
Efficient and Robust Approximate Nearest
Neighbor Search Using Hierarchical Navigable

Small World Graphs
Yu A. Malkov and D. A. Yashunin

Abstract—We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with

controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search

structures (typically used at the coarse search stage of the most proximity graph techniques). Hierarchical NSW incrementally builds a

multi-layer structure consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The

maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows

producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links

separated by their characteristic distance scales. Starting the search from the upper layer together with utilizing the scale separation

boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for

selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data.

Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous

opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced

distributed implementation.

Index Terms—Graph and tree search strategies, artificial intelligence, information search and retrieval, information storage and retrieval,

information technology and systems, search process, graphs and networks, data structures, nearest neighbor search, big data, approximate

search, similarity search

Ç

1 INTRODUCTION

CONSTANTLY growing amount of the available informa-
tion resources has led to high demand in scalable and

efficient similarity search data structures. One of the
generally used approaches for information search is the
K-Nearest Neighbor Search (K-NNS). The K-NNS assumes
you have a defined distance function between the data
elements and aims at finding the K elements from the data-
set which minimize the distance to a given query. Such
algorithms are used in many applications, such as non-
parametric machine learning algorithms, image features
matching in large-scale databases [1] and semantic document
retrieval [2]. A na€ıve approach to K-NNS is to compute the
distances between the query and every element in the dataset
and select the elements with minimal distance. Unfortu-
nately, the complexity of the na€ıve approach scales linearly
with the number of stored elements making it infeasible for
large-scale datasets. This has led to a high interest in the
development of fast and scalable K-NNS algorithms.

Exact solutions for K-NNS [3], [4], [5] may offer a sub-
stantial search speedup only in case of relatively low
dimensional data due to “curse of dimensionality”. To
overcome this problem a concept of Approximate Near-
est Neighbors Search (K-ANNS) was proposed, which
relaxes the condition of the exact search by allowing a
small number of errors. The quality of an inexact search
(the recall) is defined as the ratio between the number of
found true nearest neighbors and K. The most popular
K-ANNS solutions are based on approximated versions
of tree algorithms [6], [7], locality-sensitive hashing
(LSH) [8], [9] and product quantization (PQ) [10], [11],
[12], [13], [14], [15], [16], [17]. Proximity graph K-ANNS
algorithms [10], [18], [19], [20], [21], [22], [23], [24], [25],
[26] have recently gained popularity offering better per-
formance on high dimensional datasets. However, the
power-law scaling of the proximity graph routing causes
extreme performance degradation in case of low dimen-
sional or clustered data.

In this paper we propose the Hierarchical Navigable
Small World (Hierarchical NSW, HNSW), a new fully graph
based incremental K-ANNS structure, which can offer a
much better logarithmic complexity scaling. The main con-
tributions are: explicit selection of the graph’s enter-point
node, separation of links by different scales and use of an
advanced heuristic to select the neighbors. Alternatively,
Hierarchical NSW algorithm can be seen as an extension of

� Y. A. Malkov is with the Samsung AI Center, Moscow, Russia.
E-mail: yurymalkov@mail.ru.

� D. Yashunin 31-33 ul. Krasnozvezdnaya, 603104, Nizhny Novgorod,
Russia. E-mail: yashuninda@yandex.ru.

Manuscript received 30 July 2017; revised 2 Aug. 2018; accepted 18 Oct.
2018. Date of publication 28 Dec. 2018; date of current version 4 Mar. 2020.
(Corresponding author: Yu A. Malkov.)
Recommended for acceptance by N. Quadrianto.
Digital Object Identifier no. 10.1109/TPAMI.2018.2889473

824 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

0162-8828� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4324-6433
https://orcid.org/0000-0003-4324-6433
https://orcid.org/0000-0003-4324-6433
https://orcid.org/0000-0003-4324-6433
https://orcid.org/0000-0003-4324-6433
mailto:
mailto:

the probabilistic skip list structure [27] with proximity
graphs instead of the linked lists. Performance evaluation
has demonstrated that the proposed general metric space
method is able to strongly outperform previous opensource
state-of-the-art approaches suitable only for vector spaces.

2 RELATED WORKS

2.1 Proximity Graph Techniques

In the vast majority of studied graph algorithms, searching
takes a form of greedy routing in k-Nearest Neighbor
(k-NN) graphs [10], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. For a given proximity graph, we start the search at
some enter-point (it can be random or supplied by a sepa-
rate algorithm) and iteratively traverse the graph. At each
step of the traversal, the algorithm examines the distances
from a query to the neighbors of a current base node and
then selects as the next base node the adjacent node that
minimizes the distance, while constantly keeping track of
the best-discovered neighbors. The search is terminated
when some stopping condition is met (e.g., the number of
distance calculations). Links to the closest neighbors in a
k-NN graph serve as a simple approximation of the Delau-
nay graph [25], [26] (a graph which guarantees that the
result of a basic greedy graph traversal is always the nearest
neighbor). Unfortunately, Delaunay graph cannot be effi-
ciently constructed without prior information about the
structure of the space [4], but its approximation by the near-
est neighbors can be done by using only the distances
between the stored elements. It was shown that proximity
graph approaches with such approximation perform com-
petitively to other k-ANNS techniques, such as kd-trees or
LSH [18], [19], [20], [21], [22], [23], [24], [25], [26].

The main drawbacks of the k-NN graph approaches are:
1) the power law scaling of the number of steps with the
dataset size during the routing process [28], [29]; 2) a possible
loss of global connectivity which leads to poor search results
on clustered data. To overcome these problems many
hybrid approaches have been proposed that use auxiliary
algorithms applicable only for vector data (such as kd-trees
[18], [19] and product quantization [10]) to find better candi-
dates for the enter-point nodes by doing a coarse search.

In [25], [26], [30] authors proposed a proximity graph
K-ANNS algorithm called Navigable Small World (NSW,
also known asMetricized SmallWorld, MSW), which utilized
navigable graphs, i.e., graphswith logarithmic or polylogarith-
mic scaling of the number of hops during the greedy traversal
with the respect of the network size [31], [32]. An NSW graph
is constructed via consecutive insertion of elements in ran-
domorder by bidirectionally connecting them to theM closest
neighbors from the previously inserted elements. TheM clos-
est neighbors are found using a variant of a greedy search
from multiple random enter-point nodes. Links to the closest
neighbors of the elements inserted at the beginning of the con-
struction later become bridges between the network hubs that
keep the overall graph connectivity and allow the logarithmic
scaling of the number of hops during the greedy routing.

The construction phase of the NSW structure can be effi-
ciently parallelized without global synchronization and
without measurable effect on accuracy [26], making NSW
a good choice for distributed search systems. The NSW

approach delivered the state-of-the-art performance on
some datasets [33], [34], however, due to the overall polylo-
garithmic complexity scaling, the algorithm was still prone
to severe performance degradation on low dimensional
datasets (on which NSW could lose to tree-based algorithms
by several orders of magnitude [34]).

2.2 Navigable Small World Models

Networks with logarithmic or polylogarithmic scaling of the
greedy graph routing are known as the navigable small
world networks [31], [32]. Such networks are an important
topic of complex network theory aiming at understanding
of the underlying mechanisms of real-life networks forma-
tion in order to apply them for applications of scalable rout-
ing [32], [35], [36] and distributed similarity search [25],
[26], [30], [37], [38], [39], [40].

