
CS 6530:
Advanced Database Systems

Fall 2024

Prashant Pandey
prashant.pandey@utah.edu

http://prashant.pandey@utah.edu

no
smartphones

no
laptop

Why?
there is enough evidence that laptops and phones slow you down

Ask questions

… and answer my questions.

Our main goal is to have interesting discussions that will help to
gradually understand the material

(it’s ok if not everything is clear, as long as you have questions!)

Today’s agenda

• Course logistics overview

• A brief history of databases

I want you to speak up!
[and you can always interrupt me]

Why you should take this course

• DBMS developers are in demand and there are many challenging
unsolved problems in data management and processing.

• If you are good enough to write code for a DBMS, then you can write
code for almost anything else.

Data is the new oil!

Courtesy: https://www.economist.com/

Modern data challenges

Course objectives

• Learn about modern practices in database internals and systems
programming.
• Next-generation challenges in data systems.

• Students will become proficient in:
• Writing high-performance and concurrent code
• Using tools to debug performance hot spots
• Working on a large code base
• Modern data system internals

Course topics

• The internals of modern single-node data systems.
• We will not discuss distributed systems.

• We will cover state-of-the-art topics in large-scale data management.
• This is not a course on classical DBMS.

Course topics

• In-memory Indexing
• Concurrency control
• Data storage and File organization
• Key-value stores
• Logging and recovery
• Query optimization
• Parallel join and external sorting
• Data systems on modern hardware
• Learned indexes and ML for Databases
• Vector Databases

Background

• I assume you have already taken undergrad Database course (e.g., CS
5530) or similar.
• You are comfortable in writing concurrent C/C++ code.
• We will discuss modern variations to classical data structures and

algorithms that are designed for today’s hardware.

• Things that we will not cover:
SQL, Relational Algebra, Serialization, Basic Algorithms and Data
Structures

Course logistics

• Course policies + Schedule
• Website:

https://users.cs.utah.edu/~pandey/courses/cs6530/fall24/index.html

• Academic honesty
• Refer to SoC policy on academic conduct.
• If you are not sure, ask me.
• I am serious. DO NO PLAGIARISE.

https://users.cs.utah.edu/~pandey/courses/cs6530/fall24/index.html
https://www.cs.utah.edu/docs/misc/cheating_policy.pdf

What is plagiarism

• Listening while someone dictates a solution.
• Basing your solution on any other written solution.
• Copying another student's code or sharing your code with any other

student.
• Searching for solution online (e.g., stack overflow, Github, Github

Copilot, ChatGPT).

What is collaboration

• Asking questions on Canvas discussions.
• Working together to find a good approach for solving a problem.
• Students with similar understanding of the material.

• A high-level discussion of solution strategy.
• If you collaborate with other students, declare it upfront
• Put names of the collaborator at the start of the project report.

Office hours

• Before class in my office
• Tu/Th 9:30 AM – 10:30 AM
• WEB 2686

• Things that we can talk about:
• Issues on implementing projects
• Paper clarification/discussions
• Getting involved in a research project
• How to get a database/systems dev job

Teaching assistant/mentor

• TA: Yuvaraj Chesetti
• Office hours Wednesday 12Noon --- 2PM WEB 2780
• 2nd year PhD student
• Research on Data Management

• Hash tables
• Filters
• Learned indexes

Instructor

• Previous:
• Research Scientist, VMware Research
• Postdoc: CMU/UC Berkeley
• PhD: Stony Brook University

• Research:
• Data systems
• Storage systems & graph processing
• Computational biology

Somewhere in Patagonia, Chile

Course rubric

• Reading assignments
• Programming projects
• Final exam
• Class participation

Reading assignments

• Pick five papers from the reading list.
• Write a one-paragraph synopsis of each of the five papers.
• There will be five deadlines throughout the semester.
• Synopsis:
• Overview of the main idea (Three sentences).
• Main finding/takeaway of the paper (One sentence).
• System used and how it was modified (One sentence).
• Workloads evaluated (One sentence).

Plagiarism warning

• Each review must be your own writing.

• You may not copy text from the papers or other sources that you find
on the web.

• Plagiarism will not be tolerated.
See SoC policy on academic conduct for additional information.

https://www.cs.utah.edu/docs/misc/cheating_policy.pdf

Programming projects

• Do all development on your local machine.
• The initial code for projects builds on linux.
• We will provide configuration/build files.

• Do all benchmarking using Cade clusters.
• Cade setup instructions are available in Canvas.
• We will provide further details later in semester.

Projects

• We will provide you with test cases and scripts for the first
programming
• We will teach you how to profile a system using a tool

Project #1 will be done individually.

Project #2, #3 will be done in a group of three.

Project #3

• We will provide a default project topic.
• Will have multiple milestones.

• A group can also choose a project that is:
• Relevant to the materials discussed in class.
• Requires a significant programming effort from all team members.
• Unique (i.e., two groups cannot pick same idea).
• Approved by me.

Plagiarism warning

• These projects must be all of your own code.

• You may not copy source code from other groups or the web.

• Plagiarism will not be tolerated.
See SoC policy on academic conduct for additional information.

https://www.cs.utah.edu/docs/misc/cheating_policy.pdf

Grade breakdown

• Project #1 15%
• Project #2 25%
• Project #3 30%
• Paper reports 10%
• Final exam (take home) 10%
• Class participation 10%

More logistics

• Prashant traveling on 08/22

• Lecture 08/22: Yuvaraj Chesetti
• Introduction to project #1
• Tutorial on tools for profiling and build system
• Atomics and memory consistency

Course mailing list

• Online discussion through Canvas
• Use Canvas Discussion

• If you have a technical question about the projects, please use Canvas
• Don’t email me or TAs directly

• All non-project questions should be sent to me.

