
Lecture 9
Be-tree and SplinterDB

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Slides taken from Prof. Alex Conway, Cornell Tech

mailto:prashant.pandey@utah.edu

Model the problem:
external memory dictionary

The Story of SplinterDB

Metadata is fine-grained

4 KiB

IO 4 KiB

Model the problem:
external memory dictionary

The Story of SplinterDB

48 B

Metadata is fine-grained

4 KiB

IO 4 KiB

B

Internal
Memory of size
M

External Memory Model

A B-sized block can be read or
written in 1 IO

B

Model the problem:
external memory dictionary

The Story of SplinterDB

48 B

Metadata is fine-grained

48 B

4 KiB

IO 4 KiB

B

Internal
Memory of size
M

External Memory Model

B

Here B is the number of
items in an IO:
B = 4 KiB / 48 B

If the items were larger, the model
wouldn’t be as good

Model the problem:
external memory dictionary

The Story of SplinterDB

A B-sized block can be read or
written in 1 IO

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)

Model the problem:
external memory dictionary

The Story of SplinterDB

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT

Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT

Hash Table

Iacono-Pătrașcu Lower Bound

Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT

Hash Table

No scans!

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

(𝜆 = 𝐵𝜀 , 𝐵𝜀 = Ω(log𝐵𝜀𝑁)

Mapped Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT

Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆

𝐵
log𝜆𝑁 Ω log𝜆𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

(𝜆 = 𝐵𝜀 , 𝐵𝜀 = Ω(log𝐵𝜀𝑁)

Mapped Bε-Trees

𝑂
𝜆

𝐵
Ω log𝜆𝑁

Insertions in Lookups in

(𝜆 = 𝐵𝜀)

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT

Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

I/O Amplification

26

Read amplification is the ratio of the number of blocks read

from the disk versus the number

of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks

written to the disk versus the number of blocks required to

write the key-value pair.

B-Trees

27

28

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

B-Trees

29

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6

Insert

B-Trees

30

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert76

6

B-Trees

31

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

32

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

33

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

34

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

35

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6

Insert

Insertion Cost ≤ 𝑂 log𝐵𝑁

Lookup Cost ≤ 𝑂 log𝐵𝑁

B-Trees

Bε-Trees

36

37

37

12

8475

9290835824

856741

86

48

A Bε-tree is a search tree (like a B-tree)

Bε pivots the rest buffer

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

Bε-Trees

38

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

Bε-Trees

39

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer 94

4

Bε-Trees

40

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

Bε-Trees

41

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

Bε-Trees

42

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

Bε-Trees

43

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

Bε-Trees

44

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

Bε-Trees

45

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

Bε-Trees

46

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

47

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

48

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

49

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

66

6

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

50

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

B-Trees

51

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

52

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

53

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

54

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

55

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

56

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

Lookups in Bε-Trees

57

58

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

79

9

40

3

Query(71)

Bε-Trees

59

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

60

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

61

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

62

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71) → 2

71

2

79

9

Bε-Trees

63

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2
72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71) → 2

79

9

Bε-Trees

Insertions in Bε-Trees are more expensive than they look

64

65

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

66

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

67

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

68

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

69

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

70

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

71

8358 39

2

64

8

66

6

65

11

72

50

80

6

98

1

44

3

Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

72

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6 Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

73

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43

Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

74

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43 Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

75

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43 Older data gets written over
and over again

Up to 𝐵𝜀 times per node!

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

Size-Tiered Bε-Trees

76

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020

Size-Tiered Bε-Trees

77

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

78

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

Size-Tiered Bε-Trees

79

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

Size-Tiered Bε-Trees

80

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

trunk [node]

