CS 6530: Advanced Database Systems Fall 2024

Lecture 05
Concurrency control #1

Prashant Pandey
prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO
% ;

http://prashant.pandey@utah.edu

OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct” results for
concurrent operations on a shared object.

Aprotocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is

supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LOCKS VS. LATCHES

Locks
— Protects the database's logical contents from other txns.

— Held for ta duration.
— Need to be able to rollback changes.

Latches
— Protects the critical sections of the DBMS's internal data

structure from other threads.
— Held for operation duration.
— Do not need to be able to rollback changes.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LOCKS VS. LATCHES

Locks

Latches

Separate... User transactions
Protect... Database Contents
During... Entire Transactions

Modes... Shared, Exclusive, Update,
Intention

Deadlock Detection & Resolution
...by... Waits-for, Timeout, Aborts
Keptin... Lock Manager

Source: Goetz Graefe

Threads
In-Memory Data Structures

Critical Sections
Read, Write

Avoidance
Coding Discipline
Protected Data Structure

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LOCKS VS. LATCHES

_ﬂLoch

Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts | Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

https://15445.courses.cs.cmu.edu/fall2019/schedule.html
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

B+ TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

OOOOOOOOOOOOOOOOO
UNIVE :

B+ TREE MULTI-THREADED EXAM PLE

ol T A T1: Delete 44

10 35 B

6 12 23 C ||381|44 ||D

9 [{10]11112]13{20|22{23|31}{35|36 38|41 44}

E F G H I

——

o €
=
S~
—
——

w
I

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE

o A 4a T1: Delete 44
13/ 35 B
6 12 { C\?,As 44 || D

——

o €
=
S~
—
——

9 [{10]11112]13{20|22{23|31}{35|36 38|41 44}

E F G H I

w
I

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE

ol T A T1: Delete 44

10 35 B

6 12 W{ C ||38]|44

D
R R A T A TN
11011 01213 2022-2331-3536-384%)44 «
E F G H I

w
N
(@)
Vo)
o

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE
o A 4a Ty: Delete 44

/ T,: Find 41

10 35 B

6 12 H{C3844D E

VDN [AN wie

11 {1213 2022 { 23(31 13536 1 3§[41 [)44 ‘
E F G H I

w
N
(@)
Vo)
o

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE

- A T,: Delete 44
/ T,: Find 41
10
6 12
3(416|9R10(111H12(13

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE
- A T,: Delete 44

/ T,: Find 41

10 35 B

Rebalonce!

9 l110[11{12]13H20]22H 23|31} 35 36-3@_ «

E F G H

——

o €
=
S~
—
——

w
I

X

6 12 23 C |38 |41 D«
41

|

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE

- A T,: Delete 44
/ T,: Find 41
10
6 12
3(416|9R10(111H12(13

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.
Basic Idea:

— Get latch for parent.
— Get latch for child

— Release latch for parent if “safe”.

Asafe node is one that will not split or merge

when updated.
— Not full (on insertion)

— More than half-full (on deletion)

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
: OF UTA

LATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,
— Acquire Rlatch on child
— Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining Wlatches as needed. Once child
is latched, check if it is safe:

— If child is safe, release all latches on ancestors.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM

PLE

1- FIND 38

520 A «
/
10 35 B
/ \
12 23 C ||38]44||D
LA LU L AN
9 H10(11H412|13—20(22H23|31H35(36H38|41H44
E F G H

EXAMPLE #1- FIND 38

520 A

1/ - 35 B«

It is now safe to release \

the latch on A.
6 [u 737 ||C |38 |44 ||D

314 16 |9 1101141213 /20(2223|31 1135|3638

PA TN S AN

E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

10

1- FIND 38

20

A

12

R

23

\

:

38

44

13

22123

31

4&4

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

10

1- FIND 38

20

A

12

23

/

S

138

42

I\

11

13

22

23

31

35

36

38

E

G

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B

EXAMPLE #1- FIND 38
20 A
10 35 B
12 23 C ||38 |44
[\ \ /| (=
3 H 6|9 H10[11 1213 H 2022 1 23|31 H35P6
E = G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #1- FIND 38
20 A
12 23 C\a‘s 44
SN N S
3|416|9H10011 71213 — 20[22 1 23|31 H3536 { 38
E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

