
Lecture 03
In-memory indexing 

(Trees, Skip Lists)

Prashant Pandey

prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2024

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU/ Manos Athanassoulis, BU

http://prashant.pandey@utah.edu


• Paper report #1 due today deadlines are posted

Some reminders…



What is a Skip List

• A skip list for a set S of distinct (key, element) items is a series of lists 
S0, S1 , … , Sh such that
• Each list Si contains the special keys + and − 

• List S0 contains the keys of S in non-decreasing order 

• Each list is a subsequence of the previous one, i.e.,
   S0  S1  …  Sh

• List Sh contains only the two special keys

• Skip lists are one way to implement the dictionary

56 64 78 +31 34 44− 12 23 26

+−

+31−

64 +31 34− 23

S0

S1

S2

S3

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Implementation

• We can implement a skip list 
with  quad-nodes

• A quad-node stores:
• item

• link to the node before

• link to the node after

• link to the node below

• Also, we define special keys 
PLUS_INF and MINUS_INF, and 
we modify the key comparator 
to handle them  

x

quad-node

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Search
• We search for a key x in a a skip list as follows:

• We start at the first position of the top list 

• At the current position p, we compare x with y  key(after(p))

  x = y: we return element(after(p))

  x  y: we “scan forward” 

  x  y: we “drop down”

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Example: search for 78

+−

S0

S1

S2

S3

+31−

64 +31 34− 23

56 64 78 +31 34 44− 12 23 26

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



• To insert an item (x, o) into a skip list, we use a randomized algorithm:
• We repeatedly toss a coin until we get tails, and we denote with i the 

number of times the coin came up heads

• If i  h, we add to the skip list new lists Sh+1, … , Si +1, each containing 
only the two special keys

• We search for x in the skip list and find the positions p0, p1 , …, pi of the 
items with largest key less than x in each list S0, S1, … , Si

• For j  0, …, i, we insert item (x, o) into list Sj after position pj

• Example: insert key 15, with i = 2

Insertion

+− 10 36

+−

23

23 +−

S0

S1

S2

+−

S0

S1

S2

S3

+− 10 362315

+− 15

+− 2315

p0

p1

p2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Deletion

• To remove an item with key x from a skip list, we proceed as follows:
• We search for x in the skip list and find the positions p0, p1 , …, pi of the 

items with key x, where position pj is in list Sj

• We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

• We remove all but one list containing only the two special keys

• Example: remove key 34

− +4512

− +

23

23− +

S0

S1

S2

− +

S0

S1

S2

S3

− +4512 23 34

− +34

− +23 34

p0

p1

p2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Randomized Algorithms
• A randomized algorithm controls 

its execution through random 
selection (e.g., coin tosses)

• It contains statements like:

 b  randomBit()

 if b = 0

  do A …

 else { b = 1}

  do  B … 

• Its running time depends on the 
outcomes of the coin tosses

• Through probabilistic analysis we can 
derive the expected running time of 
a randomized algorithm

• We make the following assumptions 
in the analysis:
• the coins are unbiased 

• the coin tosses are independent

• The worst-case running time of a 
randomized algorithm is often large 
but has very low probability (e.g., it 
occurs when all the coin tosses give 
“heads”)

• We use a randomized algorithm to 
insert items into a skip list to insert 
in expected O(log n)-time 

• When  randomization is used in data 
structures they are referred to as 
probabilistic data structures

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Space Usage

• The space used by a skip list 
depends on the random bits used 
by each invocation of the insertion 
algorithm

• We use the following two basic 
probabilistic facts:

Fact 1: The probability of getting i 
consecutive heads when flipping a 
coin is 12i

Fact 2: If each of n items is present in 
a set with probability p, the 
expected size of the set is np

• Consider a skip list with n items
• By Fact 1, we insert an item in 

list Si with probability 12i

• By Fact 2, the expected size of 
list Si is n2i 

• The expected number of nodes 
used by the skip list is

nn
n h

i
i

h

i
i

2
2

1

2 00

= 
==

Thus, the expected space usage 
of a skip list with n items is O(n)

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Height

• The running time of the search 
and insertion algorithms is 
affected by the height h of the 
skip list

• We show that with high 
probability, a skip list with n 
items has height O(log n)

• We use the following additional 
probabilistic fact:

Fact 3: If each of n events has 
probability p, the probability 
that at least one event occurs is 
at most np

• Consider a skip list with n items
• By Fact 1, we insert an item in list 

Si with probability 12i

• By Fact 3, the probability that list 
Si has at least one item is at most 
n2i

• By picking i = 3log n, we have that 
the probability that S3log n has at 
least one item is
at most
  n23log n = nn3 = 1n2

• Thus, a skip list with n items has 
height at most 3log n with 
probability at least 1 − 1n2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Height

• Consider a skip list with n items
• By Fact 1, we insert an item in list 

Si with probability 12i

• By Fact 3, the probability that list 
Si has at least one item is at most 
n2i

• By picking i = 3log n, we have that 
the probability that S3log n has at 
least one item is
at most
  n23log n = nn3 = 1n2

