bε-Trees
	Slide 57: Lookups in Bε-Trees
	Slide 58: Bε-Trees
	Slide 59: Bε-Trees
	Slide 60: Bε-Trees
	Slide 61: Bε-Trees
	Slide 62: Bε-Trees
	Slide 63: Bε-Trees
	Slide 64: Insertions in Bε-Trees are more expensive than they look
	Slide 65: Insertions in Bε-Trees are more expensive than they look
	Slide 66: Insertions in Bε-Trees are more expensive than they look
	Slide 67: Insertions in Bε-Trees are more expensive than they look
	Slide 68: Insertions in Bε-Trees are more expensive than they look
	Slide 69: Insertions in Bε-Trees are more expensive than they look
	Slide 70
	Slide 71: Insertions in Bε-Trees are more expensive than they look
	Slide 72: Insertions in Bε-Trees are more expensive than they look
	Slide 73: Insertions in Bε-Trees are more expensive than they look
	Slide 74: Insertions in Bε-Trees are more expensive than they look
	Slide 75: Insertions in Bε-Trees are more expensive than they look
	Slide 76: Size-Tiered Bε-Trees
	Slide 77: Size-Tiered Bε-Trees
	Slide 78: Size-Tiered Bε-Trees
	Slide 79: Size-Tiered Bε-Trees
	Slide 80: Size-Tiered Bε-Trees
	Slide 81: Size-Tiered Bε-Trees
	Slide 82: Insertions in Size-Tiered Bε-Trees
	Slide 83: Size-Tiered Bε-Trees
	Slide 84: Size-Tiered Bε-Trees
	Slide 85: Size-Tiered Bε-Trees
	Slide 86: Size-Tiered Bε-Trees
	Slide 87: Size-Tiered Bε-Trees
	Slide 88: Size-Tiered Bε-Trees
	Slide 89: Size-Tiered Bε-Trees
	Slide 90: Size-Tiered Bε-Trees
	Slide 91: Size-Tiered Bε-Trees
	Slide 92: Size-Tiered Bε-Trees
	Slide 93: Size-Tiered Bε-Trees
	Slide 94: Size-Tiered Bε-Trees
	Slide 95: Size-Tiered Bε-Trees
	Slide 96: Lookups in Size-Tiered Bε-Trees
	Slide 97: Size-Tiered Bε-Trees
	Slide 98: Size-Tiered Bε-Trees
	Slide 99: Size-Tiered Bε-Trees
	Slide 100: Size-Tiered Bε-Trees
	Slide 101: Size-Tiered Bε-Trees
	Slide 102: Size-Tiered Bε-Trees
	Slide 103: Size-Tiered Bε-Trees
	Slide 104: Size-Tiered Bε-Trees
	Slide 105: Size-Tiered Bε-Trees
	Slide 106: Size-Tiered Bε-Trees
	Slide 107: Size-Tiered Bε-Trees
	Slide 108: Size-Tiered Bε-Trees
	Slide 109: Size-Tiered Bε-Trees
	Slide 110: Size-Tiered Bε-Trees
	Slide 111: Size-Tiered Bε-Trees
	Slide 112: Size-Tiered Bε-Trees
	Slide 113: Fixing Lookups (almost)
	Slide 114
	Slide 115: Fixing Lookups (almost)
	Slide 116: Fixing Lookups (almost)
	Slide 117: Fixing Lookups (almost)
	Slide 118: Fixing Lookups (almost)
	Slide 119: Fixing Lookups (almost)
	Slide 120: Fixing Lookups (almost)
	Slide 121: Fixing Lookups (almost)
	Slide 122: Fixing Lookups (almost)
	Slide 123
	Slide 124: Fixing Lookups (almost)
	Slide 125: Fixing Lookups (almost)
	Slide 126: Fixing Lookups (almost)
	Slide 127: Fixing Lookups (almost)
	Slide 128: Conclusion