The first works to consider spatial models of navigable
networks were done by J. Kleinberg [31], [41] as social net-
workmodels for the famousMilgram experiment [42]. Klein-
berg studied a variant of random Watts-Strogatz networks
[43] using a regular lattice graph in d-dimensional vector
space with an augmentation of long-range links following a
specific long link length distribution r�a. For a ¼ d (here and
further in the text d is the dimensionality of L2 space with
random data uniformly filling a hypercube) the number of
hops to get to the target by greedy routing scales polylogar-
ithmically (instead of a power law for any other value of a).
This idea has inspired the development of many K-NNS and
K-ANNS algorithms based on the navigation effect [37], [38],
[39], [40]. But even though the Kleinberg’s model can be
extended to other spaces, in order to build such navigable
network one has to know the data distribution beforehand.
In addition, greedy routing in Kleinberg’s graphs suffers
from polylogarithmic complexity scalability at best.

Another well-known class of navigable networks is the
scale-free models [32], [35], [36], which can reproduce several
features of real-life networks and are advertised for routing
applications [35]. However, networks produced by such
models have even worse power law complexity scaling of
the greedy search [44] and, just like the Kleinberg’s model,
scale-free models require global knowledge of the data distri-
bution, making them unusable for search applications.

The above-described NSW algorithm uses a simpler, pre-
viously unknown model of navigable networks, allowing
decentralized graph construction and suitable for data in
arbitrary spaces. It was suggested [44] that the NSW network
formation mechanism may be responsible for navigability of
large-scale biological neural networks (presence of which is
disputable): similar models were able to describe the growth
of small brain networks, while the model predicts several
high-level features observed in large-scale neural networks.
However, the NSWmodel also suffers from the polylogarith-
mic search complexity of the routing process.

3 MOTIVATION

The ways of improving the NSW search complexity can be
identified through the analysis of the routing process, which
was studied in detail in [32], [44]. The routing can be
divided into two phases: “zoom-out” and “zoom-in” [32].
The greedy algorithm starts in the “zoom-out” phase from a

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 825

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

low degree node and traverses the graph simultaneously
increasing the node degree until the characteristic radius of
the node links length reaches the scale of the distance to the
query. Before the latter happens, the average degree of a
node can stay relatively small, which leads to an increased
probability of being stuck in a distant false local minimum.

One can avoid the described problem in NSW by starting
the search from a node with the maximum degree (good
candidates are the first nodes inserted in the NSW structure
[44]), directly going to the “zoom-in” phase of the search.
Tests show that setting the first nodes as enter-points sub-
stantially increases the probability of successful routing in
the structure and provides significantly better performance
on low dimensional data. However, it still has only polylo-
garithmic complexity scalability of a single greedy search at
best and performs worse on high dimensional data com-
pared to Hierarchical NSW.

The reason for the polylogarithmic complexity scaling of
a single greedy search in NSW is that the overall number of
distance computations is roughly proportional to a product
of the average number of greedy algorithm hops by the
average degree of the nodes on the greedy path. The aver-
age number of hops scales logarithmically [26], [44], while
the average degree of the nodes on the greedy path also
scales logarithmically due to the following facts: 1) the
greedy search tends to go through the same hubs as the net-
work grows [32], [44]; 2) the average number of hub connec-
tions grows logarithmically with an increase of the network
size. Thus we get an overall polylogarithmic dependence of
the resulting complexity.

The idea of Hierarchical NSW algorithm is to separate
the links according to their length into different layers and
then search the multilayer graph. In this case, we can evalu-
ate only a fixed number of the connections for each element
independently of the network size, thus allowing logarith-
mic scalability. In such structure, the search starts from the
upper layer which has only the longest links (the “zoom-in”
phase). The algorithm greedily traverses the upper layer
until a local minimum is reached (see Fig. 1 for illustration).
After that, the search switches to the lower layer (which has
shorter links), restarts from the element which was the local

minimum in the previous layer and the process repeats. The
maximum number of connections per element in all layers
can be made constant, thus allowing a logarithmic complex-
ity scaling of routing in a navigable small world network.

One way to form such a layered structure is to explicitly
set links with different length scales by introducing layers.
For every element we select an integer level l defining the
maximum layer the element belongs to. For all elements in a
layer, a proximity graph (i.e., a graph containing only
“short” links that approximate Delaunay graph) is built
incrementally. If we set an exponentially decaying probabil-
ity of l (i.e., following a geometric distribution) we get a log-
arithmic scaling of the expected number of layers in the
structure. The search procedure is an iterative greedy search
starting from the top layer and finishing at the zero layer.

In case we combine the elements’ connections from all
layers, the structure becomes similar to the NSW graph (in
this case l can be put in correspondence to the node degree
in NSW). In contrast to NSW, Hierarchical NSW construc-
tion algorithm does not require the elements to be shuffled
before the insertion—the stochasticity is achieved by using
level randomization, thus allowing truly incremental index-
ing even in case of temporarily altering data distribution
(though changing the order of the insertion slightly alters
the performance due to only partially deterministic con-
struction procedure).

The Hierarchical NSW idea is also very similar to a well-
known 1D probabilistic skip list structure [27] and can be
described using its terms. The major difference to skip list is
that we generalize the structure by replacing linked lists
with proximity graphs. The Hierarchical NSW approach
thus can utilize the same methods for making the distrib-
uted approximate search/overlay structures [45].

To select the proximity graph connections during the ele-
ment insertion we utilize a heuristic that takes into account
the distances between the candidate elements to create
diverse connections (a similar algorithm was used in the
spatial approximation tree [4] to select the tree children)
instead of just selecting the closest neighbors. The heuristic
examines the candidates starting from the nearest (with
respect to the inserted element) and creates a connection to
a candidate only if it is closer to the base (inserted) element
compared to any of the already connected candidates (see
Section 4 for the details).

When the number of candidates is large enough the heuris-
tic allows getting the exact relative neighborhood graph [46]
as a subgraph, a minimal subgraph of the Delaunay graph
deducible by using only the distances between the nodes. The
relative neighborhood graph allows easily keeping the global
connected component, even in case of highly clustered data
(see Fig. 2 for illustration). Note that the heuristic creates extra
edges compared to the exact relative neighborhood graphs,
allowing controlling the number of the connections which is
important for search performance. For the case of 1D data the
heuristic allows getting the exact Delaunay subgraph (which
in this case coincides with the relative neighborhood graph)
by using only information about the distances between the
elements, thus making a direct transition from Hierarchical
NSW to the 1Dprobabilistic skip list algorithm.

A base variant of the Hierarchical NSW proximity graphs
was also used in [18] (called ‘sparse neighborhood graphs’) for

Fig. 1. Illustration of the Hierarchical NSW idea. The search starts from
an element from the top layer (shown red). Red arrows show direction of
the greedy algorithm from the entry point to the query (shown green).

826 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

proximity graph searching. A similar heuristicwas also a focus
of the FANNG algorithm [47] (published shortly after the first
versions of the current manuscript were posted online) with a
slightly different interpretation, based on the sparse neighbor-
hood graph’s property of the exact routing [18].

4 ALGORITHM DESCRIPTION

Network construction (Algorithm 1) is organized via consecu-
tive insertions of the stored elements into the graph struc-
ture. For every inserted element an integer maximum layer
l is randomly selected with an exponentially decaying prob-
ability distribution (normalized by the mL parameter, see
line 4 in Algorithm 1).

