OOOOOOOOOOOOOOOOO
1IVE ;

CS 6530: Advanced Database Systems Fall 2024

Lecture 03
In-memory indexing
(Trees, Skip Lists)

Prashant Pandey
prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU/ Manos Athanassoulis, BU

http://prashant.pandey@utah.edu

Some reminders...

* Paper report #1 due today deadlines are posted

OOOOOOOOOOOOOOOOO
......

What is a Skip List

« Askip list for a set S of distinct (key, element) items is a series of lists
Sy Sy, ..., S such that

* Each list S; contains the special keys +00 and —o
 List S5 contains the keys of S in non-decreasing order

* Each list is a subsequence of the previous one, i.e.,
S50 ...095,

* List Sy, contains only the two special keys

» Skip lists are one way to implement the dictionary

> B 64
SO o 12 pay 23 pun 26 g 31 gmy 34 puy 44 muy 56 gy 64 gy 78

UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

d 00 8

Implementation

* We can implement a skip list
with quad-nodes

* A quad-node stores:
* item

quad-node

* |link to the node before
* |ink to the node after
* link to the node below

* Also, we define special keys
PLUS INF and MINUS_INF, and
we modify the key comparator
to handle them

SCHOOL OF COMPUTING) o
U UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Search

* We search for a key X in a a skip list as follows:
* We start at the first position of the top list
* At the current position p, we compare X with y <— key(after(p))
X =Y: we return element(after(p))
X >Y: we “scan forward”
X <Yy: we “drop down”
* If we try to drop down past the bottom list, we return NO_SUCH_KEY

* Example: search for 78

> B
S \
2 1

> B
> E3 23 gy 26

—

‘ELR

34 gy 44 56

SCHOOL OF COMPUTING) o
UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Insertion

* To insert an item (X, 0) into a skip list, we use a randomized algorithm:

* We repeatedly toss a coin until we get tails, and we denote with i the
number of times the coin came up heads

« If i >h, we add to the skip list new lists S;,,4, ... , Sj 1, €ach containing
only the two special keys

* We search for X in the skip list and find the positions py, p1, ..., pjof the
items with largest key less than X in each list Sy, Sy, ..., S

* Forj <0, ..., 1, weinsertitem (X, 0) into list S; after position p;

e Example:insert key 15, with 1 =2

s; =

s, B4 S, B4 15

P1

Slé = —) sE 15
o

s, E—E— 1 E SN o g 10 puETigy 23 gy 36 gm0

SCHOOL OF COMPUTING) o
U UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Deletion

* To remove an item with key X from a skip list, we proceed as follows:

* We search for X in the skip list and find the positions pg, pP1, ..., pjof the
items with key X, where position p; isin list S;

* We remove positions pg, P1, ..., Pj from the lists Sy, Sq, ..., 5
* We remove all but one list containing only the two special keys

e Example: remove key 34

B —
o~ P2

SZ E 82 E

s, B4

23 31 m) B P
s, B - E-m s, E— 1

=]
[y

| Po

SCHOOL OF COMPUTING) o
U UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Randomized Algorithms

* Through probabilistic analysis we can

* Arandomized algorithm controls derive the expected running time of
its execution through random a randomized algorithm

selection (e.g., coin tosses) * We make the following assumptions

* |t contains statements like: in the analysis:
b « randomBit() * the coins are unbiased
if b=0 * the coin tosses are independent
doA ... * The worst-case running time of a
else { b= 1} randomized algorithm is often large
but has very low probability (e.g., it
do B... occurs when all the coin tosses give
* |ts running time depends on the heads”)
outcomes of the coin tosses * We use a randomized algorithm to

insert items into a skip list to insert
in expected O(log n)-time

 When randomization is used in data
structures they are referred to as
probabilistic data structures

UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Space Usage

 The space used by a skip list e Consider a skip list with n items
depends on the random bits used * By Fact 1, we insert an item in
by each invocation of the insertion list S; with probability 1/2!
algorithm * By Fact 2, the expected size of
.) . I
* We use the following two basic list Siis /2
probabilistic facts: * The expected number of nodes
Fact 1: The probability of getting i used by the skip list is
consecutive heads when flipping a
coin is 1/2!
Fact 2: If each of n items is present in Zo? - nzo_ <an
a set with probability p, the ' !

