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Hello

e I'm Yuvaraj Chesetti
o Yuvi (as in You-Vee or UV) or Yuva (as in You Va) works!

e PhD Student since Summer 2023

o Joined as a Masters Student in Fall 2022, converted

e [earning/Researching about Learned Indexes
o Started out in the CS 6530 Fall project

e (Catch me in the lab!
o Always happy to discuss



Overview

e Main Idea

e Details
o Read only learned index
o Updateable learned index
e Research

o Published
o Ongoing



Indexes

e Given a key K in a sorted list, where is it located?

o Look up an associated value with at that location
o Unsorted List? Store a sorted list of pointers and treat the same way
o Some indexes only check for indexes (Hash Table)

e Examples
o Content section of a book (primary index, primary key is chapters)
o  Word Index (secondary index, keyed on words)

e |[f Data is sorted, why build an index?
o Linear Search - O(n/B) fetches, (works for unsorted data)

o Binary Search - O(log(n)) fetches, no locality
o Fetch (In-Memory, Cache Misses, External-Memory - Disk IO Blocks)



B+ Trees

e Spend extra memory organizing an index, you could speed up queries!

e B+ Tree
o Of(logg(n)) fetches, Takes advantage of block based IOs in external memory
o  Go to default for building indexes

Sorted, Clustered List on Disk
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B+ Trees - One size fits all

e If data followed a pattern, do you need the B+ Tree?

Sorted, Clustered List on Disk

1,4,9,16, 25.... K

Search for K in
this page



Model the data

e No! - Just model the function

K pos(K)=VK
page(K) = pos(K)/B

Sorted, Clustered List on Disk
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Kraska, Tim, et al. "The case for learned index structures."
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ABSTRACT

Indexes are models: a B-Tree-Index can be seen as a model to
map a key to the position of a record within a sorted array, a
Hash-Index as a model to map a key to a position of a record
within an unsorted array, and a BitMap-Index as a model to in-
dicate if a data record exists or not. In this exploratory research
paper, we start from this premise and posit that all existing
index structures can be replaced with other types of models, in-
cluding deep-learning models, which we term learned indexes.
We theoretically analyze under which conditions learned in-
dexes outperform traditional index structures and describe the

main challanaae in dacianing learnad indav cfrichirae MDar

a set of continuous integer keys (e.g., the keys 1 to 100M), one
would not use a conventional B-Tree index over the keys since
the key itself can be used as an offset, making it an O(1) rather
than O(log n) operation to look-up any key or the beginning
of a range of keys. Similarly, the index memory size would be
reduced from O(n) to O(1). Maybe surprisingly, similar opti-
mizations are possible for other data patterns. In other words,
knowing the exact data distribution enables highly optimizing
almost any index structure.

Of course, in most real-world use cases the data do not
perfectly follow a known pattern and the engineering effort
to build specialized solutions for every use case is usually too



Kraska, Tim, et al. "The case for learned index structures."
SIGMOD 2018.

Classical data structures don’t take advantage of the distribution of data

e They are designed to work for all distributions in worst case
e Modelling is the bread and butter of ML techniques

o Specific hardware is being designed for ML, can take advantage of that.
e Not just indexes - filters, hashmaps, joins, sorts, merges...



Learn?

e \What is being learnt?
e How do you learn?
e What about error?



Cumulative Distributive Function

A bag of items
Universe: U,
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What is the probability that
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Cumulative Distributive Function
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Cumulative Distributive Function

? < N
A bag of items
Un[ljvirsrﬁ: U, Pick a random <X >=X
Iems item -~ L X
What is the probability that
the picked item is smaller P(‘? < X) =L/N
than X" ? Pos(X)=P(“?’<X)*N

This is the position/lower
bound of ‘X if the items in the
bag were laid out sorted!
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Cumulative Distributive Function

