
Lecture 04
In-memory indexing

(Tries)

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU/ Manos Athanassoulis, BU

http://prashant.pandey@utah.edu

Trie index

• Use a digital representation of
keys to examine prefixes one-by-
one instead of comparing entire
key.
• Also known as Digital Search Tree,

Prefix Tree.

2

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

Trie index properties

• Shape only depends on key space and lengths.
• Does not depend on existing keys or insertion order.
• Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the
key.
• The path to a leaf node represents the key of the leaf
• Keys are stored implicitly and can be reconstructed from paths.

3

Trie index properties

• Shape only depends on key space and lengths.
• Does not depend on existing keys or insertion order.
• Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the
key.
• The path to a leaf node represents the key of the leaf
• Keys are stored implicitly and can be reconstructed from paths.

4

History
independen

t

Trie key span

• The span of a trie level is the number of bits that each partial key /
digit represents.
• If the digit exists in the corpus, then store a pointer to the next level in the

trie branch. Otherwise, store null.

• This determines the fan-out of each node and the physical height
of the tree.
• n-way Trie = Fan-Out of n

5

Trie key span

• Keys: K10,K25,K31

6

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

←Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

Radix tree

• Omit all nodes with only a single child.
• Also known as Patricia Tree.

• Can produce false positives, so the
DBMS always checks the original tuple
to see whether a key matches.

7

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤

Ø ¤

¤ ¤

Repeat
10x

Tuple
Pointer

Node
Pointer

Trie variants

• Judy Arrays (HP)
• ART Index (HyPer)
• Masstree (Silo)

8

Judy arrays

• Variant of a 256-way radix tree. First known radix tree that
supports adaptive node representation.

• Three array types
• Judy1: Bit array that maps integer keys to true/false.
• JudyL: Map integer keys to integer values.
• JudySL: Map variable-length keys to integer values.

• Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.
• Not an issue according to authors.
• http://judy.sourceforge.net/

9

https://patents.google.com/patent/US6735595B2/en
http://comments.gmane.org/gmane.comp.lib.judy.devel/244
http://judy.sourceforge.net/

Judy arrays

• Do not store meta-data about node in its header.
• This could lead to additional cache misses.

• Pack meta-data about a node in 128-bit "Judy Pointers" stored in
its parent node.
• Node Type
• Population Count
• Child Key Prefix / Value (if only one child below)
• 64-bit Child Pointer

10

A Comparison of Adaptive Radix Trees And Hash TablesICDE 2015
A COMPARISON OF ADAPTIVE RADIX TREES AND
HASH TABLES
ICDE 2015

https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf

Judy arrays: node types

• Every node can store up to 256 digits.
• Not all nodes will be 100% full though.

• Adapt node's organization based on its keys.
• Linear Node: Sparse Populations
• Bitmap Node: Typical Populations
• Uncompressed Node: Dense Population

11

A Comparison of Adaptive Radix Trees And Hash TablesICDE 2015
A COMPARISON OF ADAPTIVE RADIX TREES AND
HASH TABLES
ICDE 2015

https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf

Judy arrays: Linear nodes

• Store sorted list of partial prefixes
up to two cache lines.
• Original spec was one cache line

• Store separate array of pointers to
children ordered according to
prefix sorted.

12

Linear Node

K0 K2 K8 ¤ ¤ ¤

0 1 5
... ...

0 1 5

Sorted Digits Child Pointers

6 × 1-byte =
6 bytes

6 × 16-bytes =
96 bytes

102 bytes
128 bytes
(padded)

Judy arrays: bitmap nodes

• 256-bit map to mark whether a
prefix is present in node.

• Bitmap is divided into eight
segments, each with a pointer to a
sub-array with pointers to child
nodes.

13

Bitmap Node

01000110 ¤

0-7 8-15 248-255

00000000 ¤ ...
00100100 ¤

...¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤
Child Pointers

Prefix Bitmaps Sub-Array Pointers

0→00000000
1→00000001
2→00000010
3→00000011

4→00000100
5→00000101
6→00000110
7→00000111

O
ff

se
t

Digit

Adaptive radix tree (ART)

• Developed for TUM HyPer DBMS in 2013.

• 256-way radix tree that supports different node types based on its
population.
• Stores meta-data about each node in its header.

• Concurrency support was added in 2015.

14

The Adaptive Radix Tree: ARTful Indexing for Main-Memory DatabasesICDE 2013
THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR MAIN-
MEMORY DATABASES
ICDE 2013

https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf

ART vs. JUDY

• Difference #1: Node Types
• Judy has three node types with different organizations.
• ART has four nodes types that (mostly) vary in the maximum number of

children.

• Difference #2: Purpose
• Judy is a general-purpose associative array. It "owns" the keys and values.
• ART is a table index and does not need to cover the full keys. Values are

pointers to tuples.

