
Lecture 08
Storage Models, Data Layout,

File Organization

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

https://15721.courses.cs.cmu.edu/

https://15721.courses.cs.cmu.edu/

https://15721.courses.cs.cmu.edu/

Random access on non-volatile storage is usually much slower
than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random

pages so that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an

extent.

Allow the DBMS to manage databases that exceed the
amount of memory available.

Reading/writing to disk is expensive, so it must be
managed carefully to avoid large stalls and
performance degradation.

Random access on disk is usually much slower
than sequential access, so the DBMS will want to
maximize sequential access.

External memory model

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

HeaderDirectory Header Header Header Header

…1 2 3 4 5

HeaderDirectory Header Header Header Header

…1 2 3 4 5

HeaderDirectory Header Header Header Header

…1 2 3 4 5

HeaderDirectory Header Header Header Header

Directory

…1 2 3 4 5

HeaderDirectory Header Header

2
Header

Header Header

Directory

…1 2 3 4 5

HeaderDirectory Header Header

2
Header

Header Header

Directory

…1 2 3 4 5

HeaderDirectory Header Header

2
Header

Header Header

Directory

…1 2 3 4 5

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it.

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

page1 page2 page3 page4

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page2

page3

page4

page1

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page2

page3

page4

page1page1

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1 page1page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1 page1

page3

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page3

page1

page3

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page3

page1

page3

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page3

page1

page3

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in andout of memory,
so the DBMS doesn’t need to worry
about it. page1 page2 page3 page4

page1

page3

page1

page3

page1

page2

page3

page4

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

This works good enough for read-only access.
It is complicated when there are multiple writers…

What if we allow multiple threads to access the
mmap file to hide page faults stalls?
It is complicated when there are multiple writers…

→ madvise: Tell the OS howyouexpect to
read certain pages.

→ mlock: Tell the OS that memory ranges
cannot be pagedout.

→ msync: Tell the OS to flushmemory
ranges out to disk.

There are solutions to this
problem:

→ madvise: Tell the OS howyouexpect to
read certain pages.

→ mlock: Tell the OS that memory ranges
cannot be pagedout.

→ msync: Tell the OS to flushmemory
ranges out to disk.

There are solutions to this
problem:

→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

DBMS (almost) always wants to control things
itself and can do a better job than the OS

Problem #1:How the DBMS represents the
database in files on disk.

Problem #2:How the DBMS manages its memory
andmoves data back-and-forth from disk.

File storage

Page layout

Tuple layout

Early systems in the 1980s used custom filesystems
on raw storage.
→ Some "enterprise" DBMSs still support this.
→ Most newer DBMSs do not do this.

The DBMS stores a database as one or more files on
disk typically in a proprietary format.
→ The OS doesn’t know anything about the contents of these
files
→ Most newer DBMSs do not do this.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

The storage manager is responsible for
maintaining a database’s files.
→ Some do their own scheduling for reads and
writes to improve spatial and temporal locality of
pages.

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systemsdo not mix page types.
→ Some systemsrequire a pageto be self-contained.

Each page is given a unique identifier.
→ The DBMS uses an indirection layer to mappage IDs to

physical locations.

Ahardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

There are three different notions of
“pages ” in a DBMS:
→ HardwarePage (usually 4KB)
→ OS Page (usually 4KB)
→ Database Page (512B-16KB)

Ahardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

There are three different notions of
“pages ” in a DBMS:
→ HardwarePage (usually 4KB)
→ OS Page (usually 4KB)
→ Database Page (512B-16KB)

Ahardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

There are three different notions of
“pages ” in a DBMS:
→ HardwarePage (usually 4KB)
→ OS Page (usually 4KB)
→ Database Page (512B-16KB)

A heap file is an unordered collection of pages
with tuples that are stored in random order:
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Two waysto represent a heap file:
→ Linked List
→ PageDirectory

Page0 Page1 Page2 Page3 Page4

…

It is easy to find pages if there is only a
single heap file

Need meta-data to keep track of what
pages exist in multiple files and which
ones have free space.

Page0 Page1 Page2 Page3 Page4

…

It is easy to find pages if there is only a
single heap file

Need meta-data to keep track of what
pages exist in multiple files and which
ones have free space.

Page0 Page1 Page2 Page3 Page4

…

×

It is easy to find pages if there is only a
single heap file

Need meta-data to keep track of what
pages exist in multiple files and which
ones have free space.

It is easy to find pages if there is only a
single heap file.

Need meta-data to keep track of what
pages exist in multiple files and which
ones have free space.

It is easy to find pages if there is only a
single heap file.

Need meta-data to keep track of what
pages exist in multiple files and which
ones have free space.

Maintain a header page at
the beginning of the file that
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Header

Each page keeps track of how many
free slots they currently have.

Header

Each page keeps track of how many
free slots they currently have.

Maintain a header page at
the beginning of the file that
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Header

Page1

Data

Page4

Data

…

Each page keeps track of how many
free slots they currently have.

Page0 Page2

…
Data Data

Maintain a header page at
the beginning of the file that
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Header

Page1

Data

Page4

Data

…

Each page keeps track of how many
free slots they currently have.