A brief history of databases

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

History repeats itself

• Old database issues are still relevant today.

• The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.
• Spoiler: The relational model almost always wins.

• Many of the ideas in today’s database systems are not new.

1960s – IDS

• Integrated Data Store
• Developed internally at GE in the early 1960s.
• GE sold their computing division to

Honeywell in 1969.
• One of the first DBMSs:
• Network data model.
• Tuple-at-a-time queries.

1960s – CODASYL

• COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.
• Network data model.
• Tuple-at-a-time queries.

• Bachman also worked at Culliane Database Systems in the 1970s to
help build IDMS.

Bachman

Turing award 1973

Network data model

SUPPLY
(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

qty price

10 $100

14 $99

parent child

Network data model
Instance

sno sname scity sstate

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize

999 Batteries Large

SUPPLIER

parent child

SUPPLIES SUPPLIED_BY

PART

SUPPLY

Complex Queries

Easily Corrupted

1960S – IBM IMS

• Information Management System
• Early database system developed to keep track of purchase orders for

Apollo moon mission.
• Hierarchical data model.
• Programmer-defined physical storage format.
• Tuple-at-a-time queries.

hierarchical data model

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance
sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

pno pname psize qty price

999 Batteries Large 14 $99

Duplicate Data

No Independence

Turing award 1981

1970s – RELATIONAL MODEL

• Ted Codd was a mathematician working
at IBM Research. He saw developers
spending their time rewriting IMS and
Codasyl programs every time the
database’s schema or layout changed.
• Database abstraction to avoid this maintenance:
• Store database in simple data structures.
• Access data through high-level language.
• Physical storage left up to implementation.

Codd

Relational data model

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

sno pno qty price

1001 999 10 $100

1002 999 14 $99

Relational data model
Instance

sno sname scity sstate

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize

999 Batteries Large

SUPPLIER

SUPPLY

PART

1970s – Relational model

• Early implementations of relational DBMS:
• System R – IBM Research
• INGRES – U.C. Berkeley
• Oracle – Larry Ellison

EllisonGray Stonebraker
Turing award 2015Turing award 1998

1980s – Relational model

• The relational model wins.
• IBM comes out with DB2 in 1983.
• “SEQUEL” becomes the standard (SQL).

• Many new “enterprise” DBMSs
but Oracle wins marketplace.

• Stonebraker creates Postgres.

1980s – Object-oriented databases

• Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

• Few of these original DBMSs from the 1980s still exist today but many
of the technologies exist in other forms (JSON, XML)

Object-oriented model
Application Code

class Student {
 int id;
 String name;
 String email;
 String phone[];
}

Relational Schema

STUDENT
(id, name, email)

STUDENT_PHONE
(sid, phone)

id name email

1001 M.O.P. ante@up.com

sid phone

1001 444-444-4444

1001 555-555-5555

Student

{
 “id”: 1001,
 “name”: “M.O.P.”,
 “email”: “ante@up.com”,
 “phone”: [
 “444-444-4444”,
 “555-555-5555”
]
}

Complex Queries

No Standard API

1990s – Boring days

• No major advancements in database systems or application
workloads.
• Microsoft forks Sybase and creates SQL Server.
• MySQL is written as a replacement for mSQL.
• Postgres gets SQL support.
• SQLite started in early 2000.

2000s – Internet boom

• All the big players were heavyweight and expensive. Open-source
databases were missing important features.

• Many companies wrote their own custom middleware to scale out
database across single-node DBMS instances.

2000s – Data warehouses

• Rise of the special purpose OLAP DBMSs.
• Distributed / Shared-Nothing
• Relational / SQL
• Usually closed-source.

• Significant performance benefits from using columnar data storage
model.

2000s – NoSQL Systems

• Focus on high-availability & high-scalability:
• Schemaless (i.e., “Schema Last”)
• Non-relational data models (document, key/value, etc)
• No ACID transactions
• Custom APIs instead of SQL
• Usually open-source

2010s – NewSQL

• Provide same performance for OLTP workloads as NoSQL DBMSs
without giving up ACID:
• Relational / SQL
• Distributed
• Usually closed-source

2010s – Hybrid systems

• Hybrid Transactional-Analytical Processing.

• Execute fast OLTP like a NewSQL system while also executing complex
OLAP queries like a data warehouse system.
• Distributed / Shared-Nothing
• Relational / SQL
• Mixed open/closed-source.

2010s – Cloud systems

• First database-as-a-service (DBaaS) offerings were "containerized"
versions of existing DBMSs.

• There are new DBMSs that are designed from scratch explicitly for
running in a cloud environment.

2010s – Shared-disk engines

• Instead of writing a custom storage manager, the DBMS leverages
distributed storage.
• Scale execution layer independently of storage.
• Favors log-structured approaches.

• This is what most people think of when they talk about a data lake.

2010s – Stream processing

• Execute continuous queries on streams of tuples.
• Extend processing semantics to include notion of windows.

• Often used in combination of batch-oriented systems in a lambda
architecture deployment.

2010s – Graph systems

• Systems for storing and querying graph data.
• Their main advantage over other data models is to provide a graph-

centric query API
• Recent research demonstrated that is unclear whether there is any benefit to

using a graph-centric execution engine and storage manager.

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf

2010s – Timeseries systems

• Specialized systems that are designed to store timeseries / event
data.

• The design of these systems make deep assumptions about the
distribution of data and workload query patterns.

2010s – SPECIALIZED SYSTEMS

• Embedded DBMSs
• Multi-Model DBMSs
• Blockchain DBMSs
• Hardware Acceleration

57