15

ART: inner node types (1)

• Store only the 8-bit digits that exist
at a given node in a sorted array.

• The offset in sorted digit array
corresponds to offset in value
array.

16

Node16

K0 K2 K8 ¤ ¤ ¤

0 1 15
... ...

0 1 15

Node4

K0 K2 K3 K8 ¤ ¤ ¤ ¤

Sorted Digits Child Pointers

0 1 2 3 0 1 2 3

ART: inner node types (2)

• Instead of storing 1-byte digits,
maintain an array of 1-byte
offsets to a child pointer array
that is indexed on the digit bits.

17

Node48

K0
... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

256 × 1-byte
= 256 bytes

48 × 8-bytes =
384 bytes

640 bytes

Pointer Array Offsets

ART: inner node types (3)

• Store an array of 256 pointers to
child nodes. This covers all
possible values in 8-bit digits.

• Same as the Judy Array's
Uncompressed Node.

18

Node256

K0
...

K1 K2 K255

¤ Ø ¤ ¤

256 × 8-byte
= 2048 bytes

K3 K4 K5

¤ Ø ¤

K6

Ø

ART: binary comparable keys

• Not all attribute types can be decomposed into binary
comparable digits for a radix tree.
• Unsigned Integers: Byte order must be flipped for little endian machines.
• Signed Integers: Flip two’s-complement so that negative numbers are

smaller than positive.
• Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then

store as unsigned integer.
• Compound: Transform each attribute separately.

19

ART: binary comparable keys

20

Hex Key: 0A 0B 0C 0D

Int Key: 168496141
0A

0B

0C

0D

Big
Endian

0D

0C

0B

0A

Little
Endian

Hex: 0A 0B 1D
Find: 658205

0A

0F0B

0B 1D0C ¤

¤ ¤0D0B

¤ ¤

8-bit Span Radix Tree

MASSTREE

• Instead of using different layouts
for each trie node based on its
size, use an entire B+Tree.
• Each B+tree represents 8-byte span.
• Optimized for long keys.
• Uses a latching protocol that is

similar to versioned latches.

• Part of the Harvard Silo project.

21

Cache Craftiness for Fast Multicore Key-Value StorageEurosys 2012
CACHE CRAFTINESS FOR FAST MULTICORE KEY-
VALUE STORAGE
EUROSYS 2012

Masstree

Bytes [0-7]

Bytes [8-15]Bytes [8-15]

¤ ¤

¤ ¤¤ ¤ ¤ ¤¤ ¤

https://dbdb.io/db/silo
https://dl.acm.org/citation.cfm?id=2168855
https://dl.acm.org/citation.cfm?id=2168855

IN-MEMORY INDEXES

22

9.94

15.5
13.3

5.43
2.51 2.78 1.51 2.43

8.09

29
25.1

18.917.9

30.5

22

3.68

44.9

51.5

42.9

3.43

0

10

20

30

40

50

60

Insert-Only Read-Only Read/Update Scan/Insert

O
p

er
a

ti
o

n
s/

se
c

(M
)

Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Random Integer Keys (64-bit)

Source: Ziqi Wang

https://github.com/wangziqi2016/index-microbench

IN-MEMORY INDEXES

23

2.34

1.79 1.91
2.07 2.18

2.49

1.59

1.15
1.3

3.37

2.86

4.22

0.42

1.44

0.722

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Mono Int Rand Int Emails

M
em

o
ry

 (
G

B
)

Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Keys

Source: Ziqi Wang

https://github.com/wangziqi2016/index-microbench

PARTING THOUGHTS

• B+ trees are the go to in-memory indexing data structures.

• Radix trees have interesting properties, but a well-written B+tree is
still a solid design choice.

• Skip lists are amazing if you don’t want to implement self
balancing binary trees

24

Next class

• Concurrency control

25

Make sure to read the related papers from the
reading list

	Slide 1: Lecture 04 In-memory indexing (Tries)
	Slide 2: Trie index
	Slide 3: Trie index properties
	Slide 4: Trie index properties
	Slide 5: Trie key span
	Slide 6: Trie key span
	Slide 7: Radix tree
	Slide 8: Trie variants
	Slide 9: Judy arrays
	Slide 10: Judy arrays
	Slide 11: Judy arrays: node types
	Slide 12: Judy arrays: Linear nodes
	Slide 13: Judy arrays: bitmap nodes
	Slide 14: Adaptive radix tree (ART)
	Slide 15: ART vs. JUDY
	Slide 16: ART: inner node types (1)
	Slide 17: ART: inner node types (2)
	Slide 18: ART: inner node types (3)
	Slide 19: ART: binary comparable keys
	Slide 20: ART: binary comparable keys
	Slide 21: MASSTREE
	Slide 22: IN-MEMORY INDEXES
	Slide 23: IN-MEMORY INDEXES
	Slide 24: PARTING THOUGHTS
	Slide 25: Next class

