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Trie index

• Use a digital representation of 
keys to examine prefixes one-by-
one instead of comparing entire 
key.
• Also known as Digital Search Tree, 

Prefix Tree.
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Trie index properties

• Shape only depends on key space and lengths.
• Does not depend on existing keys or insertion order.
• Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the 
key.
• The path to a leaf node represents the key of the leaf
• Keys are stored implicitly and can be reconstructed from paths.
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Trie key span

• The span of a trie level is the number of bits that each partial key / 
digit represents.
• If the digit exists in the corpus, then store a pointer to the next level in the 

trie branch. Otherwise, store null.

• This determines the fan-out of each node and the physical height 
of the tree.
• n-way Trie = Fan-Out of n
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Trie key span

• Keys:  K10,K25,K31
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K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111
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Radix tree

• Omit all nodes with only a single child.
• Also known as Patricia Tree.

• Can produce false positives, so the 
DBMS always checks the original tuple 
to see whether a key matches.
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Trie variants

• Judy Arrays (HP)
• ART Index (HyPer)
• Masstree (Silo)
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Judy arrays

• Variant of a 256-way radix tree. First known radix tree that 
supports adaptive node representation.

• Three array types
• Judy1: Bit array that maps integer keys to true/false.
• JudyL: Map integer keys to integer values.
• JudySL: Map variable-length keys to integer values.

• Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.
• Not an issue according to authors.
• http://judy.sourceforge.net/

9

https://patents.google.com/patent/US6735595B2/en
http://comments.gmane.org/gmane.comp.lib.judy.devel/244
http://judy.sourceforge.net/


Judy arrays 

• Do not store meta-data about node in its header.
• This could lead to additional cache misses.

• Pack meta-data about a node in 128-bit "Judy Pointers" stored in 
its parent node.
• Node Type
• Population Count
• Child Key Prefix / Value (if only one child below)
• 64-bit Child Pointer

10

A Comparison of Adaptive Radix Trees And Hash TablesICDE 2015
A COMPARISON OF ADAPTIVE RADIX TREES AND 
HASH TABLES
ICDE 2015

https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
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Judy arrays: node types

• Every node can store up to 256 digits.
• Not all nodes will be 100% full though.

• Adapt node's organization based on its keys.
• Linear Node: Sparse Populations
• Bitmap Node: Typical Populations
• Uncompressed Node: Dense Population
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https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
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Judy arrays: Linear nodes

• Store sorted list of partial prefixes 
up to two cache lines.
• Original spec was one cache line

• Store separate array of pointers to 
children ordered according to 
prefix sorted.
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Linear Node

K0 K2 K8 ¤ ¤ ¤

0 1 5
... ...

0 1 5

Sorted Digits Child Pointers

6 × 1-byte = 
6 bytes

6 × 16-bytes = 
96 bytes

102 bytes
128 bytes 
(padded)



Judy arrays: bitmap nodes

• 256-bit map to mark whether a 
prefix is present in node.

• Bitmap is divided into eight 
segments, each with a pointer to a 
sub-array with pointers to child 
nodes.
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Bitmap Node

01000110 ¤

0-7 8-15 248-255

00000000 ¤ ...
00100100 ¤

...¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤
Child Pointers

Prefix Bitmaps Sub-Array Pointers

0→00000000
1→00000001
2→00000010
3→00000011
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Adaptive radix tree (ART)

• Developed for TUM HyPer DBMS in 2013.

• 256-way radix tree that supports different node types based on its 
population.
• Stores meta-data about each node in its header.

• Concurrency support was added in 2015.
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The Adaptive Radix Tree: ARTful Indexing for Main-Memory DatabasesICDE 2013
THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR MAIN-
MEMORY DATABASES
ICDE 2013

https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf


ART vs. JUDY

• Difference #1: Node Types
• Judy has three node types with different organizations.
• ART has four nodes types that (mostly) vary in the maximum number of 

children.