The first phase of the insertion process starts from the top
layer by greedily traversing the graph in order to find the ef
closest neighbors to the inserted element q in the layer. After
that, the algorithm continues the search from the next layer
using the found closest neighbors from the previous layer
as enter-points, and the process repeats. Closest neighbors
at each layer are found by a variant of the greedy search
algorithm described in Algorithm 2, which is an updated
version of the algorithm from [26]. To obtain the approxi-
mate ef nearest neighbors in some layer lc0 , a dynamic list
W of ef closest found elements (initially filled with enter-
points) is kept during the search. The list is updated at each
step by evaluating the neighborhood of the closest previ-
ously non-evaluated element in the list until the neighbor-
hood of every element from the list is evaluated. Compared
to limiting the number of distance calculations, Hierarchical
NSW stop condition has an advantage—it allows discarding
candidates for evaluation that are further from the query
than the furthest element in the list, thus avoiding bloating
of search structures. As in NSW, the list is emulated via two
priority queues for better performance. The distinctions
from NSW (along with some queue optimizations) are:
1) the enter-point is a fixed parameter; 2) instead of

changing the number of multi-searches, the quality of the
search is controlled by a different parameter ef (which was
set to K in NSW [26]). During the first phase of the search,
the ef parameter is set to 1 (simple greedy search) to avoid
additional parameters.

Algorithm 1. INSERT(hnsw; q, M,Mmax, efConstruction, mL)

Input: multilayer graph hnsw, new element q, number of estab-
lished connections M, maximum number of connections for
each element per layer Mmax, size of the dynamic candidate list
efConstruction, normalization factor for level generationmL

Output: update hnsw inserting element q
1 W ;== list for the currently found nearest elements
2 ep get enter-point for hnsw
3 L level of ep // top layer for hnsw
4 l b�lnðunifð0::1ÞÞ �mLc // new element’s level
5 for lc L . . . lþ 1
6 W SEARCH� LAYERðq; ep; ef ¼ 1; lcÞ
7 ep get the nearest element fromW to q
8 for lc min(L, l) . . . 0
9 W SEARCH-LAYER(q, ep, efConstruction, lc)
10 neighbors SELECT-NEIGHBORS(q,W,M, lc) //

Algorithm 3 or Algorithm 4
11 add bidirectionall connectionts from neighbors to q at layer lc
12 for each e 2 neighbors // shrink connections if needed
13 eConn neighbourhood(e) at layer lc
14 if eConn >Mmax // shrink connections of e

// if lc ¼ 0 thenMmax ¼Mmax0

15 eNewConn SELECT-NEIGHBORS(e, eConn,Mmax, lc)
// Algorithm 3 or Algorithm 4

16 set neighbourhood(e) at layer lc to eNewConn
17 ep W
18 if l > L
19 set enter-point for hnsw to q

Algorithm 2. SEARCH-LAYER(q, ep, ef, lc)

Input: query element q, enter-points ep, number of nearest to q
elements to return ef, layer number lc
Output: ef closest neighbors to q
1 v ep // set of visited elements
2 C ep // set of candidates
3 W ep // dynamic list of found nearest neighbors
4 while jCj > 0
5 c extract nearest element from C to q
6 f get furthest element fromW to q
7 if distance(c, q) > distance(f, q)
8 break // all elements inW are evaluated
9 for each e 2 neighbourhood(c) at layer lc // update C andW

10 if e 62 v
11 v v [e
12 f get furthest element fromW to q
13 if distance(e, q) < distance(f, q) orW < ef
14 C C [e
15 W W [e
16 if jW j > ef
17 remove furthest element fromW to q
18 returnW

When the search reaches the layer equal to or less than l,
the second phase of the construction algorithm is initiated.
The second phase differs in two points: 1) the ef parameter

Fig. 2. Illustration of the heuristic used to select the graph neighbors for
two isolated clusters. A new element is inserted on the boundary of Clus-
ter 1. All of the closest neighbors of the element belong to the Cluster 1,
thus missing the edges of Delaunay graph between the clusters. The
heuristic, however, selects element e0 from Cluster 2, thus, maintaining
the global connectivity in case the inserted element is the closest to e0
compared to any other element from Cluster 1.

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 827

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

is increased from 1 to efConstruction to control the recall of
the greedy search procedure; 2) the found closest neighbors
on each layer are also used as candidates for the best con-
nections of the inserted element (the number of connections
is determined by the parameterM).

Two methods for selecting the best M neighbors from the
candidates were considered: simple connection to the closest
elements (Algorithm 3) and the heuristic that accounts for the
distances between the candidate elements to create connec-
tions in diverse directions (Algorithm 4). The heuristic exam-
ines the candidates starting from the nearest (with respect to
the inserted element) and creates a connection to a candidate
only if it is closer to the base (inserted) element compared to
any of the already connected candidates. The heuristic has
two additional parameters: extendCandidates (set to false by
default) which extends the candidate set and useful only for
extremely clustered data, and keepPrunedConnections which
allows getting fixed number of connection per element. The
maximum number of connections that an element can have
per layer is defined by the parameter Mmax for every layer
higher than zero (a special parameter Mmax0 is used for the
ground layer separately). If a node is already full at the
moment of making of a new connection, then its extended
connection list gets shrunk by the same algorithm that used
for the selection of neighbors (algs. 3 or 4).

Algorithm 3. SELECT-NEIGHBORS-SIMPLE(q, C,M)

Input: base element q, candidate elements C, number of neigh-
bors to returnM
Output:M nearest elements to q
returnM nearest elements from C to q

Algorithm 4. SELECT-NEIGHBORS-HEURISTIC(q, C,M, lc,
extendCandidates, keepPrunedConnections)

Input: base element q, candidate elements C, number of neigh-
bors to returnM, layer number lc, flag indicating whether or not
to extend candidate list extendCandidates, flag indicating whether
or not to add discarded elements keepPrunedConnections
Output:M elements selected by the heuristic
1 R ;
2 W C //working queue for the candidates
3 if extendCandidates // extend candidates by their neighbors
4 for each e 2 C
5 for each eadj 2 neighbourhood(e) at layer lc
6 if eadj =2 W
7 W W [eadj
8 Wd ; // queue for the discarded candidates
9 while jW j > 0 and jRj < M
10 e extract nearest element fromW to q
11 if e is closer to q compared to any element from R
12 R R

S
e

13 else
14 Wd Wd [e
15 if keepPrunedConnections // add some of the discarded// con-

nections fromWd

16 whileWd> 0 and R<M
17 R R[extract nearest element fromWd to q
18 return R

The insertion procedure terminates when the connections
of the inserted elements are established on the zero layer.

The K-ANNS search algorithm used in Hierarchical
NSW is presented in Algorithm 5. It is roughly equivalent
to the insertion algorithm for an item with layer l ¼ 0. The
difference is that the closest neighbors found at the ground
layer which are used as candidates for the connections are
now returned as the search result. The quality of the search
is controlled by the ef parameter (corresponding to efCon-
struction in the construction algorithm).

