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Here B is the number of 
items in an IO:
B = 4 KiB / 48 B

If the items were larger, the model 
wouldn’t be as good
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I/O Amplification

26

Read amplification is the ratio of the number of blocks read 

from the disk versus the number

of blocks required to read the key-value pair. 

Write amplification is the ratio of the number of blocks 

written to the disk versus the number of blocks required to 

write the key-value pair.
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Size-Tiered Bε-Trees
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SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020
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When new data is flushed into the trunk node…
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Branches may have overlapping key ranges 

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten
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When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges 
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When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges 
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When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges 

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child
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When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges 
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1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees



95

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored 
discontiguously 

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Each key-value pair is read/written once per trunk node

Branches may have overlapping key ranges 

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees
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Query(71)
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The problem is that each node has multiple branches
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Idea: use filters to avoid searching them

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

The problem is that each node has multiple branches
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Now a lookup will only search those branches which contain the key 
(plus rare false positives)
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Idea: use filters to avoid searching them
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Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Fixing Lookups (almost)
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A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)
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False Positive Rate ≤ 𝑂
𝜀

𝐵𝜀log𝐵𝑁

Query(64) → 8

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)
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Query(64) → 8

False Positive Rate ≤ 𝑂
𝜀

𝐵𝜀log𝐵𝑁
Lookups in O(1) IOs

⇒

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)



Conclusion

• Be-trees are asymptotically faster than B-trees for 

insertions.

• They are appropriate for OLTP workloads

• Size-tiered Be-trees help reduce write amplification

• Filter data structure can help reduce read amplification
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