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Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture {
CPU

(i) assumes CPU is fast enough (for our applications)

(ii) assumes memory can keep-up with CPU and can hold all data
Memory

is this the case?

for (i): applications increasingly complex, higher CPU demand
is the CPU going to be always fast enough?

OOOOOOOOOOOOOOOOO




Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture {
CPU

(i) assumes CPU is fast enough (for our applications)
not always!

(ii) assumes memory can keep-up with CPU and can hold all data
Memory

is this the case?

for (ii): is memory faster than CPU (to deliver data in time)?

OOOOOO does it have enough capacity?




Which one is faster?
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As the gap grows, we need a deep memory hierarchy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



A single level of main memory is not enough

We need a memory hierarchy

OOOOOOOOOOOOOOOOO




What is the memory hierarchy ?

OOOOOOOOOOOOOOOOO




/

L1 <1lns \

/

L2 ~3ns \

Bigger Faster
Cheaper = Smaller
Slower 10ns More
expensive
/ Main Memory ~100ns \
/ SSD (Flash) ~100us \
/ HDD / Shingled HDD ~2ms \



Avoiding Disc Accesses

e Disk accesses are 20,000x
slower than main memory
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Avoiding Disc Accesses

e Disk accesses are 20,000x
slower than main memory

Keys Result
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Can we avoid searching for items that aren’t in the dataset?

OOOOOOOOOOOOOOOOO




How to avoid disk |/Os

OOOOOOOOO

Caching

If hot items are held in memory,
No need to look them up again

OOOOOOOO
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How to avoid disk |/Os

e Caching
e Indices

100 155 226

Indices let you perform / \

operations like range scans s | so
that are I/O optimal
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How to avoid disk |/Os

e Caching

e Indices

e Heuristics

Heuristics learn

something about the data

stored to avoid
unnecessary work
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Example: Marking Monarchs

Imagine a dataset containing information
on every person on Earth.

We have a set of people to query — want
to determine if they rule England.

Keys Result
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Can we build a heuristic for any dataset?

OOOOOOOOOOOOOOOOO




Filters for Efficient Data Processing

* Filters are a lossy representation of a set,
and trade accuracy for space efficiency.

* Queries return “maybe” or “definitely niSal
not” in set () In Universe
* False positives occur with bounded error
rate €
* Errors are one sided, i.e., no false
negatives

False Positive
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Filters for Efficient Data Processing

* Filters are a lossy representation of a set,
and trade accuracy for space efficiency.

* Queries return “maybe” or “definitely niSal
not” in set () In Universe
* False positives occur with bounded error
rate €
* Errors are one sided, i.e., no false
negatives

1
Space > nlog — bits
€

For most practical purposes:

€ = 2 %, afilter requires ~8 bits/
item

False Positive
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Bloom Filters

{x,y,2}

OOOOOOOOOOOOOOOOO
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Filters for Databases

Keys Result
B > \ ®
C . R . . ®

Filter prunes most false negatives before disk lookup

OOOOOOOOOOOOOOOOO




s this always better?

OOOOOOOOOOOOOOOOO




s this always better?

Keys Result

R

False positive queries do extra work

OOOOOOOOOOOOOOOOO




Adaptive Filters

o Adaptive filters are filters that can learn from false positives

o When a false positive is detected, extra information is added to the filter to
prevent a future collision

o Special variant called strongly adaptive that can, with limited memory, adjust to
any dataset
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GPU stuff




GPU stuff!
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Moore’s law

Often expressed as:
“X doubles every 18-24 months”
where X is:
“performance”
CPU clock speed
the number of transistors per chip

which one is it?

OOOOOOOOOOOOOOOOO

based on William Gropp’s slides



Moore's Law is Alive and Well!
Transistors per Square Millimeter by Year b u t
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_exponential
growth!
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40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
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Can (a single) CPU cope with increasing application complexity?

No, because CPUs (cores) are not getting faster!!!

.. but they are getting more and more (parallel)

Research Challenges

how to handle them?
how to parallel program?

OOOOOOOOOOOOOOOOO




CPU vs. GPU

ALU | ALU

Control

ALU | ALU

CPU

CPU: A few powerful cores with large caches. Optimized for sequential computation
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CPU vs. GPU

ALU ALU
-
Control =

ALU | ALU =

CPU GPU

CPU: A few powerful cores with large caches. Optimized for sequential computation

GPU: Many small cores. Optimized for parallel computation
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CPU vs. GPU — Processing Units

1950 2000 2010

40 Years of Microprocessor Trend Data

Intel Skylake 128 GFLOPS/4 Cores 100+ Watts
NVIDIA V100 15 TFLOPS 200+ Watts
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Nvidia

~1 GFLOPS/Watt
~75 GFLOPS/Watt

40



CPU vs. GPU — Memory Bandwidth

—8— Nvidia GPU
—a&— |ntel CPU

1200 GBps

Peak Bandwidth (GB/s)
(@)
S

125GBps

200 Grown 7% per year
/ A
0 -
2010 2012 2014 2016 2018 2020

GPU has one order of magnitude higher memory bandwidth than CPU
Memory Bandwidth is the bottleneck for in-memory analytics
OOOOOOOOOOOOOOOOO A natural idea: use GPUs for data analytics

UNIVERSITY OF UTAH

41



GPU-DB Limitations

Limitation 1: Low interconnect bandwidth
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Main Deyice
Memory Mermory

100GB/s 10GB/s 1000GB/s
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GPU-DB Limitations

Limitation 1: Low interconnect bandwidth

Limitation 2: Small GPU memory capacity

— CPU -

3T

Main
Memory
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Device
Memory

100GB—10 TB capacity
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8—80GB
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GPU-DB Limitations