Algorithm 5. K-NN-SEARCH(hnsw, q, K, ef)

Input: multilayer graph hnsw, query element q, number of near-
est neighbors to return K, size of the dynamic candidate list ef
Output: K nearest elements to q
1 W ; // set for the current nearest elements
2 ep get enter-point for hnsw
3 L level of ep // top layer for hnsw
4 for lc L . . . 1
5 W SEARCH-LAYER(q, ep, ef ¼ 1, lc)
6 ep get nearest element fromW to q
7 W SEARCH-LAYER(q, ep, ef, lc ¼ 0)
8 return K nearest elements fromW to q

4.1 Influence of the Construction Parameters

Algorithm construction parameters mL and Mmax0 are
responsible for maintaining the small world navigability in
the constructed graphs. Setting mL to zero (this corresponds
to having a single layer in the graph) andMmax0 toM leads to
production of directed k-NN graphs with power-law search
complexity well studied before [21], [29] (assuming using the
Algorithm 3 for neighbors selection). Setting mL to zero and
Mmax0 to infinity leads to production of NSW graphs with
polylogarithmic complexity [25], [26]. Finally, setting mL to
some non-zero value leads to emergence of controllable hier-
archy graphs which allow logarithmic search complexity by
the introduction of layers (see Section 3).

To achieve the optimum performance advantage of the
controllable hierarchy, the overlap between neighbors on
different layers (i.e., the fraction of element’s neighbors that
also belong to other layers) has to be small. In order to
decrease the overlap, we need to decrease themL. However,
at the same time, decreasingmL leads to an increase of aver-
age hop number during a greedy search on each layer,
which negatively affects the performance. This leads to the
existence of the optimal value for themL.

A simple choice for the optimal mL is 1=lnðMÞ, this
corresponds to the skip list parameter p ¼ 1=M with an
average single element overlap between the layers. Simu-
lations done on an Intel Core i7 5930K CPU show that the
proposed selection of mL is a reasonable choice (see Fig. 3
for data on 10m random d ¼ 4 vectors). In addition, the
plot demonstrates a massive speedup on low dimensional
data when increasing the mL from zero and the effect of
using the heuristic for selection of the graph connections.
It is hard to expect the same behavior for high dim-
ensional data since in this case the k-NN graph already
has very short greedy algorithm paths [28]. Surprisingly,
increasing the mL from zero leads to a measurable
increase in speed on very high dimensional data (100k
dense random d ¼ 1024 vectors, see a plot in Fig. 4),
and does not introduce any penalty for the Hierarchical

828 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

NSW approach. For real data such as SIFT vectors [1]
(which have complex mixed structure), the performance
improvement by increasing the mL is higher, but less
prominent at the current settings compared to improve-
ment from the heuristic (see Fig. 5 for 1-NN search perfor-
mance on 5m 128-dimensional SIFT vectors from the
learning set of BIGANN [13]).

Selection of the Mmax0 (the maximum number of connec-
tions that an element can have in the zero layer) also has a
strong influence on the search performance, especially in
the case of high quality (high recall) search. Simulations
show that setting Mmax0 to M (this corresponds to a k-NN
graph on each layer if the neighbors selection heuristic is
not used) leads to a very strong performance penalty at a
high recall. Simulations also suggest that 2 �M is a good
choice for Mmax0: setting the parameter higher leads to per-
formance degradation and excessive memory usage. In
Fig. 6 there are presented results of search performance for
the 5m SIFT learn dataset depending on the Mmax0 parame-
ter (done on an Intel Core i5 2400 CPU). The suggested
value gives performance close to optimal at different recalls.

In all of the considered cases, use of the heuristic for
proximity graph neighbors selection (Algorithm 4) leads to
a higher or similar search performance compared to the
na€ıve connection to the nearest neighbors (Algorithm 3).
The effect is the most prominent for low dimensional data,
at high recall for mid-dimensional data and for the case of
highly clustered data (ideologically discontinuity can be
regarded as a local low dimensional feature), see the com-
parison in Fig. 7 (Core i5 2400 CPU). When using the closest
neighbors as connections for the proximity graph, the Hier-
archical NSW algorithm fails to achieve a high recall for the

Fig. 4. Plots for query time versus mL parameter for 100k (100 thou-
sand) random vectors with d ¼ 1024. The autoselected value 1=lnðMÞ
formL is shown by an arrow.

Fig. 5. Plots for query time versusmL parameter for 5M SIFT learn data-
set. The autoselected value 1=lnðMÞ formL is shown by an arrow.

Fig. 6. Plots for query time versus Mmax0 parameter for 5M SIFT
learn dataset. The autoselected value 2 �M for Mmax0 is shown by
an arrow.

Fig. 3. Plots for query time versusmL parameter for 10M (10 million) ran-
dom vectors with d ¼ 4. The autoselected value 1=lnðMÞ for mL is
shown by an arrow.

Fig. 7. Effect of the method of neighbor selections (baseline corresponds
to Algorithm 3, heuristic to Algorithm 4) on clustered (100 random
isolated clusters) and non-clustered d ¼ 10 random vector data.

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 829

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

clustered data because the search stucks at the clusters’
boundaries. Contrary, when the heuristic is used (together
with candidates’ extension, line 3 in Algorithm 4), clustering
leads to even higher performance. For uniform and very
high dimensional data, there is a little difference between
the neighbors selecting methods (see Fig. 4).

The only meaningful construction parameter left for the
user is M. A reasonable range of M is from 5 to 48. Simula-
tions show that smaller M generally produces better results
for lower recalls and/or lower dimensional data, while big-
gerM is better for high recall and/or high dimensional data
(see Fig. 8 for illustration, Core i5 2400 CPU). The parameter
also defines the memory consumption of the algorithm
(which is proportional to M), so it should be selected with
care.

Selection of the efConstruction parameter is straightfor-
ward. As it was suggested in [26] it has to be large enough
to produce K-ANNS recall close to unity during the con-
struction process (0.95 is enough for the most use-cases).
And just like in [26], this parameter can possibly be auto-
configured by using sample data.

The construction process can be easily and efficiently
parallelized with only few synchronization points (as dem-
onstrated in Fig. 9) and no measurable effect on index qual-
ity. Construction speed/index quality tradeoff is controlled
via the efConstruction parameter. The tradeoff between the
search time and the index construction time is presented in

Fig. 10 for a 10m SIFT dataset and shows that a reasonable
quality index can be constructed for efConstruction ¼ 100
on a 4X 2.4 GHz 10-core Xeon E5-4650 v2 CPU server in just
3 minutes. Further increase of the efConstruction leads to lit-
tle extra performance but in exchange for significantly lon-
ger construction time.

4.2 Complexity Analysis

4.2.1 Search Complexity

The complexity scaling of a single search can be strictly ana-
lyzed under the assumption that we build the exact Delau-
nay graphs instead of the approximate ones. Suppose we
have found the closest element on some layer (this is
guaranteed by having the Delaunay graph) and then
descended to the next layer. One can show that the average
number of steps before we find the closest element in the
layer is bounded by a constant.

Indeed, the element levels are drawn randomly, so when
traversing the graph there is a fixed probability p ¼
expð�mLÞ that the next node belongs to the upper layer.
However, the search on the layer always terminates before
it reaches the element which belongs to the higher layer
(otherwise the search on the upper layer would have
stopped on a different element), so the probability of not
reaching the target on s-th step is bounded by expð�s �mLÞ.
Thus the expected number of steps in a layer is bounded by
a sum of geometric progression S ¼ 1=ð1� expð�mLÞÞ,
independent of the dataset size.

