CS 6530: Advanced Database Systems Fall 2024

Lecture S
Be-tree and SplinterDB

Prashant Pandey
prashant.pandey@utah.edu

Slides taken from Prof. Alex Conway, Cornell Tech
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The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB

_B 10 4 KiB

Here B is the number of
items in an 10:

B=4KiB/48B
If the items were larger, the model Internal A B-sized block can be read or
wouldn’t be as good Memory of size  writtenin 110

M

External Memory Model
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The Story of SplinterDB

Model the problem:
external memory dictionary

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)
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Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018
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/O Amplification

Read amplification is the ratio of the number of blocks read
from the disk versus the number
of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks
written to the disk versus the number of blocks required to

write the key-value parr.
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B-ary Search Tree
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B-Trees

Insert

B-ary Search Tree

24 37 186 |90

@@@@

W oo MO(IO%BN)
/'&f =

N

OOOOOOOOOOOOOOOOO



B-Trees




B-Trees

B-ary Search Tree

4+

O(logg N)
Insertion Cost < 0(loggN)
Lookup Cost < O(loggN) H
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BE-Trees
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BE-Trees

Inserts get putin the root buffer

94 T39 T64 T13
4 |2 |8 |1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer
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BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ vV \
é’aé

N/ x VX
0 T61 T65 r69 T71 T72 T73 T74 r79 TSO TSl TSZ
0 129 lll - 99 |6

Q|

o

¥

N

\/

o0

4

e

5
SCHOOL OF COMPUTI

UUUUUUUUUUUUUUUU

50 (14 |29 77 |44

rara




BE-Trees

Inserts get putin the root buffer 66

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer

\gz
\ vV \
é’aé

N/ x VX
0 T61 T65 r69 T71 T72 T73 T74 r79 TSO TSl TSZ
0 129 lll - 99 |6

Q|

o

¥

N

\/

o0

4

e

5
SCHOOL OF COMPUTI

UUUUUUUUUUUUUUUU

50 (14 |29 77 |44

rara




B-Trees

Inserts get putin the root buffer

When a buffer is full:
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BE-Trees

Inserts get putin the root buffer 65

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer
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BE-Trees

Inserts get putin the root buffer

When a buffer is full:

37 |86 | 94 T13 TGG TGS 1. Pick child receiving most messages
2. Move them to the child’s buffer
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BE-Trees

Inserts get putin the root buffer

66 65 When a buffer is full:
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6 . Move them to the child’s buffer
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BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer
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BE-Trees

Inserts get putin the root buffer
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BE-Trees

Inserts get putin the root buffer

When a buffer is full:
1. Pick child receiving most messages
. Move them to the child’s buffer
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Lookups in BE-Trees
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BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way
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Query(71)

Lookups follow pivots, but check buffers along the way
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BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way
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BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way
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BE-Trees

Query(71) — 2

Lookups follow pivots, but check buffers along the way
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BE-Trees

Query(71) — 2

Lookups follow pivots, but check buffers along the way
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Insertions in B&-Trees are more expensive than they look
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Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6
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Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

65 72 80

11 50 6

58 |83 |39 T64 TGG
e

Read the
node
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Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

65 72 80

Merge the -~
11 50 6 data 4 A

58 |83 |39 T64 TGG
e

Read the
node

OOOOOOOOOOOOOOOOO
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Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the -~
\data % |
58 (83 /39 |64 |65 |66 |72 |80
B Bz -
@@ 2 8 11 |6 50 |6

Read the
node

5
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Insertions in Be-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the -~
\data % |
58 (83 /39 |64 |65 |66 |72 |80
B Bz -
@@ 2 8 11 |6 50 |6

Read the
node

5

Write the
node

OOOOOOOOOOOOOOOOO
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Insertions in BE-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the _ o CPU Work = O(old + new)
data & (S .\\
N Volume of IO = O(old + new)

58 |83 | 39 T64 T65 T66 T72 TSO
@B|. s [11]c [50]6

Read the
node

5

Write the
node

OOOOOOOOOOOOOOOOO
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

B Merge the P\ CPU Work = O(old + new)
1 3 data & .
Volume of I0 = O(old + new)

58 |83 | 39 T64 T65 T66 T72 TSO
@ @ 2 |8 11 |6 50 (6

Read the
node

5

Older data gets written over

and over again
Write the

node

OOOOOOOOOOOOOOOOO
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the o CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

58 |83 | 39 T44 T64 T65 TGG T72 TSO T98
@@ 2 |3 8 11 |6 50 |6 1

Read the
node

-

Older data gets written over

and over again
Write the

node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

28 91

B Merge the _
o e data . \ CPU Work = O(old + new)
Volume of I0 = O(old + new)

58 |83 | 39 T44 T64 T65 TGG T72 TSO T98
@@ 2 |3 8 11 |6 50 |6 1

Read the
node

-

Older data gets written over

and over again
Write the

node

OOOOOOOOOOOOOOOOO
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the o CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

72 T30<T§1<T58
2 DS G Older data gets written over
and over again

58 |83 | 28

9.

