
Lecture 08
Storage Models, Data Layout, 

File Organization

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu


The DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

The DBMS's components manage the movement 
of data between non-volatile and volatile storage.
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Random access on non-volatile storage is usually much slower
than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random

pages so that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an 

extent.



Allow the DBMS to manage databases that exceed the
amount of memory available.

Reading/writing to disk is expensive, so it must be 
managed carefully to avoid large stalls and 
performance degradation.

Random access on disk is usually much slower 
than sequential access, so the DBMS will want to 
maximize sequential access.



External memory model
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The DBMS can use memory mapping 
(mmap) to store the contents of a file 
into the address space of a program.

The OS is responsible for moving the 
pages of the file in andout of memory, 
so the DBMS doesn’t need to worry 
about it.
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This works good enough for read-only access.
It is complicated when there are multiple writers…

What if we allow multiple threads to access the 
mmap file to hide page faults stalls?
It is complicated when there are multiple writers…



→ madvise: Tell the OS howyouexpect to 
read certain pages.

→ mlock: Tell the OS that memory ranges 
cannot be pagedout.

→ msync: Tell the OS to flushmemory 
ranges out to disk.

There are solutions to this 
problem:
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→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

DBMS (almost) always wants to control things 
itself and can do a better job than the OS



Problem #1:How the DBMS represents the 
database in files on disk.

Problem #2:How the DBMS manages its memory 
andmoves data back-and-forth from disk.



File storage

Page layout

Tuple layout



Early systems in the 1980s used custom filesystems 
on raw storage.
→ Some "enterprise" DBMSs still support this.
→ Most newer DBMSs do not do this.

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ The OS doesn’t know anything about the contents of these 
files
→ Most newer DBMSs do not do this.



It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

The storage manager is responsible for 
maintaining a database’s files.
→ Some do their own scheduling for reads and 
writes to improve spatial and temporal locality of 
pages.



A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systemsdo not mix page types.
→ Some systemsrequire a pageto be self-contained.

Each page is given a unique identifier.
→ The DBMS uses an indirection layer to mappage IDs to 

physical locations.



Ahardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

There are three different notions of 
“pages ” in a DBMS:
→ HardwarePage (usually 4KB)
→ OS Page (usually 4KB)
→ Database Page (512B-16KB)
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A heap file is an unordered collection of pages 
with tuples that are stored in random order:
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Two waysto represent a heap file:
→ Linked List
→ PageDirectory
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It is easy to find pages if there is only a 
single heap file

Need meta-data to keep track of what 
pages exist in multiple files and which 
ones have free space.
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Maintain a header page at 
the beginning of the file that 
stores two pointers:
→ HEADof the free page list.
→ HEADof the datapage list.

Header

Each page keeps track of how many 
free slots they currently have.
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that tracks the location of data pages 
in the database files.

The directory also records the number
of free slots per page.

Must make sure that the directory
pages are in sync with the data pages.
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File storage

Page layout

Tuple layout



Every page contains a header of 
meta-data about the page’s 
contents.
→ PageSize
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression Information

Some systems require pages to be self-
contained (e.g., Oracle).

Data

Header



For any page storage architecture, we now need to decide 
how to organize the data inside of the page.
 → We are still assuming that we are only storing tuples.

Two approaches:
→ Tuple-oriented
→ Log-structured
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How to store tuples in a
page?
Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Num Tuples = 0Num Tuples = 3
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Tuple #4

Tuple #3



The most common layout 
scheme is called slotted pages.

The slot array maps"slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of usedslots
→ The offset of the starting location of the 

last slot used.
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An application cannot rely on these
IDs to mean anything.

The DBMS  needs a way to keep track 
of individual tuples.

Each tuple is assigned a unique record
identifier.
→ Most common: page_id+ offset/slot
→ Can also contain file location info.
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Atuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes 
into attribute types and values.



Each tuple is prefixed with a header 

that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map forNULLvalues.

We donot need to store meta-data 
about the schema.

Header Attribute Data



Attributes are typically stored in the 
order that you specify them when you 
create the table.

This is done for software engineering
reasons (i.e., simplicity).

However, it might be more efficient
to lay them out differently.

Header a b c d e

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,
c INT,
d DOUBLE,
e FLOAT

);
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DBMS can physically denormalize (e.g., 
"pre join") related tuples and store 
them together in the same page.

→ Potentially reduces the amount of I/O for
common workload patterns.

→ Can make updates more expensive.
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DBMS can physically denormalize 
(e.g., "pre join") related tuples and 
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

c c c …Header a b

Not a new idea.
→ IBM SystemR didthis in the 1970s.
→ Several NoSQLDBMSs do this without 

calling it physical denormalization.



Database is organized in pages.

Different ways to track pages.

Different ways to store pages.

Different ways to store tuples.
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