\ e P(*7<X)=L/Nis called the
Cumulative Distribution Function

e Integrating for x from (-, x) in the

N
Probability Density Function
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Revisiting the toy example

e CDF(X) = sqrt(K)/N
e Index(X) = (CDF(X)* N)
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page(K) = pos(K)/B
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Revisiting the toy example

e CDF(X) = sqrt(K)/N
e Index(X) = (CDF(X) * N)

“Learned”

K ? . pos(K=VK T
page(K) = pos(K)/B
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How do you model the CDF?

e Not all distributions are simple like our toy example
e Key ldea: Break it into smaller problems - the Recursive Model Index

l Key
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What about Individual Models?

e Neural Networks
o Too heavy, designed for larger datasets

e RMI proposed needs to be tuned for levels, models, error
e Only linear functions works well (Piecewise Linear Approximation)
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What about error?
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All Indexes are ‘Learned Indexes’ (even B+ Trees)

e All indexes have error!
e B-Tree has an error of page-size (overfit)
e Error can be bounded, Model Size inverse to Error

(a) B-Tree Index (b) Learned Index
Key Key
¢ ¢
Model
BTree (e.g., NN)
pos pos \,

pos -0 pos + pagezise pos - min_err pos + max_er



PGM Index - Inner Index complexity

Computational complexity

Let n be the number of keys, and B be the page size of the machine.

Predecessor query$
(static case)

Predecessor query
(dynamic case*)

Insert/delete

Index space in words

PGM-index

O(logg n)

O(logy n)

O(logg n) amortised

O(%z) whpt

B-tree

O(logg n)

O(logg n)

O(logg n)

&
7 o
=
N

Self-balancing BST*

O(logn)

O(logn)

O(logn)

O(n)

Skip list

O(logn) w.h.p.

O(log n) w.h.p.

O(logn) w.h.p.

O(n) w.h.p.

Sorted array

O(logn)

O(logn)

Source: https://pgm.di.unipi.it/



PGM Index - Inner Index complexity

Computational complexity

Let n be the number of keys, and B be the page size of the machine.

PGM-index B-tree Self-balancing BST* Skip list Sorted array
Predecessor query$ O(logg n) O(logg n) O(logn) O(logn) w.h.p. O(logn)
(static case)
Predecessor query O(logk n) O(logg n) O(logn) O(log n) w.h.p. O(logn)
(dynamic case*)
Insert/delete O(logg n) amortised O(loggn) O(logn) O(log n) w.h.p. O(n)
Index space in words O(%z) whp? =) O(n) O(n) w.h.p. o(1)

(B = Error, inner query is faster, last mile is longer )
Source: https://pgm.di.unipi.it/



Search on Sorted Data Benchmark

XS S M L XL

Up to 0.01% of data size Up to 0.1% of data size Up to 1% of data size ¥ Up to 10% of data size No limit

Index [ Index Size

RS _ 203 ns 193 ns 184 ns
PGM 354 ns 303 ns 247 ns 228 ns 228 ns
ALEX 430 ns 355 ns 298 ns

RT 441 ns 396 ns 379 ns

BinarySearch

FAST




Learn?

e \What are we trying to learn?
o The Cumulative Distribution Function
e How do you learn?
o Break it down into sub-pieces makes it easier
o Different Learned Index implementations vary in exact implementation details
o CDF approximation techniques - piecewise linear regression
e \What about error?
o It's not a problem, it doesn’t hurt performance
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o The Cumulative Distribution Function
e How do you learn?
o Break it down into sub-pieces makes it easier
o Different Learned Index implementations vary in exact implementation details
o CDF approximation techniques - piecewise linear regression
e \What about error?
o It's not a problem, it doesn’t hurt performance

e What about updates?



Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

e \Where do you insert?
e \When do you retrain?

1,4,9,16,25,49...

Sorted, Clustered List on Disk



Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

e Where do you insert?
e \When do you retrain?

45 3

o

: i
Need to shift all ey
items across Perfect Index (¢.5.F)

1,4,9,16,25,49...

Sorted, Clustered List on Disk



Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

e \Where do you insert?
e When do you retrain?