If we assume that in the limit of the infinite dataset size
ðN !1Þ the average degree of a node in the Delaunay
graph is capped by a constant C (this is the case for random
Euclid data [48], but can be in principle violated in exotic
spaces), then the overall average number of distance evalua-
tions in a layer is bounded by a constant C � S, independent
of the dataset size.

And since the expectation of the maximum layer index
by the construction scales as Oðlog ðNÞÞ, the overall complex-
ity scaling is OðlogðNÞÞ, in agreement with the simulations
on low dimensional datasets.

The initial assumption of having the exact Delaunay
graph violates in Hierarchical NSW due to the usage of
approximate edge selection heuristic. Thus, to avoid stuck-
ing into a local minimum the greedy search algorithm

Fig. 8. Plots for recall error versus query time for different parameters of
M for Hierarchical NSW on 5M SIFT learn dataset.

Fig. 9. Construction time for Hierarchical NSW on 10m SIFT dataset for
different numbers of threads on two CPU systems.

Fig. 10. Plots of the query time versus construction time tradeoff for Hier-
archical NSW on 10M SIFT dataset.

830 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

employs a backtracking procedure on the zero layer. Simu-
lations show that, at least for low dimensional data (Fig. 11,
d ¼ 4), the dependence of the required ef parameter (which
determines the complexity via the minimal number of hops
during the backtracking) to get a fixed recall saturates with
the increase of N . The backtracking complexity is an addi-
tive term in respect to the final complexity, thus, as follows
from the empirical data, inaccuracies of the Delaunay graph
approximation do not alter the scaling.

The empirical investigation of the Delaunay graph
approximation resilience (presented above) requires having
the average number of Delaunay graph edges independent
of the dataset size in order to evidence how well the edges
are approximated with a constant number of connections in
Hierarchical NSW. However, the average degree of Delau-
nay graph scales exponentially with the dimensionality
[39], thus for high dimensional data (e.g. d ¼ 128) the afore-
mentioned condition requires having extremely large
datasets, making such empirical investigation unfeasible.
Further analytical evidence is required to confirm whether
the resilience of Delaunay graph approximations general-
izes to higher dimensional spaces.

4.2.2 Construction Complexity

The construction is done by iterative insertions of all ele-
ments, while the insertion of an element is merely a
sequence of K-ANN-searches at different layers with subse-
quent use of the heuristic (which has fixed complexity at
fixed efConstruction). The expected value of the number of
layers for an element to be added does not depend on the
size of the dataset:

E lþ 1½ � ¼ E � lnðunifð0; 1ÞÞ�mL½ � þ 1 ¼ mL þ 1: (1)

Thus, the insertion complexity scaling with respect to N
is the same as the one for the search, meaning that, at least
for relatively low dimensional datasets, the construction time
scales as OðN � logðNÞÞ.

4.2.3 Memory Cost

The memory consumption of the Hierarchical NSW is
mostly defined by the storage of the graph connections.
The number of connections per element is Mmax0 for the
zero layer and Mmax for all other layers. Thus, the

average memory consumption per element is ðMmax0þ
mL �MmaxÞ�bytes_per_link. If we limit the maximum total
number of elements by approximately four billion, we
can use four-byte unsigned integers to store the connec-
tions. Tests suggest that typical close to optimal M values
usually lie in a range between 6 and 48. This means that
the typical memory requirements for the index (exclud-
ing the size of the data) are about 60-450 bytes per object,
which is in a good agreement with the simulations.

5 EOMPARISON TO STATE-OF-THE-ART

The Hierarchical NSW algorithm was implemented in
Cþþ on top of the Non-Metric Space Library (nmslib)
[49]1, which already had an NSW implementation (under
name “sw-graph”). Due to several limitations posed by the
library, to achieve better performance the Hierarchical NSW
implementation uses custom distance functions together
with C-style memory management, which avoids unneces-
sary implicit addressing and allows efficient hardware and
software prefetching during the graph traversal.

Comparing the performance of K-ANNS algorithms is a
non-trivial task since the state-of-the-art is constantly chang-
ing as new algorithms and implementations are emerging.
In this work, we concentrated on comparison with the best
algorithms in Euclid spaces that have open source imple-
mentations. An implementation of the Hierarchical NSW
algorithm is also distributed as a part of the open source
nmslib library1 together with an external Cþþ memory-
efficient header-only version with support for incremental
index construction2.

The comparison section consists of four parts: compari-
son to the baseline NSW (Section 5.1), comparison to the
state-of-the-art algorithms in Euclid spaces (Section 5.2),
rerun of the subset of tests [34] in general metric spaces in
which NSW failed (Section 5.3) and comparison to state-
of-the-art PQ-algorithms on a large 200M SIFT dataset
(Section 5.4).

5.1 Comparison with Baseline NSW

For the baseline NSW algorithm implementation, we used
the “sw-graph” from nmslib 1.1 (which is slightly updated
compared to the implementation tested in [33], [34]) to dem-
onstrate the improvements in speed and algorithmic com-
plexity (measured in the number of distance computations).

Fig. 12(a) presents a comparison of Hierarchical NSW to
NSW for d ¼ 4 random hypercube data made on a Core i5
2400 CPU (10-NN search). Hierarchical NSW uses much
fewer distance computations during a search on the dataset,
especially at high recalls.

The scalings of the algorithms on a d ¼ 8 random hyper-
cube dataset for a 10-NN search with a fixed recall of 0.95
are presented in Fig. 12(b). It clearly demonstrates that Hier-
archical NSW has a complexity scaling for this setting not
worse than logarithmic and outperforms NSW at any data-
set size. The performance advantage in absolute time
(Fig. 12(c)) is even higher due to improved algorithm
implementation.

Fig. 11. Plots of the ef parameter required to get fixed accuracies versus
the dataset size for d ¼ 4 random vector data.

1. https://github.com/nmslib/nmslib.
2. https://github.com/nmslib/hnsw.

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 831

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnsw

5.2 Comparison in Euclid Spaces

The main part of the comparison was carried out on vector
datasets with use of the popular K-ANNS benchmark ann-
benchmark3 as a testbed. The testing system utilizes python
bindings of the algorithms – it consequentially runs the
K-ANN search for one thousand queries (extracted via ran-
dom split of the initial dataset)with preset algorithmparame-
ters producing an output containing the recall and average
time of a single search. The considered algorithms are:

1. Baseline NSW algorithm from nmslib 1.1 (“sw-
graph”).

2. FLANN 1.8.4 [6]. A popular library4 containing sev-
eral algorithms, built-in in OpenCV5. We used the
available auto-tuning procedure with several reruns
to infer the best parameters.

3. Annoy6, 02.02.2016 build. A popular algorithm based
on random projection tree forest.

4. VP-tree. A general metric space algorithm with met-
ric pruning [50] implemented as a part of nmslib 1.1.

5. FALCONN7, version 1.2. A new efficient LSH
algorithm for cosine similarity data [51].

The comparison was done on a 4X Xeon E5-4650 v2
Debian OS system with 128 Gb of RAM. For every
algorithm, we carefully chose the best results at every recall
range to evaluate the best possible performance (with initial
values from the testbed defaults). All tests were done in a
single thread regime. Hierarchical NSW was compiled
using the GCC 5.3 with -Ofast optimization flag.