expected size of the set is np # Thus, the expected space usage

of a skip list with n items is O(n)

SCHOOL OF COMPUTING) o
UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height

* The running time of the search e Consider a skip list with n items
and insertion algorithms is e By Fact 1, we insert an item in list
affected by the height h of the S; with probability 1/2
skip list * By Fact 3, the probability that list

. We show that with high S; has at least one item is at most
probability, a skip list with n fiie
items has height O(log n) * By picking i = 3log n, we have that

the probability that S,y , has at

* We use the following additional : ,
least one item is

probabilistic fact:

at most
Fact 3: If each of n events has n/2309n — n/n3 = 1/n2
probability p, the probability
that at least one event occurs is * Thus, a skip list with nitems has
at most np height at most 3log n with

probability at least 1 — 1/n?

SCHOOL OF COMPUTING) o
UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height

* The running time of the search e Consider a skip list with n items
and insertion algorithms is e By Fact 1, we insert an item in list
affected by the height h of the S; with probability 1/2
skip list * By Fact 3, the probability that list

. We show that with high S; has at least one item is at most
probability, a skip list with n fiie
items has height O(log n) * By picking i = 3log n, we have that

the probability that S,y , has at

* We use the following additional : ,
least one item is

pribalzililiticf;]ctf: h 2t most With High
act 3: If each of n events has 3logn — N/N3 = 1/N2 ope
n/2°'%9" =n/n°>=1/n
probability p, the probability / / / PrObablllty
that at least one event occurs is * Thus, a skip list with n items Ras (WHP)
at most np height at most 3log n with

probability at least 1 — 1/n?

SCHOOL OF COMPUTING) o
UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height

* The running time of the search * Consider a skip list with nitems
and insertion algorithms is e By Fact 1, we insert an item in list
affected by the height h of the S; with probability 1/2
skip list

e By Fact 3, the probablllty that list

An event that occurs with high probability (WHP) is one

whose probability depends on a certain number n and
goes to 1 as n goes to infinity.

Fact 3: If h of ts h at mos Ith ngh
act 3: If each of n events has 3logn — N/N3 = 1/N2 ol:
n/2°'%9" =n/n°>=1/n
probability p, the probability / / / Probabil Ity
that at least one event occurs is * Thus, a skip list with n items Ras (WHP)
at most np height at most 3log n with

probability at least 1 — 1/n?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Search and Update Times

* The search time in a skip list is
proportional to

e the number of drop-down steps,
plus

* the number of scan-forward
steps

* The drop-down steps are
bounded by the height of the skip
list and thus are O(log n) with
high probability

* To analyze the scan-forward steps,
we use yet another probabilistic
fact:

Fact 4: The expected number of
coin tosses required in order to
get tails is 2

SCHOOL OF COMPUTING

When we scan forward in a list, the
destination key does not belong to a
higher list

* A scan-forward step is associated

with a former coin toss that gave
tails

By Fact 4, in each list the expected
number of scan-forward steps is 2

Thus, the expected number of scan-
forward stepsis O(log n)

We conclude that a search in a skip
list takes O(log n) expected time

The analysis of insertion and
deletion gives similar results

UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Question?

Are Binary trees and skip lists optimal for in-
memory indexing?

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUU

B+ Trees

* A B+Tree is a self-balancing tree data structure that
keeps data sorted and allows searches, sequential
access, insertions, and deletions in O(logz(N)).

* The fanout of the tree is B

* Generalization of a binary search tree in that a node can
have more than two children. L

* Optimized for systems that read and write large blocks of
data.

SCHOOL OF COMPUTING 20
UNIVERSITY OF UTAH

https://dl.acm.org/citation.cfm?doid=356770.356776

B+ Trees

Internal nodes

Leaf nodes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

—

Pivots

... = Bchildren....

y N

O (loggN)

... =N /Bleaves...

v

B+ Trees

Search begins at root, and key comparisons direct it to a leaf.
Search for 5%, 15%*, all data entries >=24%* ...