45 How much error <00
can you tolerate 3
before retraining?
Perfect Ino(:Y(C.D.F)
1,4,9,16,25,49...

Sorted, Clustered List on Disk



B+ Tree is also a learned index

e B+ Tree is also a learned index - that handles updates just fine
e Can we combine ideas from the B+ Tree with a learned index?
e \Where do you insert?

o Internal nodes have gaps in between
e \When do you retrain?

o The B+ Tree splits and merges nodes as the incoming distribution changes

e But a B+ Tree does not know anything about the the data distribution?
o It doesn’t really know the distribution, it just adapts to the worst case
o ltis not an efficient ‘learning’ approach (Overfits)
o |llied
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ALEX: An Updatable Adaptive Learned Index
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ABSTRACT

Recent work on “learned indexes” has changed the way we
look at the decades-old field of DBMS indexing. The key idea
is that indexes can be thought of as “models” that predict the

position of a key in a dataset. Indexes can, thus, be learned.

The original work by Kraska et al. shows that a learned index
beats a B+Tree by a factor of up to three in search time and
by an order of magnitude in memory footprint. However, it
is limited to static, read-only workloads.

LS 1 1. 1 11 1 AY Tmixr

index for dynamic workloads that effectively combines the core
insights from the Learned Index with proven storage & index-
ing techniques to deliver great performance in both time and
space? Our answer is a new in-memory index structure called
ALEX, a fully dynamic data structure that simultaneously pro-
vides efficient support for point lookups, short range queries,
inserts, updates, deletes, and bulk loading. This mix of opera-
tions is commonplace in online transaction processing (OLTP)
workloads [6, 8, 32] and is also supported by B+Trees [29].

Tmnlamenting writec writh hich narfarmance ranmirec a



My Takeaway: Combine a B+ Tree structure
with learned indexes, result: ALEX
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ALEX design overview

Structure
* Dynamic tree structure

* Each node contains a linear model
* internal nodes = models select the child node
» data nodes = models predict the position of a key

Core operations

* Lookup
* Use RMI to predict location of key in a data node
* Do local search to correct for prediction error

* Insert
* Do alookup to find the insert position
* Insert the new key/value (might require shifting)

Current design constraints
a) Inmemory

b) Numeric data types
c) Single threaded

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Legend

Internal
Node
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Il Key
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4. Adaptive Structure
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* Flexible tree structure

 Split nodes sideways Qﬁ@ @ ®:> New iner
* Split nodes downwards ezl @ ‘

AL

Split Data Node  Left Half Right Half
* Expand nOdeS (@) New Data Nodes
* Merge nodes, contract nodes
. ; . : — —
Key |dga. gll decisions are made Y o
to maximize performance
° i — —
Use cost moqel of query runtime " -
* No hand-tuning — 7
* Robust to data and workload shifts DataNode  Expanded Data Node




ALEX - Few other optimizations

e Gapped Array
e Model Based Insertion
e Exponential Search



Gapped Array

B+ Tree node
Dense, sorted

Gapped Array

Inserts more efficient
(less items to shift)



Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

Gapped Array

Inserts more efficient
(less items to shift)
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Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

Gapped Array

Inserts more efficient
(less items to shift)

Shift other items to
nearest gap



Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

I - Gapped Array
Inserts more efficient

(less items to shift)

Shift other items to
nearest gap



Lookups in ALEX

e Use the RMI to reach the correct Gapped Array
e Model based insertion - items will always be at or right of predicted position
e Start search from predicted position

Start search for Y from model
predicted position



Search Algorithm

e Search - linear, binary or exponential?

e Exponential -
o Search in windows of 2, 4, 8, 16... 2*x
o If you overshoot, search in the second half with same window

Start search for Y from model
predicted position



3. Exponential Search

—— Binary (bound 1K) —¥— Exponential

Search Method Comparison

102 -

Search time (ns)

10! 102 103
Error size

Model errors are low, so exponential search is faster than binary search
Slide from CS 6530, Fall 2022 .,
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Throughput (million ops/sec)

B ALEX I Learned Index

(a) Throughput: Read-Only
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Longitudes Longlat Lognormal YCSB
Dataset

~4x faster than B+ Tree
~2x faster than Learned Index
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(c) Throughput: Write-Heavy

Longitudes Longlat Lognormal YCSB
Dataset

~2-3x faster than B+ Tree




Index size (bytes)

(f) Index Size: Read-Only

108

106 .