The parameters and description of the used datasets are
outlined in Table 1. For all of the datasets except GloVe we
used the L2 distance. For GloVe we used the cosine similar-
ity (equivalent to L2 after vector normalization). The brute-
force (BF) time is measured by the nmslib library.

Results for the vector data are presented in Fig. 13. For
SIFT, GloVE, DEEP and CoPhIR datasets Hierarchical NSW
clearly outperforms the rivals by a large margin. For low
dimensional data ðd ¼ 4ÞHierarchical NSW is slightly faster
at high recall compared to the Annoy while strongly outper-
forms the other algorithms.

5.3 Comparison in General Spaces

A recent comparison of algorithms [34] in general spaces (i.e.,
non-symmetric or with violation of triangle inequality)
showed that the baselineNSWalgorithm has severe problems
on low dimensional datasets. To test the performance of the
Hierarchical NSW algorithm we have repeated a subset of
tests from [34] on which NSW performed poorly or subopti-
mal. For that purpose, we used a built-in nmslib testing sys-
tem which had scripts to run tests from [34]. The evaluated
algorithms included the VP-tree, permutation techniques
(NAPP and brute-force filtering) [49], [55], [56], [57], the basic
NSW algorithm and NNDescent-produced proximity graphs
[29] (both in pair with the NSW graph search algorithm). As
in the original tests, for each dataset the test includes the
results of either NSW or NNDescent, depending on which
structure performed better. No custom distance functions or
special memory management were used in this case for Hier-
archical NSW leading to some performance loss.

The datasets are summarized in Table 2. Further details
of the datasets, spaces and algorithm parameter selection
can be found in the original work [34]. The brute-force (BF)
time is measured using the nmslib library.

The results are presented in Fig. 14. Hierarchical NSW
significantly improves the performance of NSW and is the
leader for any of the tested datasets. The strongest enhance-
ment over NSW, almost by 3 orders of magnitude is
observed for the dataset with the lowest dimensionality, the
wiki-8 with JS-divergence. This is an important result that
demonstrates the robustness of Hierarchical NSW, as for
the original NSW this dataset was a stumbling block. Note

Fig. 12. Comparison between NSW and Hierarchical NSW: (a) distance calculation number versus accuracy tradeoff for a 10 million 4-dimensional
random vectors dataset; (b-c) performance scaling in terms of number of distance calculations (b) and raw query (c) time on a 8-dimensional random
vectors dataset.

TABLE 1
Parameters of the Used Datasets on Vector Spaces Benchmark

Dataset Description Size d BF time Space

SIFT Image feature vectors [13] 1M 128 94 ms L2

GloVe Word embeddings trained
on tweets [52]

1.2M 100 95 ms Cosine

CoPhIR MPEG-7 features extracted
from the images [53]

2M 272 370 ms L2

Random
vectors

Random vectors in hyper-
cube

30M 4 590 ms L2

DEEP One million subset of the bil-
lion deep image

1M 96 60 ms L2

features dataset [14]
MNIST Handwritten digit images

[54]
60k 784 22 ms L2

3. https://github.com/erikbern/ann-benchmarks.
4. https://github.com/mariusmuja/flann.
5. https://github.com/opencv/opencv.
6. https://github.com/spotify/annoy.
7. https://github.com/FALCONN-LIB/FALCONN.

832 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/erikbern/ann-benchmarks
https://github.com/mariusmuja/flann
https://github.com/opencv/opencv
https://github.com/spotify/annoy
https://github.com/FALCONN-LIB/FALCONN

that for the wiki-8 to nullify the effect of implementation
results are presented for the distance computations number
instead of the CPU time.

5.4 Comparison with Product Quantization
Based Algorithms

Product quantization K-ANNS algorithms [10], [11], [12],
[13], [14], [15], [16], [17] are considered as the state-of-the-art
on billion scale datasets since they can efficiently compress
stored data, allowing modest RAM usage while achieving
millisecond search times on modern CPUs.

To compare the performance of Hierarchical NSW
against PQ algorithms we used the facebook Faiss library8

as the baseline (a new library with state-of-the-art PQ
algorithms [12], [15] implementations, released after the
current manuscript was submitted) compiled with the
OpenBLAS backend. The tests were done for a 200M subset
of the 1B SIFT dataset [13] on a 4X Xeon E5-4650 v2 server
with 128Gb of RAM. The ann-benchmark testbed was not
feasible for these experiments because of its reliance on the
32-bit floating point format (requiring more than 100 Gb
just to store the data). To get the results for Faiss PQ algo-
rithms we have utilized built-in scripts with the parameters
from Faiss wiki9. For the Hierarchical NSW algorithm, we
used a special build outside of the nmslib with a small
memory footprint, simple non-vectorized integer distance
functions and support for incremental index construction10.

The results are presented in Fig. 15 with the summariza-
tion of the parameters in Table 3. The peak memory con-
sumption was measured by using Linux “time –v” tool in
separate test runs after index construction for both of the
algorithms. Even though Hierarchical NSW requires signifi-
cantly more RAM, it can achieve much higher accuracy
while offering a massive advance in search speed and much
faster index construction.

The inset in Fig. 15 presents the scaling of the query time
versus the dataset size for Hierarchical NSW. Note that the
scaling deviates from pure logarithmic, possibly due to the
relatively high dimensionality of the dataset.

6 DISCUSSION

By using structure decomposition of navigable small world
graphs together with the smart neighbor selection heuristic
the proposed Hierarchical NSW approach overcomes several
important problems of the basic NSW structure advancing
the state-of-the-art inK-ANNsearch.HierarchicalNSWoffers
excellent performance and is a clear leader on a large variety
of the datasets, surpassing the opensource rivals by a large
margin in case of high dimensional data. Even for the datasets
where the previous algorithm (NSW) has lost by orders of
magnitude, Hierarchical NSW was able to come first. Hierar-
chical NSW supports continuous incremental indexing and
can also be used as an efficientmethod for getting approxima-
tions of the k-NN and relative neighborhood graphs, which
are byproducts of the index construction.

Robustness of the approach is a strong feature which
makes it very attractive for practical applications. The
algorithm is applicable in generalized metric spaces perform-
ing the best on any of the datasets tested in this paper and
thus eliminating the need for complicated selection of the best

Fig. 13. Results of the comparison of Hierarchical NSW with open source implementations of K-ANNS algorithms on five datasets for 10-NN
searches. The time of a brute-force search is denoted as the BF.

8. https://github.com/facebookresearch/faiss 2017 May build.
From 2018 Faiss library has its own implementation of Hierarchical
NSW.

9. https://github.com/facebookresearch/faiss/wiki/Indexing-1G-
vectors.

10. https://github.com/nmslib/hnsw.

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 833

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors
https://github.com/nmslib/hnsw

algorithm for a specific problem. We stress the importance of
the algorithm’s robustness since the datamay have a complex
structure with different effective dimensionality across the
scales. For instance, a dataset can consist of points lying on a
curve that randomly fills a high dimensional cube, thus being
high dimensional at large scale and low dimensional at small
scale. In order to perform the efficient search in such datasets,
an approximate nearest neighbor algorithm has to work well
for both cases of high and low dimensionality.

There are several ways to further increase the efficiency
and applicability of the Hierarchical NSW approach. There
is still one meaningful parameter left which strongly affects
the construction of the index – the number of added

connections per layer M. Potentially, this parameter can be
inferred directly by using different heuristics [4]. It would
also be interesting to compare Hierarchical NSW on the full
1B SIFT and 1B DEEP datasets [10], [11], [12], [13], [14] and
add support for element updates and removal.