• Thus, a skip list with n items has 
height at most 3log n with 
probability at least 1 − 1n2

With High 
Probability

(WHP)

• The running time of the search 
and insertion algorithms is 
affected by the height h of the 
skip list

• We show that with high 
probability, a skip list with n 
items has height O(log n)

• We use the following additional 
probabilistic fact:

Fact 3: If each of n events has 
probability p, the probability 
that at least one event occurs is 
at most np

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Height

• Consider a skip list with n items
• By Fact 1, we insert an item in list 

Si with probability 12i

• By Fact 3, the probability that list 
Si has at least one item is at most 
n2i

• By picking i = 3log n, we have that 
the probability that S3log n has at 
least one item is
at most
  n23log n = nn3 = 1n2

• Thus, a skip list with n items has 
height at most 3log n with 
probability at least 1 − 1n2

With High 
Probability

(WHP)

• The running time of the search 
and insertion algorithms is 
affected by the height h of the 
skip list

• We show that with high 
probability, a skip list with n 
items has height O(log n)

• We use the following additional 
probabilistic fact:

Fact 3: If each of n events has 
probability p, the probability 
that at least one event occurs is 
at most np

An event that occurs with high probability (WHP) is one 
whose probability depends on a certain number n and 
goes to 1 as n goes to infinity. 

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Search and Update Times
• The search time in a skip list is 

proportional to
• the number of drop-down steps, 

plus
• the number of scan-forward 

steps

• The drop-down steps are 
bounded by the height of the skip 
list and thus are O(log n) with 
high probability

• To analyze the scan-forward steps, 
we use yet another probabilistic 
fact:

Fact 4: The expected number of 
coin tosses required in order to 
get tails is 2

• When we scan forward in a list, the 
destination key does not belong to a 
higher list

• A scan-forward step is associated 
with a former coin toss that gave 
tails

• By Fact 4, in each list the expected 
number of scan-forward steps is 2

• Thus, the expected number of scan-
forward steps is  O(log n)

• We conclude that a search in a skip 
list takes O(log n) expected time

• The analysis of insertion and 
deletion gives similar results

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Question?

Are Binary trees and skip lists optimal for in-
memory indexing?



• A B+Tree is a self-balancing tree data structure that 
keeps data sorted and allows searches, sequential 
access, insertions, and deletions in O(𝒍𝒐𝒈𝑩(𝑵)). 
• The fanout of the tree is B

• Generalization of a binary search tree in that a node can 
have more than two children. 

• Optimized for systems that read and write large blocks of 
data.

20

B+ Trees

https://dl.acm.org/citation.cfm?doid=356770.356776


B Pivots

B B

B

….. …..

O (logB N)

... ≈ N / B leaves ...

... ≈ B children ...

B+ Trees

Internal nodes

Leaf nodes



B+ Trees

Search begins at root, and key comparisons direct it to a leaf.

Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13



Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*



Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*23*



Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*



Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 2413



Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 24135



Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 22*  23* 24* 27* 29*7*5* 8*

5 13 17 24

data page split



Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17 24

index page split



Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17



Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

Root

17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Read Cost: 𝑙𝑜𝑔𝐵(𝑁)

Update Cost 
 𝑙𝑜𝑔𝐵(𝑁) reads
 1 update (worse case 𝑙𝑜𝑔𝐵(𝑁))

what about growing dataset  size?



Observation

• The inner node keys in a B+tree cannot tell you whether a key exists 
in the index. You always must traverse to the leaf node.

• This means that you could have (at least) one cache miss per level in 
the tree.

32



Observation

• The inner node keys in a B+tree cannot tell you whether a key exists 
in the index. You always must traverse to the leaf node.

• This means that you could have (at least) one cache miss per level in 
the tree.

33

How to size the B+-tree nodes?


	Slide 1: Lecture 03 In-memory indexing  (Trees, Skip Lists)
	Slide 2
	Slide 7: What is a Skip List
	Slide 8: Implementation
	Slide 9: Search
	Slide 11: Insertion
	Slide 12: Deletion
	Slide 13: Randomized Algorithms
	Slide 14: Space Usage
	Slide 15: Height
	Slide 16: Height
	Slide 17: Height
	Slide 18: Search and Update Times
	Slide 19: Question?
	Slide 20
	Slide 21: B+ Trees
	Slide 22: B+ Trees
	Slide 23: Example B+ Tree - Inserting 8*
	Slide 24: Example B+ Tree - Inserting 8*
	Slide 25: Example B+ Tree - Inserting 8*
	Slide 26: Example B+ Tree - Inserting 8*
	Slide 27: Example B+ Tree - Inserting 8*
	Slide 28: Example B+ Tree - Inserting 21*
	Slide 29: Example B+ Tree - Inserting 21*
	Slide 30: Example B+ Tree - Inserting 21*
	Slide 31: Example B+ Tree - Inserting 21*
	Slide 32: Observation
	Slide 33: Observation