Read the
node

65

11

B

Write the
node

OOOOOOOOOOOOOOOOO
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B&-trees

Merge the - ~\ CPU Work = O(old + new)
data & o
Volume of I0 = O(old + new)

72 T30<T§1<T58
2 DS G Older data gets written over
and over again

58 |83 | 28

9.

Read the
node

65

11

B

Write the
node

Up to B¢ times per node!

OOOOOOOOOOOOOOOOO
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Size-Tiered B&-Trees

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots

¥

37 |58 |93

Recall:

a Be-tree node has pivots and a buffer @ @ @
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the rest buffer

¥
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots the rest buffer

¥ ¥

37 58 |93
Recall:

a Be-tree node has pivots and a buffer @ @ @ .

nanset-tree, the buffer is
stored separately
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

BE pivots the rest buffer

¥ 4
3 Tos [os | —>

e —> I
a Be-tree node has pivots and a buffer @ @ @

nanset-tree, the buffer is
stored separately
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and in several discontiguous pieces
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

trunk [node]

Bf pivots
37 58 93

Recall:

a Be-tree node has pivots and a buffer @ @ @

the rest buffer

4
—>
—>
—>

nanset-tree, the buffer is
stored separately
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

trunk [node]

BE pivots the rest buffer

37 |53 1oz | — D
e —> I
a Be-tree node has pivots and a buffer @ @ @

nanset-tree, the buffer is
stored separately
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and in several discontiguous pieces
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Insertions in Size-Tiered B&-Trees
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)
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When new data is flushed into the trunk node...
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)
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When new data is flushed into the trunk node...
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)
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When new data is flushed into the trunk node...

..itis added as a new branch
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

37 |58 93

)
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When new data is flushed into the trunk node...

..itis added as a new branch
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ze-Tiered B&-Trees

A Size-Tiered B8 tree isa Be tree where the buf eris store
discontiguously

37 |58 93

)
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N

When new data is flushed into the trunk node...

..itis added as a new branch

The old branches do not need to be rewritten
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

P = ..itisadded as a new branch
37 |58 |93 45 TSS T75 T76

ans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94
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Branches may have overlapping key ranges




Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

P = ..itisadded as a new branch
37 |58 |93 45 TSB T75 T76

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

When new data is flushed into the trunk node...

AOOD00
LTLhLL]

P = ..itisadded as a new branch
37 |58 |93 45 TSB T75 T76

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored
discontiguously

; ~ When new data is flushed into the trunk node...
41 T42 T43 T79 85 T91 ]

2 (5 |11 |1 2 9

/ ..itisadded as a new branch

r ) |
37 |58 93 45 TSB T75 T76
Branches may have overlapping key ranges

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the nOde iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

; ~ When new data is flushed into the trunk node...
41 T42 T43 T79 85 T91 ]

2 (5 |11 |1 2 9

/ ..itisadded as a new branch

r ) |
37 |58 93 45 T58 T75 T76
Branches may have overlapping key ranges

oans L. .

\ r - The old branches do not need to be rewritten
38 T39 T64 T94
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the nOde iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

; 79 | 85 I 91 I When new data is flushed into the trunk node...
41T424T43

/ 58 | 75 | 76 I ..itisadded as a new branch

37 |58 |93 45

@@@_»425 7 |1

\ The old branches do not need to be rewritten
94
8
ii | | |

Branches may have overlapping key ranges

> |
w
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the node iS fu " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

’v

41 T42 T43
/ ..itisadded as a new branch

37 |58 |93

00

="
o e

R
L L L

When new data is flushed into the trunk node...

Branches may have overlapping key ranges

The old branches do not need to be rewritten
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Size-Tiered B&-Trees

A Size-Tiered B*-tree is a B%-tree where the bufferis stored Whe n the node iS fU " .

discontiguously
1. Pick child receiving most messages
2. Merge them into a new branch for the child

’v
41T424T43

When new data is flushed into the trunk node...

