
Lecture 06
Concurrency control #2

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

CONCURRENCY CONTROL

• The system assumes that a txn could stall at any time whenever it
tries to access data that is not in memory.

• Execute other txns at the same time so that if one txn stalls then
others can keep running.
• Set locks to provide ACID guarantees for txns.

• Locks are stored in a separate data structure to avoid being swapped to disk.

2

ACID guarantee

• Atomicity - each statement in a transaction (to read, write, update or
delete data) is treated as a single unit. Either the entire statement is
executed, or none of it is executed.

• Consistency - ensures that transactions only make changes to tables
in predefined, predictable ways

• Isolation - when multiple users are reading and writing from the same
table all at once, isolation of their transactions ensures that the
concurrent transactions don’t interfere with or affect one another.

• Durability - ensures that changes to your data made by successfully
executed transactions will be saved, even in the event of system
failure.

STORAGE ACCESS LATENCIES

4

L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

Let’s Talk About Storage Recovery Methods for Non-Volatile Memory Database SystemsSIGMOD 2015
LET’S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf
http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf

CONCURRENCY CONTROL

• The protocol to allow txns to access a database in a multi-
programmed fashion while preserving the illusion that each of them
is executing alone on a dedicated system.
• The goal is to have the effect of a group of txns on the database’s state is

equivalent to any serial execution of all txns.

• Provides Atomicity + Isolation in ACID

5

CONCURRENCY CONTROL

• For in-memory DBMSs, the cost of a txn acquiring a lock is the same
as accessing data.

• New bottleneck is contention caused from txns trying access data at
the same time.

• The DBMS can store locking information about each tuple together
with its data.
• This helps with CPU cache locality.

• Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.

6

COMPARE-AND-SWAP

• Atomic instruction that compares contents of a memory location M to
a given value V
• If values are equal, installs new given value V’ in M
• Otherwise operation fails

7

M
__sync_bool_compare_and_swap(&M, 20, 30)2030

Compar
e Value

Address
New
Value

CONCURRENCY CONTROL SCHEMES

• Two-Phase Locking (2PL)
• Assume txns will conflict so they must acquire locks on database objects before

they are allowed to access them.

• Timestamp Ordering (T/O)
• Assume that conflicts are rare so txns do not need to first acquire locks on

database objects and instead check for conflicts at commit time.

9

TWO-PHASE LOCKING

10

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI

N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

TWO-PHASE LOCKING

• Deadlock Detection
• Each txn maintains a queue of the txns that hold the locks that it is waiting for.

• A separate thread checks these queues for deadlocks.

• If deadlock found, use a heuristic to decide what txn to kill in order to break
deadlock.

• Deadlock Prevention
• Check whether another txn already holds a lock when another txn requests it.

• If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill
the other txn.

11

TIMESTAMP ORDERING

• Basic T/O
• Check for conflicts on each read/write.

• Copy tuples on each access to ensure repeatable reads.

• Optimistic Currency Control (OCC)
• Store all changes in private workspace.

• Check for conflicts at commit time and then merge.

12

BASIC T/O

13

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI

N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

1000010001

1000010001

• • •

1000010005

10001

OPTIMISTIC CONCURRENCY CONTROL

• Timestamp-ordering scheme where txns copy data read/write into a
private workspace that is not visible to other active txns.

• When a txn commits, the DBMS verifies that there are no conflicts.

• First proposed in 1981 at CMU by H.T. Kung.

14

On Optimistic Methods for Concurrency ControlACM Transactions on Database Systems 1981
ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung
http://dl.acm.org/citation.cfm?id=319567
http://dl.acm.org/citation.cfm?id=319567

OPTIMISTIC CONCURRENCY CONTROL

15

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Read Phase

VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM

IT

888

999 10001

10001

OBSERVATION

• When there is low contention, optimistic protocols perform better
because the DBMS spends less time checking for conflicts.

• At high contention, the both classes of protocols degenerate to
essentially the same serial execution.

16

CONCURRENCY CONTROL EVALUATION

• Compare in-memory concurrency control protocols at high levels of
parallelism.
• Single test-bed system.

• Evaluate protocols using core counts beyond what is available on today's
CPUs.

• Running in extreme environments exposes what are the main
bottlenecks in the DBMS.

17

Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand CoresVLDB 2014
STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY CONTROL WITH
ONE THOUSAND CORES
VLDB 2014

https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf

1000-CORE CPU SIMULATOR

• DBx1000 Database System
• In-memory DBMS with pluggable lock manager.