Page0 Page2

…
Data Data

Maintain a header page at
the beginning of the file that
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Each page keeps track of how many
free slots they currently have.

Header

Page1

Data

Page0

Data

Page4

Data

Page2

Data

…

…

Maintain a header page at
the beginning of the file that
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Directory

…

The DBMS maintains special pages
that tracks the location of data pages
in the database files.

The directory also records the number
of free slots per page.

Must make sure that the directory
pages are in sync with the data pages.

The DBMS maintains special pages
that tracks the location of data pages
in the database files.

The directory also records the number
of free slots per page.

Directory

…

Page0

Data

Page1

Data

Page100

…

Must make sure that the directory
pages are in sync with the data pages.

Data

The DBMS maintains special pages
that tracks the location of data pages
in the database files.

The directory also records the number
of free slots per page.

Must make sure that the directory
pages are in sync with the data pages.

Directory

…

Page0

Data

Page1

Data

Page100

Data

…

File storage

Page layout

Tuple layout

Every page contains a header of
meta-data about the page’s
contents.
→ PageSize
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression Information

Some systems require pages to be self-
contained (e.g., Oracle).

Data

Header

For any page storage architecture, we now need to decide
how to organize the data inside of the page.
 → We are still assuming that we are only storing tuples.

Two approaches:
→ Tuple-oriented
→ Log-structured

For any page storage architecture, we now need to decide
how to organize the data inside of the page.
 → We are still assuming that we are only storing tuples.

Two approaches:
→ Tuple-oriented
→ Log-structured

How to store tuples in a
page? Num Tuples = 0

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

Num Tuples = 0

How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

Num Tuples = 0Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?

Num Tuples = 0Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?

Num Tuples = 0Num Tuples = 3Num Tuples = 2

Tuple #1

Tuple #3

How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?

Num Tuples = 0Num Tuples = 3

Tuple #1

Tuple #4

Tuple #3

How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Num Tuples = 0Num Tuples = 3

Tuple #1

Tuple #4

Tuple #3

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4 Tuple #3

Tuple #2 Tuple #1

Header

Tuple #4 Tuple #3

Tuple #2 Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

The most common layout
scheme is called slotted pages.

The slot array maps"slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the

last slot used.

An application cannot rely on these
IDs to mean anything.

The DBMS needs a way to keep track
of individual tuples.

Each tuple is assigned a unique record
identifier.
→ Most common: page_id+ offset/slot
→ Can also contain file location info.

An application cannot rely on these
IDs to mean anything.

The DBMS needs a way to keep track
of individual tuples.

Each tuple is assigned a unique record
identifier.
→ Most common: page_id+ offset/slot
→ Can also contain file location info.

File storage

Page layout

Tuple layout

Atuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

Each tuple is prefixed with a header

that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map forNULLvalues.

We donot need to store meta-data
about the schema.

Header Attribute Data

Attributes are typically stored in the
order that you specify them when you
create the table.

This is done for software engineering
reasons (i.e., simplicity).

However, it might be more efficient
to lay them out differently.

Header a b c d e

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,
c INT,
d DOUBLE,
e FLOAT

);

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,

); CREATE TABLE bar (
c INT PRIMARY KEY,
a INT
⮱REFERENCES foo (a),

);

DBMS can physically denormalize (e.g.,
"pre join") related tuples and store
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,

); CREATE TABLE bar (
c INT PRIMARY KEY,
a INT
⮱REFERENCES foo (a),

);

DBMS can physically denormalize (e.g.,
"pre join") related tuples and store
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.

Header c a

Header c a

Header c a

Header a bDBMS can physically denormalize (e.g.,
"pre join") related tuples and store
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.

Header a b c c c …DBMS can physically denormalize (e.g.,
"pre join") related tuples and store
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.

c c c …Header a bDBMS can physically denormalize (e.g.,
"pre join") related tuples and store
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.

DBMS can physically denormalize
(e.g., "pre join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

c c c …Header

Not a new idea.
→ IBM SystemR didthis in the 1970s.
→ Several NoSQLDBMSs do this without

calling it physical denormalization.

a b

DBMS can physically denormalize
(e.g., "pre join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

c c c …Header a b

Not a new idea.
→ IBM SystemR didthis in the 1970s.
→ Several NoSQLDBMSs do this without

calling it physical denormalization.

Database is organized in pages.

Different ways to track pages.

Different ways to store pages.

Different ways to store tuples.

	Slide 1: Lecture 08 Storage Models, Data Layout, File Organization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14: Random access on non-volatile storage is usually much slower than sequential access.
	Slide 15: Allow the DBMS to manage databases that exceed the amount of memory available.
	Slide 16: External memory model
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: It is easy to find pages if there is only a single heap file.
	Slide 60: It is easy to find pages if there is only a single heap file.
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: How to store tuples in a page?
	Slide 74
	Slide 75: How to store tuples in a page?
	Slide 76: How to store tuples in a page?
	Slide 77: How to store tuples in a page?
	Slide 78: How to store tuples in a page?
	Slide 79: How to store tuples in a page?
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95: Attributes are typically stored in the order that you specify them when you create the table.
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