..itisadded as a new branch

37 |58 93
Branches may have overlapping key ranges

[

A4
Each key-value pair is read/written once per trunk node
8<Té4<T}5<T56<T39<T85<T§1
‘ |8 |7 1 |1 2 |9

/ 4\

The old branches do not need to be rewritten

2
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Lookups in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO
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Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch
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Query(71)
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

13 |27 |34 |94
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

58 |67 |75

T e—
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Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch
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Size-Tiered B&-Trees

Query(71) — 2

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
L)

12 |24 37 |58 |83

L= )

37 (41 |48 -> 58 (67 |75 _
Y ne— (LYY
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
0%

37 |58 |83

1 (12 |24 -

@I@I@L U] N L —
N

B* —Tree Lookup Cost= 0 (logBeM)

N
Size—Tiered B* —Tree Lookup Cost= 0O (BglOng M)

OOOOOOOOOOOOOOOOO
1 SITY
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 (37 |6 |=>

(DI )

\@‘@l@' o oS .>_
B¢ X more

' 4

B* —Tree Lookup Cost= 0 (logBe 7

N
Size—Tiered B* —Tree Lookup Cost= 0O (BglOng M)

OOOOOOOOOOOOOOOOO
1 SITY
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B5-tree, except they must check
each branch

1 |37 |86 |=>- N
0%

1 |12 (24 37 |58 83 . Q
\@‘@[@L I N o —

N
B® —Tree Lookup Cost= 0 (longM) B* X more

N
Size—Tiered B* —Tree Lookup Cost= 0O (Bglong M) @

OOOOOOOOOOOOOOOOO
1 SITY
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Fixing Lookups (almost)
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Fixing Lookups (almost)

r v
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

@@@ 42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

37 |58 |93 1!45 TSS T75 T76 ]
N
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Fixing Lookups (almost)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

| 4 |
45 TSS T75 T76
42 |5 7 1
r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| 4 ) | (plus rare false positives)
45 |58 |75 |76

42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| 4 ) | (plus rare false positives)
45 |58 |75 |76

42 |5 7 1

r a |
38 T39 T64 T94
1 2 8 4

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key
(plus rare false positives)

~
=3
(6}
—4
Ul
o
—
N
wn
—4
N
(2}
ol

93 L4
(LI

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64)

r <
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key
(plus rare false positives)
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Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Idea: use filters to avoid searching them

Fixing Lookups (almost)

The problem is that each node has multiple branches

&

'\
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37 |58 |93

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)
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A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)

122



The problem is that each node has multiple branches

Idea: use filters to avoid searching them

&

'\
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A filter is a probabilistic data structure with

37 |58 |93

o0

answers membership with no false

negatives

Examples: Bloom, cuckoo, quotient

Query(64)

OoO0D00

5 [11 |1

2

9

Now a lookup will only search those branches which contain the key

(plus rare false positives)
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Fixing Lookups (almost)

The problem is that each node has multiple branches

37 |58 |93

o008

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with

answers membership with no false
w negatives

'\

Examples: Bloom, cuckoo, quotient
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Query(64)

r Y
a1 T42 T43 T79

2 |5 |11 |1

Now a lookup will only search those branches which contain the key

(plus rare false positives)
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Fixing Lookups (almost)

Query(64) — 8

r v
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

11 |1 2 9

Now a lookup will only search those branches which contain the key

= ) | (plus rare false positives)
37 |58 |93 45 |58 |75 |76
00 7 s
Idea: use filters to avoid searching them
64 =]
94
8
4

A filter is a probabilistic data structure with

answers membership with no false
w negatives

'\

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64) — 8

r ) 4
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key

- r ) | (plus rare false positives)
37 |58 |93 45 T58 T75 T75

oo L
r 64 Y
38 |39 94
8
1 2 4

Idea: use filters to avoid searching them

:
Ll e )

g
False Positive Rate < O
BéloggN )
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Fixing Lookups (almost)

Query(64) — 8

r ) 4
The problem is that each node has multiple branches 41 T42 T43 T79 85 Tgl ]

2 |5 |11 |1 2 9

Now a lookup will only search those branches which contain the key

- r ) | (plus rare false positives)
37 |58 |93 45 T58 T75 T75

oo L
r 64 Y
38 |39 94
8
1 2 4

Idea: use filters to avoid searching them

:
Ll e )

&E
F ] P .t' R t S O Lookupsin O(1) 10s
dise rositive ndlte BglogBN> :
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Conclusion

« Be-trees are asymptotically faster than B-trees for
Insertions.

* They are appropriate for OLTP workloads

« Size-tiered Be-trees help reduce write amplification

« Filter data structure can help reduce read amplification

OOOOOOOOOOOOOOOOO
......
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