Size-Tiered Bε-Trees

81

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

trunk [node]

branches

Size-Tiered Bε-Trees

Insertions in Size-Tiered Bε-Trees

82

83

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

When new data is flushed into the trunk node…

Size-Tiered Bε-Trees

84

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

When new data is flushed into the trunk node…

Size-Tiered Bε-Trees

85

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

When new data is flushed into the trunk node…

…it is added as a new branch

Size-Tiered Bε-Trees

86

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

When new data is flushed into the trunk node…

…it is added as a new branch

Size-Tiered Bε-Trees

Size-Tiered Bε-Trees

87

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

88

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

Branches may have overlapping key ranges

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered Bε-Trees

89

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

90

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

91

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

92

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

93

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 52

43

11

42

5

41

2

9993

79

1

85

2

91

9

58

5

75

7

76

1

64

8

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

94

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

95

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Each key-value pair is read/written once per trunk node

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

Lookups in Size-Tiered Bε-Trees

96

97

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Query(71)

Size-Tiered Bε-Trees

98

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

99

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

100

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

94

4

13

1

27

3

34

22

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

101

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

102

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

103

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

104

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

105

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

106

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

107

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

108

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 8569

9

71

2

72

50

73

14

74

29

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

109

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71) → 2

69

9

71

2
72

50

73

14

74

29

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

110

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B𝜀−Tree Lookup Cost = 𝑂 log𝐵𝜀
𝑁

𝑀

Size−Tiered B𝜀−Tree Lookup Cost = 𝑂 𝐵𝜀log𝐵𝜀
𝑁

𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

111

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B𝜀 ×more
B𝜀−Tree Lookup Cost = 𝑂 log𝐵𝜀

𝑁

𝑀

Size−Tiered B𝜀−Tree Lookup Cost = 𝑂 𝐵𝜀log𝐵𝜀
𝑁

𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

112

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B𝜀 ×more
B𝜀−Tree Lookup Cost = 𝑂 log𝐵𝜀

𝑁

𝑀

Size−Tiered B𝜀−Tree Lookup Cost = 𝑂 𝐵𝜀log𝐵𝜀
𝑁

𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

Fixing Lookups (almost)

113

114

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

The problem is that each node has multiple branches

Fixing Lookups (almost)

115

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

The problem is that each node has multiple branches

Fixing Lookups (almost)

116

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

Fixing Lookups (almost)

117

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

118

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

119

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

120

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

121

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

122

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

123

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

124

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Fixing Lookups (almost)

125

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) → 8

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

126

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

False Positive Rate ≤ 𝑂
𝜀

𝐵𝜀log𝐵𝑁

Query(64) → 8

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

127

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) → 8

False Positive Rate ≤ 𝑂
𝜀

𝐵𝜀log𝐵𝑁
Lookups in O(1) IOs

⇒

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

Conclusion

• Be-trees are asymptotically faster than B-trees for

insertions.