• No network access, logging, or concurrent indexes.

• All txns execute using stored procedures.

• MIT Graphite CPU Simulator
• Single-socket, tile-based CPU.

• Shared L2 cache for groups of cores.

• Tiles communicate over 2D-mesh network.

18

https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

TARGET WORKLOAD

• Yahoo! Cloud Serving Benchmark (YCSB)
• 20 million tuples

• Each tuple is 1KB (total database is ~20GB)

• Each transactions reads/modifies 16 tuples.

• Varying skew in transaction access patterns.

• Serializable isolation level.

19

CONCURRENCY CONTROL SCHEMES

20

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

READ-ONLY WORKLOAD

21

WRITE-INTENSIVE / MEDIUM-CONTENTION

22

WRITE-INTENSIVE / HIGH-CONTENTION

23

BOTTLENECKS

• Lock Thrashing
• DL_DETECT, WAIT_DIE

• Timestamp Allocation
• All T/O algorithms + WAIT_DIE

• Memory Allocations
• OCC + MVCC

24

LOCK THRASHING

• Each txn waits longer to acquire locks, causing other txn to wait
longer to acquire locks.

• Can measure this phenomenon by removing deadlock
detection/prevention overhead.
• Force txns to acquire locks in primary key order.

• Deadlocks are not possible.

25

TIMESTAMP ALLOCATION

• Mutex
• Worst option.

• Atomic Addition
• Requires cache invalidation on write.

• Batched Atomic Addition
• Needs a back-off mechanism to prevent fast burn.

• Hardware Clock
• Not sure if it will exist in future CPUs.

• Hardware Counter
• Not implemented in existing CPUs.

27

TIMESTAMP ALLOCATION

28

MEMORY ALLOCATIONS

• Copying data on every read/write access slows down the DBMS
because of contention on the memory controller.
• In-place updates and non-copying reads are not affected as much.

• Default libc malloc is slow. Never use it.
• We will discuss this further later in the semester.

29

CONCURRENCY CONTROL

• Observation: The cost of a txn acquiring a lock is the same as
accessing data.

• In-memory DBMS may want to detect conflicts between txns at a
different granularity.
• Fine-grained locking allows for better concurrency but requires more locks.

• Coarse-grained locking requires fewer locks but limits the amount of
concurrency.

37
Acknowledgement: Prof. Andy Pavlo, CMU

LARGER-THAN-MEMORY DATABASES

• DRAM is fast, but data is not accessed with the same frequency and
in the same manner.
• Hot Data: OLTP Operations

• Cold Data: OLAP Queries

• We will study techniques for how to bring back disk-resident data
without slowing down the entire system.

38
Acknowledgement: Prof. Andy Pavlo, CMU

NEXT CLASS

• Multi-Version Concurrency Control

39

	Slide 1: Lecture 06 Concurrency control #2
	Slide 2: CONCURRENCY CONTROL
	Slide 3: ACID guarantee
	Slide 4: STORAGE ACCESS LATENCIES
	Slide 5: CONCURRENCY CONTROL
	Slide 6: CONCURRENCY CONTROL
	Slide 7: COMPARE-AND-SWAP
	Slide 9: CONCURRENCY CONTROL SCHEMES
	Slide 10: TWO-PHASE LOCKING
	Slide 11: TWO-PHASE LOCKING
	Slide 12: TIMESTAMP ORDERING
	Slide 13: BASIC T/O
	Slide 14: OPTIMISTIC CONCURRENCY CONTROL
	Slide 15: OPTIMISTIC CONCURRENCY CONTROL
	Slide 16: OBSERVATION
	Slide 17: CONCURRENCY CONTROL EVALUATION
	Slide 18: 1000-CORE CPU SIMULATOR
	Slide 19: TARGET WORKLOAD
	Slide 20: CONCURRENCY CONTROL SCHEMES
	Slide 21: READ-ONLY WORKLOAD
	Slide 22: WRITE-INTENSIVE / MEDIUM-CONTENTION
	Slide 23: WRITE-INTENSIVE / HIGH-CONTENTION
	Slide 24: BOTTLENECKS
	Slide 25: LOCK THRASHING
	Slide 27: TIMESTAMP ALLOCATION
	Slide 28: TIMESTAMP ALLOCATION
	Slide 29: MEMORY ALLOCATIONS
	Slide 37: CONCURRENCY CONTROL
	Slide 38: LARGER-THAN-MEMORY DATABASES
	Slide 39: NEXT CLASS
	Slide 40
	Slide 41

