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CONCURRENCY CONTROL

• The system assumes that a txn could stall at any time whenever it 
tries to access data that is not in memory.

• Execute other txns at the same time so that if one txn stalls then 
others can keep running.
• Set locks to provide ACID guarantees for txns.

• Locks are stored in a separate data structure to avoid being swapped to disk.
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ACID guarantee

• Atomicity - each statement in a transaction (to read, write, update or 
delete data) is treated as a single unit. Either the entire statement is 
executed, or none of it is executed. 

• Consistency - ensures that transactions only make changes to tables 
in predefined, predictable ways

• Isolation - when multiple users are reading and writing from the same 
table all at once, isolation of their transactions ensures that the 
concurrent transactions don’t interfere with or affect one another. 

• Durability - ensures that changes to your data made by successfully 
executed transactions will be saved, even in the event of system 
failure.



STORAGE ACCESS LATENCIES
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L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

Let’s Talk About Storage  Recovery Methods for Non-Volatile Memory Database SystemsSIGMOD 2015
LET’S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf
http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf


CONCURRENCY CONTROL

• The protocol to allow txns to access a database in a multi-
programmed fashion while preserving the illusion that each of them 
is executing alone on a dedicated system.
• The goal is to have the effect of a group of txns on the database’s state is 

equivalent to any serial execution of all txns.

• Provides Atomicity + Isolation in ACID
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CONCURRENCY CONTROL

• For in-memory DBMSs, the cost of a txn acquiring a lock is the same 
as accessing data.

• New bottleneck is contention caused from txns trying access data at 
the same time.

• The DBMS can store locking information about each tuple together 
with its data.
• This helps with CPU cache locality.

• Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.
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COMPARE-AND-SWAP

• Atomic instruction that compares contents of a memory location M to 
a given value V
• If values are equal, installs new given value V’ in M
• Otherwise operation fails
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CONCURRENCY CONTROL SCHEMES

• Two-Phase Locking (2PL)
• Assume txns will conflict so they must acquire locks on database objects before 

they are allowed to access them.

• Timestamp Ordering (T/O)
• Assume that conflicts are rare so txns do not need to first acquire locks on 

database objects and instead check for conflicts at commit time.
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TWO-PHASE LOCKING
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TWO-PHASE LOCKING

• Deadlock Detection
• Each txn maintains a queue of the txns that hold the locks that it is waiting for.

• A separate thread checks these queues for deadlocks.

• If deadlock found, use a heuristic to decide what txn to kill in order to break 
deadlock.

• Deadlock Prevention
• Check whether another txn already holds a lock when another txn requests it.

• If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill 
the other txn.
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TIMESTAMP ORDERING

• Basic T/O
• Check for conflicts on each read/write.

• Copy tuples on each access to ensure repeatable reads.

• Optimistic Currency Control (OCC)
• Store all changes in private workspace.

• Check for conflicts at commit time and then merge.
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BASIC T/O
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OPTIMISTIC CONCURRENCY CONTROL

• Timestamp-ordering scheme where txns copy data read/write into a 
private workspace that is not visible to other active txns.

• When a txn commits, the DBMS verifies that there are no conflicts.

• First proposed in 1981 at CMU by H.T. Kung.
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On Optimistic Methods for Concurrency ControlACM Transactions on Database Systems 1981
ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

http://dl.acm.org/citation.cfm?id=319567
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OPTIMISTIC CONCURRENCY CONTROL
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OBSERVATION

• When there is low contention, optimistic protocols perform better 
because the DBMS spends less time checking for conflicts.

• At high contention, the both classes of protocols degenerate to 
essentially the same serial execution.
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CONCURRENCY CONTROL EVALUATION

• Compare in-memory concurrency control protocols at high levels of 
parallelism.
• Single test-bed system.

• Evaluate protocols using core counts beyond what is available on today's 
CPUs.

• Running in extreme environments exposes what are the main 
bottlenecks in the DBMS.
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Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand CoresVLDB 2014
STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY CONTROL WITH 
ONE THOUSAND CORES
VLDB 2014

https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf


1000-CORE CPU SIMULATOR

• DBx1000 Database System
• In-memory DBMS with pluggable lock manager.

• No network access, logging, or concurrent indexes.

• All txns execute using stored procedures.

• MIT Graphite CPU Simulator
• Single-socket, tile-based CPU.

• Shared L2 cache for groups of cores.

• Tiles communicate over 2D-mesh network.
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https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111


TARGET WORKLOAD

• Yahoo! Cloud Serving Benchmark (YCSB)
• 20 million tuples

• Each tuple is 1KB (total database is ~20GB)

• Each transactions reads/modifies 16 tuples.

• Varying skew in transaction access patterns.

• Serializable isolation level.
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CONCURRENCY CONTROL SCHEMES
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DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control



READ-ONLY WORKLOAD
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WRITE-INTENSIVE / MEDIUM-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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BOTTLENECKS

• Lock Thrashing
• DL_DETECT, WAIT_DIE

• Timestamp Allocation
• All T/O algorithms + WAIT_DIE

• Memory Allocations
• OCC + MVCC
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LOCK THRASHING

• Each txn waits longer to acquire locks, causing other txn to wait 
longer to acquire locks.

• Can measure this phenomenon by removing deadlock 
detection/prevention overhead.
• Force txns to acquire locks in primary key order.

• Deadlocks are not possible.
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TIMESTAMP ALLOCATION

• Mutex
• Worst option.

• Atomic Addition
• Requires cache invalidation on write.

• Batched Atomic Addition
• Needs a back-off mechanism to prevent fast burn.

• Hardware Clock
• Not sure if it will exist in future CPUs.

• Hardware Counter
• Not implemented in existing CPUs.
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TIMESTAMP ALLOCATION
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MEMORY ALLOCATIONS

• Copying data on every read/write access slows down the DBMS 
because of contention on the memory controller.
• In-place updates and non-copying reads are not affected as much.

• Default libc malloc is slow. Never use it.
• We will discuss this further later in the semester.
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CONCURRENCY CONTROL

• Observation: The cost of a txn acquiring a lock is the same as 
accessing data.

• In-memory DBMS may want to detect conflicts between txns at a 
different granularity.
• Fine-grained locking allows for better concurrency but requires more locks.

• Coarse-grained locking requires fewer locks but limits the amount of 
concurrency.
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LARGER-THAN-MEMORY DATABASES

• DRAM is fast, but data is not accessed with the same frequency and 
in the same manner.
• Hot Data: OLTP Operations

• Cold Data: OLAP Queries

• We will study techniques for how to bring back disk-resident data 
without slowing down the entire system.
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NEXT CLASS

• Multi-Version Concurrency Control
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