Atomics and Memory

Consistency
Aug 29th, CS 6530

James McMahon, Hunter McCoy

Putting the Ain ACID

nl - W

M il

l\ il |

Nope, the other kind of ACID

Specifically, Atomicity

- Atomicity comes from the Greek atomos, meaning “indivisible”
- An atomic operation is a set of smaller operations that all occur
simultaneously

Why is this important?

What we mean by “Consistency”

e |tis important for memory to be in a
“consistent” state, meaning that there
are no partially modified portions of
memory.

e For example, if you had a portal, you
would want to ensure that you either
made it entirely through the portal, or
not at all. You wouldn’t want your torso
to make it through but not your legs!

Applying this idea to Memory

e There are cases when we don’t want operations to be broken up by other
operations. And if these operations were to be broken up our memory would
be “inconsistent”.

e If we had two threads writing to a string and then reading from it we would

want that string to have one of two options.
o Foo = “hello world”
o Foo = “this is a test”
e \We wouldn’t want to see something like:

o “this isworld”
o “hello atest’.

Enforcing memory consistency

e \When multiple threads are working on the same
object, we can enforce consistency by only allowing

one thread to operate at a time.

o This is a property known as mutual exclusion, and a section of
code that enforces it is known as a critical region.

e To build a critical region, we can use locks (mutexes)
or atomics

Locks

e Alock is a barrier that only allows one thread at a time to pass through

o Comes in two flavors
o Atry-lock makes one attempt to acquire the lock, and returns the result
o Await-lock stalls the thread until the lock is acquired.

e Library locks (pthread mutex t) typically controlled by the OS

o Slower for most use cases

—a@ ol

Try Lock
yoee Spin lock

Atomics

e Atomic instructions create a critical region for one operation
e Typically implemented at the hardware level, much faster than locking
e Necessary for building lock-free and wait-free data structures.

Common atomics

type atomic_load(type * x): atomically read memory from x
void atomic_store(type * x, type val): store val in x

type atomic_exchange(type * x, type val): replace the value in x with val, and
return the old value.

type compare_exchange(type * x, type expected, type new): if x == expected,
atomically replace with new. Else do nothing. Returns the old value in x.

Arithmetic: Add, Sub, And, or, Xor: op(type * x, type y).
More info in the project README

Relevant GNU compiler atomics

bool: __sync_bool_compare_and_swap (type *ptr, type oldval, type newval)
If *ptr == oldval then set *ptr = newval (returns true if operation succeeded)
type: __sync_val_compare_and_swap (type *ptr, type oldval, type newval)
If *ptr == oldval, set *ptr = newval (returns oldvalue either way)
type: __sync_lock_test_and_set (type *ptr, type value)
Returns the old value, sets it equal to the new value
void: __sync_lock_release (type *ptr)

Sets the value of the pointer to zero

Examples and descriptions taken from:
https://gcc.gnu.org/onlinedocs/gcc/_005f 005fsync-Builtins.html

https://gcc.gnu.org/onlinedocs/gcc/_005f 005fatomic-Builtins.html

/lto access these compiler atomics

#if Idefined(_ GNU_SOURCE)
#define _ GNU_SOURCE
#endif

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

Basic idea behind implementing a spin lock

A way of thinking through a spin lock is that you have acquired it if the old value
was “unlocked” and you set it to “locked”. If that didn’t happen (the lock was
already taken) then you “spin” and retry until you can set it from “unlocked” to
“locked”. Using atomics, only one thread at a time will be able to see the case of

changing “unlocked” to “locked”.

Example: Building a lock with atomics

bool lock = 0;

void stall_lock(){
bool currently_locked = 1;
while (currently_locked){
//attempt to acquire the lock
//expect old value to be @ (unlocked)

//if it is @ we acquire the lock
currently_locked = __sync_val_compare_and_swap(&lock, 0, 1);

void unlock(){

__sync_val_compare_and_swap(&lock, 1, 0);

Volatile

e \Volatile is a keyword that prevents the compiler from making optimizations on

a variable
o Prevents memory reordering during compilation
o Prevents caching
o Prevents compiler optimizations

For example, without volatile something &
like: while(foo > bar){//empty} could
become if(foo > bar){while();}.

WARNING:
EXTREMELY
VOLATILE

*At least for new material

Project 1

Your task: implement a reader-writer lock

e \Write lock/unlock: prevents readers and writers from entering. Waits until all
readers in the lock have exited before entering.

e Read lock/unlock: Waits until no writer is in the lock. Multiple readers can
enter the lock

Debugging parallel programs

Always turn on debug flags for debugging (make D=1)

1) GDB: set breakpoints and step through code
a) https://www.cs.umd.edu/~srhuang/teaching/cmsc212/gdb-tutorial-handout.pdf

2) Perf: record data on a run and identify hotspots
a) https://phoenixnap.com/kb/linux-perf

Fixing correctness

One of the most effective ways to debug parallel code is to play an adversary:

1) Identify the issue that is breaking (you're trying to make it happen)
2) You control thread scheduling - try and think of a schedule that

You got this :D

How to enforce Memory Consistency

We enforce memory consistency by using locks. Locks allow us to stop a second
thread from operating on a region that another thread is already operating on.

But how do we implement locks?

Trying to make a lock

while(lock);

lock = true

lock = false

Trying to make a lock pt 2

while(1){
while(lock);
lock = my_id //lock the region
if(lock = my_id)

continue;

lock =0

So, how do we make a lock?

How do we “lock” the operations that occur when using the lock?

Motivating case: serial vs parallel addition

int x = 0

for (int i = 0; 1 < 1000; i++)

X += 1

}

Parallel case

int x = 0

#pragma omp parallel for

for (int 1 = 0: i < 1000: i++){
X += 1
}

Why are they different?

x = x+1 isn’t really one instruction

tdex el

add r1, r1, 1
str x, ril

Why are they different?

x = x+1 isn’t really one instruction

tdex el Ladmx |

add r1, r1, 1
str x, ril

add r1, rl1, 1
str x, rl

Why are they different?

x = x+1 isn’t really one instruction

tdex el Ladmx |

add r1, r1, 1
str x, ril

add r1, rl1, 1
str x, rl

Why are they different?

x = x+1 isn’t really one instruction

tdex el Ladmx |

add r1, r1, 1
str x, ril

add r1, rl1, 1
str x, rl

Why are they different?

x = x+1 isn’t really one instruction

tdex el Ladmx |

add r1, r1, 1
str x, ril

A Two adds but x is only incremented once

add r1, rl1, 1
str x, rl

Using atomics

Atomic operations allow us to perform a combination of instructions
“‘instantaneously”. This allows us to ensure that specific sets of CPU instructions
do not become interleaved with another thread’s instructions and execute to

completion before being descheduled.

Types of atomics

Locks and critical regions

Lock contention