1

. — DELETE 38

" o

i
/

12

35

44

11

138

4&4

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

i
/

10

. — DELETE 38

A

W

HREK

We may need to coalesce B, s0 ‘ \

we aan't release the latch onA.J

12

l

\

23 C ||381|44 ||D

[\

110

11

112

13

20

22R123|31135|3638 4&4

E

F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/ W

10

35

12

L@

w

. — DELETE 38

>ﬁzo A

42

We know that D will not
merge with C, soit is safe to

Release latches on A and B

4\

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

20 A

2 — DELETE 38

44

10 35

j XJ We know lhatD will not
merge with C, soit is safe to

3141619 1I0HIN | Release latches on A and B

o

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 H23 C (/38|44 ||D

20 A

——

o €
=
S~
—

w
I

9 H10[11H12]13}H20]22H23 31-3%

E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

>ﬁzo A

/ W

10

35

"We lonow Tatif D needh tox
split, B has room soit is safe

release latch on A.

\

Lo\ /\

N

3— INSERT 45

:

38

44

D

0(11H12|13 /20222

3|31

36 138

4&4

E F

G

H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #3 - INSERT 45
20 A
/ W
10 35 B
12 23 @3‘8 44 || D «
I N/ o\ \ﬁ
9 H10(11{12|1320(22H23|31H35|36H38|41H44
E F G H

EXAMPLE #3 - INSERT 45

20 A
10 35 B
6 12 23 C (/38|44 ||D

J A LN /S

11011 71213 /2022 12331 35PB6 38
{ Node Iwill not split, sowe

w
N
(@)
Vo)

aan release B+D.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #3 - INSERT 45

20 A
10 35 B
6 12 23 C (/38|44 ||D

S~
o €

w
I

112 2012212331 13536 38¥¢
{ Node Iwill not split, sowe

13

aan release B+D.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

o
_—

10

— INSERT 25

A

12

W

HREK
\

231131 ||C ||38 |44 ||D

11

22R123|31135|3638 4&4

E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

10

A

— INSERT 25

20

A

12

W

HREK
\

231131 ||C ||38 |44 ||D

11

13

22R123|31135|3638 4&4

E F G H

EXAMPLE #4 - INSERT 25

/

10

20 A

\"\}
7>&3 1(|C 44 || D

35 B

3
314 h6 |9 1011111213 /20(22H23|31H35(3638 4&4

E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #4 - INSERT 25

20 A
10 35 B
6 12 311311|C 44 || D

PA TN S TAN

314 16 |9 1101141213 /20(2223|31 1135|3638

E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

10

A

— INSERT 25

20

A

12

w

o €

11+

13

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

6 12 31/131(|C 1||38](44||D
3|4H61911001 11213 20D K Nl H38|41H 44
Weneailospllthoueneailo G H

hold the latch on its parent node.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

A

— INSERT 25

20

A

/

10

12

)\

w

4 u

61911011 1

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

(

_

s

Delete 38

A

\

J

OOOOOOOOOOOOOOOOO

(

-

W e

Insert 45

A

~

J

(

O

-

Insert 25

~

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

BETTER LATCHINGALGORIT

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acta Informatica 9, 1 - 21 (1977)

" by Springer-Verlag 1977

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that each operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures are being used 1o support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve 2 deadlock may be high,

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used ad g ly in a mult i

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees, This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedckind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been ined for possible use in a multi
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation 1, 6], and [11].