One of the apparent shortcomings of the proposed
approach compared to the basic NSW is the loss of the pos-
sibility of distributed search. The search in the Hierarchical
NSW structure always starts from the top layer, thus the
structure cannot be made distributed by using the same
techniques as described in [26] due to congestion of
the higher layer elements. Simple workarounds can be used
to distribute the structure, such as partitioning the data

TABLE 2
Used Datasets for Repetition of the Non-Metric Data Tests Subset

Dataset Description Size d BF time Distance

Wiki-sparse TF-IDF (term frequency-inverse
document requency) vectors (cre-
ated via GENSIM [58])

4M 105 5.9 s Sparse cosine

Wiki-8 Topic histograms created from
sparse TF-IDF vectors of the wiki-
sparse dataset (created via ENSIM
[58])

2M 8 - Jensen- Shannon (JS)
divergence

Wiki-128 Topic histograms created from
sparse TF-IDF vectors of the wiki-
sparse dataset (created via ENSIM
[58])

2M 128 1.17 s Jensen- Shannon (JS)
divergence

ImageNet Signatures extracted from LSVRC-
2014 with SQFD (signature qua-
dratic form) distance [59]

1M 272 18.3 s SQFD

DNA DNA (deoxyribonucleic acid) data-
set sampled rom the Human
Genome 5 [34].

1M - 2.4 s Levenshtein

Fig. 14. Results of the comparison of Hierarchical NSW with general space K-ANNS algorithms from the Non-Metric Space Library on five datasets
for 10-NN searches. The time of a brute-force search is denoted as the BF.

834 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

across cluster nodes studied in [6], however, in this case, the
total parallel throughput of the system does not scale well
with the number of computer nodes.

Still, there are other possible known ways to make this
particular structure distributed. Hierarchical NSW is ideo-
logically very similar to the well-known one-dimensional
exact search probabilistic skip list structure and thus can
use the same techniques to make the structure distributed
[45]. Potentially this can lead to even better distributed per-
formance compared to the base NSW due to logarithmic
scalability and ideally uniform load on the nodes.

ACKNOWLEDGMENTS

We thank Leonid Boytsov formany helpful discussions, assis-
tance with Non-Metric Space Library integration and com-
ments on the manuscript. We thank Seth Hoffert and Azat
Davletshin for the suggestions on the manuscript and the
algorithm and fellows who contributed to the algorithm on
the github repository.We also thank Valery Kalyagin for sup-
port of this work. The reported study was funded by RFBR,
according to the research project No. 16-31-60104 mol_a_dk.
The work has been done while Yury A. Malkov was with the
Federal state budgetary institution of science Institute of
Applied Physics of the Russian Academy of Sciences, 46
Ul’yanov Street, 603950 NizhnyNovgorod, Russia. Dmitry A.
Yashunin has done thiswork as an independent researcher.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[2] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” J. Amer.
Soc. Inform. Sci., vol. 41, pp. 391–407, 1990.

[3] P. N. Yianilos, “Data structures and algorithms for nearest neigh-
bor search in general metric spaces,” SODA, vol. 93, no. 194,
pp. 311–321, 1993.

[4] G. Navarro, “Searching in metric spaces by spatial approx-
imation,” VLDB J., vol. 11, no. 1, pp. 28–46, 2002.

[5] E. S. Tellez, G. Ruiz, and E. Chavez, “Singleton indexes for nearest
neighbor search,” Inf. Syst., vol. 60, pp. 50–68, 2016.

[6] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms
for high dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 11, pp. 2227–2240, Nov. 2014.

[7] M. E. Houle and M. Nett, “Rank-based similarity search: Reduc-
ing the dimensional dependence,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 1, pp. 136–150, Jan. 2015.

[8] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal LSH for angular distance,” in Proc. Adv. Neu-
ral Inf. Process. Syst., 2015, pp. 1225–1233.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[10] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo, “Fast neighbor-
hood graph search using cartesian concatenation,” inMultimedia Data
Mining andAnalytics, Berlin, Germany: Springer, 2015, pp. 397–417.

[11] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in ham-
ming space with multi-index hashing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[12] A. Babenko and V. Lempitsky, “The inverted multi-index,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2012, pp. 3069–3076.

[13] H. Jegou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, Jan. 2011.

[14] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale
datasets of deep descriptors,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2016, pp. 2055–2063.

[15] M. Douze, H. J�egou, and F. Perronnin, “Polysemous codes,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 785–801.

[16] Y. Kalantidis and Y. Avrithis, “Locally optimized product quanti-
zation for approximate nearest neighbor search,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 2321–2328.

[17] P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. Lensch,
“Efficient large-scale approximate nearest neighbor search on the
gpu,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 2027–2035.

[18] S. Arya and D. M. Mount, “Approximate nearest neighbor queries
in fixed dimensions,” Proc. 4th Annu. ACM-SIAM Symp. Discrete
Algorithms, 1993, pp. 271–280.

[19] J. Wang and S. Li, “Query-driven iterated neighborhood graph
search for large scale indexing,” in Proc. 20th ACM Int. Conf. Multi-
media, 2012, pp. 179–188.

[20] Z. Jiang, L. Xie, X. Deng, W. Xu, and J. Wang, “Fast nearest neigh-
bor search in the hamming space,” in Proc. MultiMedia Model.,
2016, pp. 325–336.

[21] E. Ch�avez and E. S. Tellez, “Navigating k-nearest neighbor graphs
to solve nearest neighbor searches,” in Advances in Pattern Recogni-
tion. Berlin, Germany: Springer, 2010, pp. 270–280.

[22] K. Aoyama, K. Saito, H. Sawada, and N. Ueda, “Fast approximate
similarity search based on degree-reduced neighborhood graphs,”
in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing, 2011, pp. 1055–1063.

[23] G. Ruiz, E. Ch�avez, M. Graff, and E. S. T�ellez, “Finding near
neighbors through local search,” in Similarity Search and Applica-
tions. Berlin, Germany: Springer, 2015, pp. 103–109.

[24] R. Paredes, “Graphs for metric space searching,” PhD thesis,
University of Chile, Chile. Dept. of Computer Science Tech Report
TR/DCC-2008-10. [Online]. Available: http://www.dcc.uchile.
cl/�raparede/publ/08PhDthesis.pdf, 2008.

[25] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov,
“Scalable distributed algorithm for approximate nearest neighbor
search problem in high dimensional general metric spaces,” in
Similarity Search and Applications. Berlin, Germany: Springer, 2012,
pp. 132–147.

Fig. 15 Results of comparison with Faiss library on the 200M SIFT
dataset from [13]. The inset shows the scaling of the query time versus
the dataset size for Hierarchical NSW.