104 .
Longitudes Longlat Lognormal YCSB

Dataset

~3 orders of magnitude less space for index

Index size (bytes)

(h) Index Size: Write-Heavy

Longitudes Longlat Lognormal YCSB
Dataset

68




Different Learned Indexes

e RMI

e PGM Index - Ferragina, Paolo, and Giorgio Vinciguerra. "The PGM-index: a
fully-dynamic compressed learned index with provable worst-case bounds."
Proceedings of the VLDB Endowment 13.8 (2020): 1162-1175.

e ALEX - Ding, Jialin, et al. "ALEX: an updatable adaptive learned index." Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 2020

e FITing Tree - Galakatos, Alex, et al. "Fiting-tree: A data-aware index structure."
Proceedings of the 2019 international conference on management of data. 2019.

e LIPP - Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, Chunxiao Xing:
Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14(8): 1276-1288
(2021).




| earned Index Performance

e Benchmark
o SOSD - Marcus, Ryan, et al. "Benchmarking learned indexes.", NeurlPS Workshop on
Machine Learning for Systems
o Lan, Hai, et al. "Updatable Learned Indexes Meet Disk-Resident DBMS-From Evaluations
to Design Choices." Proceedings of the ACM on Management of Data 1.2 (2023): 1-22.
e Theoretical
o Ferragina, Paolo, Fabrizio Lillo, and Giorgio Vinciguerra. "Why are learned indexes so
effective?." International Conference on Machine Learning. PMLR, 2020.
o Sabek, Ibrahim, et al. "Can Learned Models Replace Hash Functions?." Proceedings of the
VLDB Endowment 16.3 (2022): 532-545.



LSM Trees

® Daj, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

® Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint
arXiv:2012.12501 (2020).
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LSM Trees

® Daj, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

® Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint
arXiv:2012.12501 (2020).
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Other

e Genomics
o Ho, Darryl, et al. "Lisa: Learned indexes for DNA sequence analysis." bioRxiv (2020).
o Kirsche, Melanie, Arun Das, and Michael C. Schatz. "Sapling: Accelerating suffix array queries with
learned data models." Bioinformatics 37.6 (2021): 744-749.
e  Spatial Indexing
o Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding, Ibrahim Sabek, Alfons Kemper: The Case for Learned
Spatial Indexes. AIDB@VLDB 2020
e  (Classical Algorithms
o  Kiristo, Ani, et al. "The case for a learned sorting algorithm." Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020.
o  Sabek, Ibrahim, and Tim Kraska. "The Case for Learned In-Memory Joins." arXiv preprint arXiv:2111.08824
(2021). (VLDB 2023)



Open Research Problems

Variable length keys
String keys

Compression
Concurrency

Updates

Optimizations
Theoretical lower bounds
Specialized Hardware



Ongoing Research

e Speed up merges in LSM Trees
e Synthetic benchmarks
e Tried out in Bourbon (LevelDB fork with learned indexes)

o Makes it worse!

o  Still think there’s some implementation gap or compaction policy we need to explore

@)

L1

L2

L3

Use the learned
indexes to speed
up merging
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[ 2040 | ! —
[ 2080 | [30-40 |
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Ongoing Research

e Disk Based Joins - Indexed Nested Loop Join
e Use Learned Index instead of B+ Tree

w 1
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‘ K \ \ []
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ISI/IR| . Index Index

Figure 3: Dataset: Uniform Random |S| = 200M, 8byte keys, 8byte values, 4 Threads



Thanks!

Questions?