An accessing schema which achieves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: Institut fur Informatik der Technischen Universitit Miinchen, Arcisstr, 21,
D-8000 Miinchen 2, Germany (Fed, Rep)

https://link.springer.com/article/10.1007/BF00263762
https://link.springer.com/article/10.1007/BF00263762

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set Wlatch on
leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf

node will be modified; if not, Rlatches set on the
first pass to leaf are wasteful.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

1

. — DELETE 38

/

12

" o

23

\

38

44

11

31

36

38

4&4

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #2 - DELETE 38
20 A
/ R
10 35 B «
12 23 C ||38]|(44 ||D
9 H10|11H12(1320|22H23|31H35(3638 4}7:4
E = G H I

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

/

10

. — DELETE 38

20

A

12

23

/

()

138

42

I\

11

13

22

23

31

35

36

38

E

G

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #2 - DELETE 38
20 A
13/ 35 B
<&
12 23 38 || 44 || D

w

11+

13

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #2 - DELETE 38
20 A
10 35
12 23 C ||381|44||D
3 =619 11011 11213 2022 2331 3536 k
[Hwillnotneedto coalesce, so
weresafe!

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #2 - DELETE 38
20 A
10 35 B
12 23 C ||381|44||D
3 =619 11011 11213 20122 12381 135336 §
[Hwillnotneedto coalesce, so
weresafe!

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

4 — INSERT 25

A

20
10
12
3j 'If I i I | I ||
We needtospiit; so we
have torestart and re-

 exeaute like before,

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down” manner.
— Athread can only acquire a latch from anode that is
below its current node.

— [f the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
Ty Find Keys < 4

-

OOOOOOOOOOOOOOOOO

LEAF NODE SCAN EXAMPLE #1
Ty Find Keys < 4

A

] 4a

C

@

OOOOOOOOOOOOOOOOO

LEAF NODE SCAN EXAMPLE #1
Ty Find Keys < 4

3 [Do not release latch on C
until thread has latch on B

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
Ty Find Keys < 4

3 [Do not release latch on C
until thread has latch on B

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1

Ty Find Keys < 4
/ 3 A
i
1 1 2 3 g
b .

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

Ty Find Keys < 4
7 3 A 4
N\

T,: Find Keys > 1
{1_2 L3_4J

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

Ty Find Keys < 4
T,: Find Keys > 1

-

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

Ty Find Keys < 4
T,: Find Keys > 1

[+]4m

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

Ty Find Keys < 4
T,: Find Keys > 1

A

C

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: Find Keys > 1

{Boﬂl T,and T, now hold (Both T, and Tynowhold

this read latch.
o)
T

I

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: Find Keys > 1

{Boﬂl T,and T, now hold (Both T, and Tynowhold

this read latch.
e

C

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2
T,: Find Keys < 4
WA JTZ: Find Keys> 1

this read latch.
) (R)
1_23_4J«

C

Only T, holds
this read latch.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

3

%

AN

-

B

3

L

C

T4: Delete 4
T,: Find Keys > 1

LEAF NODE SCAN EXAMPLE #3

T4: Delete 4
T,: Find Keys > 1

-

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T4: Delete 4
T,: Find Keys > 1

01

C

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T4: Delete 4
” T,: Find Keys > 1
T, cannot acquiire J

/ the read latch on C
Ha ol

B» C

3 ¢

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T4: Delete 4
T,: Find Keys > 1
Tz amnot aaquire J

/ the read latch on C
mEgs ol
[hdoasnotknow
what T, is doing

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T4: Delete 4
— T,: Find Keys > 1
3 (T, cannot acquire
/ lhereadlatdmnCJ
1 1 o I3 »

T, does not know
what T; is doing...

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node 51bhng latch acquisition protocol
must support a "no-wait’ mode.

The DBMS's data structures must cope with failed
latch acquisitions.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

DELAYED PARENT UPDATES

Every time a leaf node overflows, we must update

at least three nodes.
— The leaf node being split.

— The new leaf node being created.
— The parentnode.