TABLE 3
Parameters for Comparison Between Hierarchical NSW and

Faiss on a 200M Subset of 1B SIFT Dataset

Algorithm Build time Peak memory
(runtime)

Parameters

Hierarchical
NSW

5.6 hours 64 Gb M ¼ 16; efConstruction ¼
500 ð1Þ

Hierarchical
NSW

42 minutes 64 Gb M ¼ 16; efConstruction ¼
40 ð2Þ

Faiss 12 hours 30 Gb OPQ64; IMI2x14; PQ64 ð1Þ
Faiss 11 hours 23.5 Gb OPQ32; IMI2x14; PQ32 ð2Þ

MALKOV AND YASHUNIN: EFFICIENT AND ROBUST APPROXIMATE NEAREST NEIGHBOR SEARCH USING HIERARCHICAL NAVIGABLE... 835

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

http://www.dcc.uchile.cl/∼raparede/publ/08PhDthesis.pdf
http://www.dcc.uchile.cl/∼raparede/publ/08PhDthesis.pdf
http://www.dcc.uchile.cl/∼raparede/publ/08PhDthesis.pdf

[26] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov,
“Approximate nearest neighbor algorithm based on navigable
small world graphs,” Inf. Syst., vol. 45, pp. 61–68, 2014.

[27] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, pp. 668–676, 1990.

[28] C. C. Cartozo and P. De Los Rios, “Extended navigability of small
world networks: exact results and new insights,” Phys. Rev. Lett.,
vol. 102, no. 23, 2009, Art. no. 238703.

[29] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proc. 20th Int.
Conf. World Wide Web, 2011, pp. 577–586.

[30] A. Ponomarenko, Y. Malkov, A. Logvinov, and V. Krylov,
“Approximate nearest neighbor search small world approach,” in
Proc. Int. Conf. Inf. Commun. Technol. Appl., 2011.

[31] J. M. Kleinberg, “Navigation in a small world,” Nature, vol. 406,
no. 6798, pp. 845–845, 2000.

[32] M. Boguna, D. Krioukov, and K. C. Claffy, “Navigability of com-
plex networks,”Nature Phys., vol. 5, no. 1, pp. 74–80, 2009.

[33] A. Ponomarenko, N. Avrelin, B. Naidan, and L. Boytsov,
“Comparative analysis of data structures for approximate nearest
neighbor search,”Data Anal., pp. 125–130, 2014.

[34] B. Naidan, L. Boytsov, and E. Nyberg, “Permutation search meth-
ods are efficient, yet faster search is possible,” VLDB Proc., vol. 8,
no. 12, pp. 1618–1629, 2015.

[35] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and
M. Bogun�a, “Hyperbolic geometry of complex networks,” Phys.
Rev. E, vol. 82, no. 3, 2010, Art. no. 036106.

[36] A. Guly�as, J. J. B�ır�o, A. Ko��r€osi, G. R�etv�ari, and D. Krioukov,
“Navigable networks as Nash equilibria of navigation games,”
Nature Commun., vol. 6, 2015, Art. no. 7651.

[37] Y. Lifshits and S. Zhang, “Combinatorial algorithms for nearest
neighbors, near-duplicates and small-world design,” in Proc. 20th
Annu. ACM-SIAM Symp. Discrete Algorithms, 2009, pp. 318–326.

[38] A. Karbasi, S. Ioannidis, and L. Massoulie, “From small-world
networks to comparison-based search,” IEEE Trans. Inf. Theory,
vol. 61, no. 6, pp. 3056–3074, 2015.

[39] O. Beaumont, A.-M. Kermarrec, and �E. Rivi�ere, “Peer to peer mul-
tidimensional overlays: Approximating complex structures,” in
Principles of Distributed Systems. Berlin, Germany: Springer, 2007,
pp. 315–328.

[40] O. Beaumont, A.-M. Kermarrec, L. Marchal, and �E. Rivi�ere,
“VoroNet: A scalable object network based on Voronoi
tessellations,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2007, pp. 1–10.

[41] J. Kleinberg, “The small-world phenomenon: An algorithmic
perspective,” in Proc. 32nd Annu. ACM Symp. Theory Comput.,
2000, pp. 163–170.

[42] J. Travers and S. Milgram, “An experimental study of the small
world problem,” Sociometry, vol. 32, pp. 425–443, 1969.

[43] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[44] Y. A. Malkov and A. Ponomarenko, “Growing homophilic net-
works are natural navigable small worlds,” PloS One, vol. 11,
2016, Art. no. e0158162.

[45] M. T. Goodrich, M. J. Nelson, and J. Z. Sun, “The rainbow skip
graph: A fault-tolerant constant-degree distributed data structure,”
in Proc. 17th Annu. ACM-SIAM Symp. Discrete Algorithm, 2006,
pp. 384–393.

[46] G. T. Toussaint, “The relative neighbourhood graph of a finite pla-
nar set,” Pattern Recognit., vol. 12, no. 4, pp. 261–268, 1980.

[47] B. Harwood and T. Drummond, “FANNG: Fast approximate
nearest neighbour graphs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 5713–5722.

[48] R. A. Dwyer, “Higher-dimensional Voronoi diagrams in linear
expected time,”Discrete Comput. Geometry, vol. 6, no. 3, pp. 343–367,
1991.

[49] L. Boytsov and B. Naidan, “Engineering efficient and effective
non-metric space library,” in Similarity Search and Applications.
Berlin, Germany: Springer, 2013, pp. 280–293.

[50] L. Boytsov and B. Naidan, “Learning to prune in metric and non-
metric spaces,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1574–1582.

[51] A. Andoni and I. Razenshteyn, “Optimal data-dependent hashing
for approximate near neighbors,” in Proc. 4th Annu. ACM Symp.
Theory Comput., 2015, pp. 793–801.

[52] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vec-
tors for word representation,” in Proc. Empiricial Methods Natural
Language Process., pp. 1532–1543, 2014.

[53] P. Bolettieri, et al., “CoPhIR: A test collection for content-based
image retrieval,” arXiv:0905.4627, 2009.

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[55] E. Ch�avez, M. Graff, G. Navarro, and E. T�ellez, “Near neighbor
searching with K nearest references,” Inf. Syst., vol. 51, pp. 43–61,
2015.

[56] E. C. Gonzalez, K. Figueroa, and G. Navarro, “Effective proximity
retrieval by ordering permutations,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 9, pp. 1647–1658, Sep. 2008.

[57] E. S. Tellez, E. Ch�avez, and G. Navarro, “Succinct nearest neigh-
bor search,” Inf. Syst., vol. 38, no. 7, pp. 1019–1030, 2013.

[58] R. Rehurek and P. Sojka, “Software framework for topic model-
ling with large corpora,” in Proc. LREC 2010 Workshop New Chal-
lenges NLP Frameworks, 2010, pp. 45–50.

[59] C. Beecks, “Distance-based similarity models for content-based
multimedia retrieval,” Hochschulbibliothek der Rheinisch-
Westf€alischen Technischen Hochschule Aachen, 2013.

Yury A. Malkov received the master’s degree in
physics from Nizhny Novgorod State University,
in 2009, and the PhD degree in laser physics
from the Institute of Applied Physics RAS, in
2015. He is an author of more than 20 papers
on physics and computer science. He currently
occupies a position of a project leader in Sam-
sung AI Center, in Moscow. His current research
interests include deep learning, scalable similarity
search, biological and artificial neural networks.

Dmitry A. Yashunin received the master’s
degree in physics from Nizhny Novgorod State
University, in 2009, and the PhD degree in laser
physics from the Institute of Applied Physics
RAS, in 2015. From 2008 to 2012 he was working
in Mera Networks. He is an author of more than
10 papers on physics. He is currently works at
Intelli-Vision in the position of a leading research
engineer. His current research interests include
scalable similarity search, computer vision and
deep learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

836 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: The University of Utah. Downloaded on December 03,2024 at 21:58:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