Root \

13 17 \‘ 24 30

2* | 3* | 5% | 7* 14*| 16* 19*| 20*| 22* 24| 27%| 29* 33*| 34* [38* | 39*

Based on the search for 15%*, we know it is not in the tree!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Example B+ Tree - Inserting 8*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Root

13

17

24

2*

3*

5*

7*

14*

16*

19*

20*

22%

23*

24*

27*

29*

Example B+ Tree - Inserting 8*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Root
13 17 24
£\ £\ v N\
2* | 3* | 5* | 7* 14*| 16* 19*| 20*| 22* | 23* 24* | 27%| 29*
N\ N\
2* | 3* | 5* | 7% 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

Example B+ Tree - Inserting 8*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Root
13 17 24
£\ £\ v N\
2* | 3* | 5* | 7* 14*| 16* 19*| 20*| 22* | 23* 24* | 27*%| 29*
N\ - VR VR
2* | 3* 5% | 7* | 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

Example B+ Tree - Inserting 8*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Root
13 17 24
£\ £\ v N\
2* | 3* | 5* | 7* 14*| 16* 19*| 20*| 22* | 23* 24* | 27*%| 29*
13 17 24
N\ - VR VR
2* | 3* 5% | 7* | 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

Example B+ Tree - Inserting 8*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Root
13 || 17 || 24
N N V N
or | 3« | 5 | 7% | | 14*|16* 19+ 20%| 22¢ |23+ | | 24*| 27%| 20
5 || 13 || 17 || 24
C A \ h N h
AN A \, k AN
2+ | 3* 5 | 7% | 8 14+ | 16 195 20| 22¢ [23+ | | 24*| 27¢| 20

Example B+ Tree - Inserting 21*
Root N\

el A N

2% 3* S*| 7*| 8* 14*[16* 199 20% 22%| 23«| | 24*| 27*|29*

N

data page split

2% | 3* S*| 7*| 8* 14*| 16* 194 20* 22*| 234 24%| 27%| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Example B+ Tree - Inserting 21*
Root N\

el A N

2% 3* S*| 7*| 8* 14*[16* 199 20% 22%| 23«| | 24*| 27*|29*

index page split

2% | 3* S*| 7*| 8* 14*| 16* 194 20* 21*()22*|23* 24%| 27%| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Example B+ Tree - Inserting 21*
Root N\

el A N

2% | 3* S*| 7*| 8* 14*[16* 199 20% 22%| 23«| | 24*| 27*|29*

5 13 21 24

2% | 3* S*| 7*| 8* 14*| 16* 194 20* 21*| 22*|23* 24%| 27%| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Example B+ Tree <nserting 21*

17

24

P

20

1 update (worse case logg(N))

o[3 5« 7+] 8* 14+ 16+ 19] 20 224 53+| [24*] 27] 20+
Read Cost: logg(N)
Roox Update Cost
17 logg(N) reads
5 113! what about growing dataset size?
2+ | 3+ 5+ 7¢] 8 14+ 16+ 191 20 21+[22+ 23+ 244 277 29~

OOOOOOOOOOOOOOOOO
TIVERSITY

Observation

* The inner node keys in a B+tree cannot tell you whether a key exists
in the index. You always must traverse to the leaf node.

* This means that you could have (at least) one cache miss per level in
the tree.

OOOOOOOOOOOOOOOOO

Observation

* The inner node keys in a B+tree cannot tell you whether a key exists
in the index. You always must traverse to the leaf node.

* This means that you could have (at least) one cache miss per level in

How to size the B+-tree nodes?

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

33

	Slide 1: Lecture 03 In-memory indexing (Trees, Skip Lists)
	Slide 2
	Slide 7: What is a Skip List
	Slide 8: Implementation
	Slide 9: Search
	Slide 11: Insertion
	Slide 12: Deletion
	Slide 13: Randomized Algorithms
	Slide 14: Space Usage
	Slide 15: Height
	Slide 16: Height
	Slide 17: Height
	Slide 18: Search and Update Times
	Slide 19: Question?
	Slide 20
	Slide 21: B+ Trees
	Slide 22: B+ Trees
	Slide 23: Example B+ Tree - Inserting 8*
	Slide 24: Example B+ Tree - Inserting 8*
	Slide 25: Example B+ Tree - Inserting 8*
	Slide 26: Example B+ Tree - Inserting 8*
	Slide 27: Example B+ Tree - Inserting 8*
	Slide 28: Example B+ Tree - Inserting 21*
	Slide 29: Example B+ Tree - Inserting 21*
	Slide 30: Example B+ Tree - Inserting 21*
	Slide 31: Example B+ Tree - Inserting 21*
	Slide 32: Observation
	Slide 33: Observation