B+-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #4 — INSERT 25
Ty: Insert 25 n.ﬂ. A
13/ - 35 B «
6 12 { C\?,As 44 || D
3j4 -ésl 9 -1£ 11 >2 13 2‘0/22-2&;3 31-3{ 36 H38 4}7:4
E F G H |

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE

T4: Insert 25

/

10

A

— INSERT 25

20

6 12 1] Cﬁs 44 || D
34 6 |9 {10|11{12|13 20|22 H23|31H35|36 38 454
E F G H

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAM PLE
Ty: Insert 25

/

10

A

— INSERT 25

20

A

6 12

13

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

/

A

— INSERT 25

20

A

EXAM PLE
T4 Insert 25
10
6 12

S~
o €

w
I

13

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #4

— INSERT 25

20

A

T4: Insert 25

10

6 12

A

w
I

011 218

23 C ||381|44 ||D

Add lhe new leaf nodeasa
sibling to F, but do not update C

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #4 — INSERT 25
T,: Insert 25 T TIA
10 35
6 12 23 C ||38(/44| D
3| 4n 11011 4218 20 25 *6 38 4&4
Add lhe newleaf nodeasa E L H
sibling to F, but do not update C » \

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

J

EXAMPLE #4 — INSERT 25
T4 Insert 25 20 A W C: Add 31
10 35 B

/ g Update C the next time that a

_ thread takes a write latch onit.

6 12 23((&)JC [38[24]D
31416 |9 10111213 /202212325 38 4&4
E

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

5|36
1

3
H
3]

EXAMPLE #4 — INSERT 25
Ty: Insert 25 a0~ 4

T, Find 31 /

10 35 B

6 12 Hza w| C ||38]/44|D

AR I R

314 H6 |9 H10(11H12(13/20(22123(25||35(|36138|41 44

OOOOOOOOOOOOOOOOO L 31
UNIVERSITY OF UTAH

W C: Add 31

EXAMPLE #4 - INSERT 25
T,: Insert 25 - A W C: Add 31

T,: Find 31 /

10 35 B

6 12 Hza w| C ||38]/44|D

[V N /]

35|3638|41 44

31

EXAMPLE #4 — INSERT 25

le Insert 25 20 A « * C: Add 31
T, Find 31 /
T3: Insert 33 10 35 B

6 12 Hza w!| C [|38(l44]|D

AR I R

314 H6 |9 H10(11H12(13/20(22123(25||35(|36138|41 44

OOOOOOOOOOOOOOOOO L 31
UNIVERSITY OF UTAH

EXAMPLE #4 - INSERT 25
Ty: Insert 25 nﬁ A « W C: Add 31
T,: Find 31
T, Insert 33 13/ TR