• They are appropriate for OLTP workloads

• Size-tiered Be-trees help reduce write amplification

• Filter data structure can help reduce read amplification

	Slide 1: Lecture 9 Be-tree and SplinterDB
	Slide 2: The Story of SplinterDB
	Slide 3: The Story of SplinterDB
	Slide 4: The Story of SplinterDB
	Slide 5: The Story of SplinterDB
	Slide 6: The Story of SplinterDB
	Slide 20: Lower Bounds
	Slide 21: Lower Bounds
	Slide 22: Lower Bounds
	Slide 23: Lower Bounds
	Slide 24: Lower Bounds
	Slide 25: Lower Bounds
	Slide 26: I/O Amplification
	Slide 27: B-Trees
	Slide 28: B-Trees
	Slide 29: B-Trees
	Slide 30: B-Trees
	Slide 31: B-Trees
	Slide 32: B-Trees
	Slide 33: B-Trees
	Slide 34: B-Trees
	Slide 35: B-Trees
	Slide 36: Bε-Trees
	Slide 37
	Slide 38: Bε-Trees
	Slide 39: Bε-Trees
	Slide 40: Bε-Trees
	Slide 41: Bε-Trees
	Slide 42: Bε-Trees
	Slide 43: Bε-Trees
	Slide 44: Bε-Trees
	Slide 45: Bε-Trees
	Slide 46: Bε-Trees
	Slide 47: Bε-Trees
	Slide 48: Bε-Trees
	Slide 49: Bε-Trees
	Slide 50
	Slide 51: Bε-Trees
	Slide 52: Bε-Trees
	Slide 53: Bε-Trees
	Slide 54: Bε-Trees
	Slide 55: Bε-Trees
	Slide 56: Bε-Trees
	Slide 57: Lookups in Bε-Trees
	Slide 58: Bε-Trees
	Slide 59: Bε-Trees
	Slide 60: Bε-Trees
	Slide 61: Bε-Trees
	Slide 62: Bε-Trees
	Slide 63: Bε-Trees
	Slide 64: Insertions in Bε-Trees are more expensive than they look
	Slide 65: Insertions in Bε-Trees are more expensive than they look
	Slide 66: Insertions in Bε-Trees are more expensive than they look
	Slide 67: Insertions in Bε-Trees are more expensive than they look
	Slide 68: Insertions in Bε-Trees are more expensive than they look
	Slide 69: Insertions in Bε-Trees are more expensive than they look
	Slide 70
	Slide 71: Insertions in Bε-Trees are more expensive than they look
	Slide 72: Insertions in Bε-Trees are more expensive than they look
	Slide 73: Insertions in Bε-Trees are more expensive than they look
	Slide 74: Insertions in Bε-Trees are more expensive than they look
	Slide 75: Insertions in Bε-Trees are more expensive than they look
	Slide 76: Size-Tiered Bε-Trees
	Slide 77: Size-Tiered Bε-Trees
	Slide 78: Size-Tiered Bε-Trees
	Slide 79: Size-Tiered Bε-Trees
	Slide 80: Size-Tiered Bε-Trees
	Slide 81: Size-Tiered Bε-Trees
	Slide 82: Insertions in Size-Tiered Bε-Trees
	Slide 83: Size-Tiered Bε-Trees
	Slide 84: Size-Tiered Bε-Trees
	Slide 85: Size-Tiered Bε-Trees
	Slide 86: Size-Tiered Bε-Trees
	Slide 87: Size-Tiered Bε-Trees
	Slide 88: Size-Tiered Bε-Trees
	Slide 89: Size-Tiered Bε-Trees
	Slide 90: Size-Tiered Bε-Trees
	Slide 91: Size-Tiered Bε-Trees
	Slide 92: Size-Tiered Bε-Trees
	Slide 93: Size-Tiered Bε-Trees
	Slide 94: Size-Tiered Bε-Trees
	Slide 95: Size-Tiered Bε-Trees
	Slide 96: Lookups in Size-Tiered Bε-Trees
	Slide 97: Size-Tiered Bε-Trees
	Slide 98: Size-Tiered Bε-Trees
	Slide 99: Size-Tiered Bε-Trees
	Slide 100: Size-Tiered Bε-Trees
	Slide 101: Size-Tiered Bε-Trees
	Slide 102: Size-Tiered Bε-Trees
	Slide 103: Size-Tiered Bε-Trees
	Slide 104: Size-Tiered Bε-Trees
	Slide 105: Size-Tiered Bε-Trees
	Slide 106: Size-Tiered Bε-Trees
	Slide 107: Size-Tiered Bε-Trees
	Slide 108: Size-Tiered Bε-Trees
	Slide 109: Size-Tiered Bε-Trees
	Slide 110: Size-Tiered Bε-Trees
	Slide 111: Size-Tiered Bε-Trees
	Slide 112: Size-Tiered Bε-Trees
	Slide 113: Fixing Lookups (almost)
	Slide 114
	Slide 115: Fixing Lookups (almost)
	Slide 116: Fixing Lookups (almost)
	Slide 117: Fixing Lookups (almost)
	Slide 118: Fixing Lookups (almost)
	Slide 119: Fixing Lookups (almost)
	Slide 120: Fixing Lookups (almost)
	Slide 121: Fixing Lookups (almost)
	Slide 122: Fixing Lookups (almost)
	Slide 123
	Slide 124: Fixing Lookups (almost)
	Slide 125: Fixing Lookups (almost)
	Slide 126: Fixing Lookups (almost)
	Slide 127: Fixing Lookups (almost)
	Slide 128: Conclusion