• Difference #2: Purpose
• Judy is a general-purpose associative array. It "owns" the keys and values.
• ART is a table index and does not need to cover the full keys. Values are 

pointers to tuples.
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ART: inner node types (1)

• Store only the 8-bit digits that exist 
at a given node in a sorted array.

• The offset in sorted digit array 
corresponds to offset in value 
array.
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Node16

K0 K2 K8 ¤ ¤ ¤

0 1 15
... ...

0 1 15

Node4

K0 K2 K3 K8 ¤ ¤ ¤ ¤

Sorted Digits Child Pointers

0 1 2 3 0 1 2 3



ART: inner node types (2)

• Instead of storing 1-byte digits, 
maintain an array of 1-byte 
offsets to a child pointer array 
that is indexed on the digit bits.
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Node48

K0
... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

256 × 1-byte 
= 256 bytes

48 × 8-bytes = 
384 bytes

640 bytes

Pointer Array Offsets



ART: inner node types (3)

• Store an array of 256 pointers to 
child nodes. This covers all 
possible values in 8-bit digits.

• Same as the Judy Array's 
Uncompressed Node.
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Node256
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...
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¤ Ø ¤ ¤

256 × 8-byte 
= 2048 bytes
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ART: binary comparable keys

• Not all attribute types can be decomposed into binary 
comparable digits for a radix tree.
• Unsigned Integers: Byte order must be flipped for little endian machines.
• Signed Integers: Flip two’s-complement so that negative numbers are 

smaller than positive.
• Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then 

store as unsigned integer.
• Compound: Transform each attribute separately.
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ART: binary comparable keys
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Hex Key:  0A 0B 0C 0D

Int Key:  168496141
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Hex:  0A 0B 1D
Find:  658205
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MASSTREE

• Instead of using different layouts 
for each trie node based on its 
size, use an entire B+Tree.
• Each B+tree represents 8-byte span.
• Optimized for long keys.
• Uses a latching protocol that is 

similar to versioned latches.

• Part of the Harvard Silo project.
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Cache Craftiness for Fast Multicore Key-Value StorageEurosys 2012
CACHE CRAFTINESS FOR FAST MULTICORE KEY-
VALUE STORAGE
EUROSYS 2012

Masstree

Bytes [0-7]
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https://dbdb.io/db/silo
https://dl.acm.org/citation.cfm?id=2168855
https://dl.acm.org/citation.cfm?id=2168855


IN-MEMORY INDEXES
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Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Random Integer Keys (64-bit)

Source: Ziqi Wang

https://github.com/wangziqi2016/index-microbench


IN-MEMORY INDEXES
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Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Keys

Source: Ziqi Wang

https://github.com/wangziqi2016/index-microbench


PARTING THOUGHTS

• B+ trees are the go to in-memory indexing data structures.

• Radix trees have interesting properties, but a well-written B+tree is 
still a solid design choice.

• Skip lists are amazing if you don’t want to implement self 
balancing binary trees
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Next class

• Concurrency control
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Make sure to read the related papers from the 
reading list


	Slide 1: Lecture 04 In-memory indexing  (Tries)
	Slide 2: Trie index
	Slide 3: Trie index properties
	Slide 4: Trie index properties
	Slide 5: Trie key span
	Slide 6: Trie key span
	Slide 7: Radix tree
	Slide 8: Trie variants
	Slide 9: Judy arrays
	Slide 10: Judy arrays 
	Slide 11: Judy arrays: node types
	Slide 12: Judy arrays: Linear nodes
	Slide 13: Judy arrays: bitmap nodes
	Slide 14: Adaptive radix tree (ART)
	Slide 15: ART vs. JUDY
	Slide 16: ART: inner node types (1)
	Slide 17: ART: inner node types (2)
	Slide 18: ART: inner node types (3)
	Slide 19: ART: binary comparable keys
	Slide 20: ART: binary comparable keys
	Slide 21: MASSTREE
	Slide 22: IN-MEMORY INDEXES
	Slide 23: IN-MEMORY INDEXES
	Slide 24: PARTING THOUGHTS
	Slide 25: Next class