6 12 Hza w| C ||38]/44|D

AR I R

314 H6 |9 H10(11H12(13/20(22123(25||35(|36138|41 44

OOOOOOOOOOOOOOOOO L 31
UNIVERSITY OF UTAH

EXAMPLE #4 — INSERT 25

T,: Insert 25 - A W C: Add 31
TpFinddl

R
T3: Insert 33 10 35 B «

6 12 Hza w| C ||38]/44|D

VA S N 0 W A WY
E FL:l—G—_IH

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE #4 — INSERT 25

T,: Insert 25 - A W C: Add 31
T,: Find 31 /
Ty Insert 33 [y I

6 12 3| C«S 44 ||D

VARV AV A Y

314 H6 |9 H10(11H12(13/20(22123(25||35(|36138|41 44

OOOOOOOOOOOOOOOOO L 31
UNIVERSITY OF UTAH

EXAMPLE #4 — INSERT 25

T,: Insert 25 - A W C: Add 31
TiEnd3l
Ty Insert 33 [t T

6 12 31 44 || D

2212 25 35(3638 (4144

EXAMPLE #4 - INSERT 25

T,: Insert 25 - A W C: Add 31
TpFndsl
Ty Insert 33 [t T

@ﬁ/ \

31/1311(|C |(38]|44 ||D

6 12

- 9 110(11712{13— 20 22-{2325? 3513 84&4
H

—
o €
/
S
/
—
(\

w
I

https://15445.courses.cs.cmu.edu/

Next lecture

* Locking and transactions
* MVCC

OOOOOOOOOOOOOOOOO

	Slide 1: Lecture 05 Concurrency control #1
	Slide 2: O BSERVATI O N
	Slide 3: CO N CURREN CY CO N TRO L
	Slide 4: LO CKS VS. LATCH ES
	Slide 5: LO CKS VS. LATCH ES
	Slide 6: LO CKS VS. LATCH ES
	Slide 7: B+ TREE CO N CURREN CY CO N TRO L
	Slide 8: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 9: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 10: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 11: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 12: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 13: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 14: B+ TREE M ULTI- TH READED EXAM PLE
	Slide 15: LATCH CRABBI N G/ CO UPLI N G
	Slide 16: LATCH CRABBI N G/ CO UPLI N G
	Slide 17: EXAM PLE # 1
	Slide 18: EXAM PLE # 1
	Slide 19: EXAM PLE # 1
	Slide 20: EXAM PLE # 1
	Slide 21: EXAM PLE # 1
	Slide 22: EXAM PLE # 1
	Slide 23: EXAM PLE # 2
	Slide 24: EXAM PLE # 2
	Slide 25: EXAM PLE # 2
	Slide 26: EXAM PLE # 2
	Slide 27: EXAM PLE # 2
	Slide 29: EXAM PLE # 3
	Slide 30: EXAM PLE # 3
	Slide 31: EXAM PLE # 3
	Slide 32: EXAM PLE # 3
	Slide 33: EXAM PLE # 4
	Slide 34
	Slide 35: EXAM PLE # 4
	Slide 36: EXAM PLE # 4
	Slide 37: EXAM PLE # 4
	Slide 38: EXAM PLE # 4
	Slide 39: EXAM PLE # 4
	Slide 40: O BSERVATI O N
	Slide 41: BET TER LATCH I N G ALGO RI TH M
	Slide 42: BET TER LATCH I N G ALGO RI TH M
	Slide 43: EXAM PLE # 2
	Slide 44: EXAM PLE # 2
	Slide 45: EXAM PLE # 2
	Slide 46: EXAM PLE # 2
	Slide 47: EXAM PLE # 2
	Slide 48: EXAM PLE # 2
	Slide 49: EXAM PLE # 4
	Slide 50: O BSERVATI O N
	Slide 51: LEAF N O DE SCAN EXAM PLE # 1
	Slide 52: LEAF N O DE SCAN EXAM PLE # 1
	Slide 53: LEAF N O DE SCAN EXAM PLE # 1
	Slide 54: LEAF N O DE SCAN EXAM PLE # 1
	Slide 55: LEAF N O DE SCAN EXAM PLE # 1
	Slide 56: LEAF N O DE SCAN EXAM PLE # 2
	Slide 57: LEAF N O DE SCAN EXAM PLE # 2
	Slide 58: LEAF N O DE SCAN EXAM PLE # 2
	Slide 59: LEAF N O DE SCAN EXAM PLE # 2
	Slide 60: LEAF N O DE SCAN EXAM PLE # 2
	Slide 61: LEAF N O DE SCAN EXAM PLE # 2
	Slide 62: LEAF N O DE SCAN EXAM PLE # 2
	Slide 63: LEAF N O DE SCAN EXAM PLE # 3
	Slide 64: LEAF N O DE SCAN EXAM PLE # 3
	Slide 65: LEAF N O DE SCAN EXAM PLE # 3
	Slide 66: LEAF N O DE SCAN EXAM PLE # 3
	Slide 67: LEAF N O DE SCAN EXAM PLE # 3
	Slide 68: LEAF N O DE SCAN EXAM PLE # 3
	Slide 69: LEAF N O DE SCAN S
	Slide 70: DELAYED PAREN T UPDATES
	Slide 71: EXAM PLE # 4
	Slide 72: EXAM PLE # 4
	Slide 73: EXAM PLE # 4
	Slide 74: EXAM PLE # 4
	Slide 75: EXAM PLE # 4
	Slide 76: EXAM PLE # 4
	Slide 77: EXAM PLE # 4
	Slide 78: EXAM PLE # 4
	Slide 79: EXAM PLE # 4
	Slide 80: EXAM PLE # 4
	Slide 81: EXAM PLE # 4
	Slide 82: EXAM PLE # 4
	Slide 83: EXAM PLE # 4
	Slide 84: EXAM PLE # 4
	Slide 85: EXAM PLE # 4
	Slide 86: Next lecture