Limitation 1: Low interconnect bandwidth

Limitation 2: Small GPU memory capacity

Limitation 3: Coarse-grained cooperation of CPU and GPU

OOOOOOOOOOOOOOOOO

— CPU - = GPU E
T lwy 1L
Main Device

Memory Memory

T |
100GB—1TB capacity 8—80GB
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GPU Database Operation Mode

Coprocessor mode: Every query loads data from CPU memory to GPU

GPU-only mode: Store working set in GPU memory and run the entire
query on GPU

OOOOOOOOOOOOOOOOO
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CPU-only vs. Coprocessor

MonetDB
400 - B GPU Coprocessor
BN Hyper
“» 300
S
£
(<
E 200 -
|_
N I j l i l l l
0
N v o) N % o) N vV ) ™ N % o) Q

Queries

Key observation: With efficient implementations that can saturate memory bandwidth

GPU-only > CPU-only > coprocessor i
U OOOOOOOOOOOOOOOOO
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Star-Schema Benchmark

Platform CPU GPU
Model Intel 17-6900 Nvidia V100
Cores 8 (16 with SMT) | 5000
Memory Capacity | 64 GB 32GB

L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -

Read Bandwidth | 53GBps 880GBps
Write Bandwidth | 55GBps 880GBps

L1 Bandwidth - 10.7TBps
L2 Bandwidth - 2.2TBps

L3 Bandwidth 157GBps -

U

10%

—
=
(€]

Time Taken (in ms)
S

10°
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Crystal-based implementations always
saturate GPU memory bandwidth

GPU is on average 25X faster than CPU

Hyper (CPU)
BN Standalone (CPU)
BN Omnisci (GPU)
4 I Standalone (GPU)

11

1

q2.1

Queries




Emerging Fast Interconnect

- CPU - = GPU E
afs 1. [
Main Device
Memory Mermory

100GB/s 10GB/s 1000GB/s

- CPU - = GPU E
0 L. T
Main Deyice
Memory Mermory

100GB/s 75GB/s 1000GB/s

Fast Interconnect can solve the PCle bottleneck

Emerging alternative interconnect technologies:
* NVLink
* Infinity Fabric
e Compute Express Link (CXL)

OOOOOOOOOOOOOOOOO
“RS OF UTAH
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NVLink Bandwidth and Latency

. . . M NVLink20 W PCle30 W UPI M X-Bus
NVLink has much higher bandwidth e T
3 63 = al 28 0 790
than PCle € 60 e . £ 7501
§40‘ " g b f;j— : g 5004 55
5 20 - s 2 5 2501 =
e il LE

(a) NVLink 2.0 vs. CPU & GPU Interconnects.
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U

NVLink Bandwidth and Latency

B NVLink20 M PCle3.0 [ UPI M X-Bus

NVLink has much higher bandwidth

than PCle

NVLink has comparable bandwidth as
CPU local memory
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(b) NVLink 2.0 vs. CPU memory.
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NVLink Bandwidth and Latency

B NVLink20 M PCle30 [ UPI M X-Bus

NVLink has much higher bandwidth

than PCle

NVLink has comparable bandwidth as
CPU local memory

NVLink bandwidth has much lower
bandwidth than GPU memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Sequential

Random
| 28 s 20005
N \E 750
T2 500
2 § 250

Bandwidth (GiB/s)
S =N W

o

Latency
790

434

j 121
2¥1

(a) NVLink 2.0 vs. CPU & GPU Interconnects.
M NVLink20 [ Xeon M POWER9

280
g °V1 3
C 60+
_§ 40 8 5
2 20 N
I
g -
on
— Sequential
g 1507 117
Q =
= 50 1
£
8 o0
o0

Random

® 3.6 “» 500 7

Bandwidth (GiB/s)
S =N W A

S g
i N o ~ 400
] 5300—
£ 200
ki 108—

Latency
434

IOOO
O >~

(b) NVLink 2.0 vs. CPU memory.
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(c) NVLink 2.0 vs. GPU memory.
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GPU Transfer Methods

Table 1: An overview of GPU transfer methods.

Method Semantics | Level | Granularity | Memory
Pageable Copy

Staged Copy Pageable
Dynamic Pinning | Push SwW Chunk

Pinned Copy Pinned
UM Prefetch Unified
UM Migration OS Page Unified
Zero-Copy Pull Pinned
Coherence HW | Byte Pageable

I Pageable M Pinned MM Unified

— PCl-e3.0 -- NVLink2.0
PCI-e 3.0 NVLink 2.0
Pageable Copy : .'0.67 |
Staged Copy 1 _ 2.15 |
Dynamic Pinning : 2.36 |
Coherence , Unsupported | = 3.83
Pinned Copy P 342
Zero Copy | _ 3.81
Unified Migration | I 0.16 |
Unified Prefetch | I 0.17 |
0 1 2 3 4 0 1 2 3 4
Throughput (G Tuples/s)

Figure 12: No-partitioning hash join using different
transfer methods for PCI-e 3.0 and NVLink 2.0.

Pinned copy and zero copy can saturate PCle bandwidth

Coherence can saturate NVLink bandwidth
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Non-Partitioned Hash Join Methods

Build phase: build the hash table using inner relation R

Probe phase: lookup hash table for each record in outer relation S

OOOOOOOOOOOOOOOOO
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Hash Join — Build Phase

Build phase: build the hash table using inner relation R

&) CPU (<l GPU l:
< Py H |- (- NVLink 2.0
NVLink 2.0 T ey »(hash(key) :
-------------- » hash(key) > i
O—it—

M

< &

(a) Data and hash table in (b)Datain CPU memory and
CPU memory. hash table spills from GPU
memory into CPU memory.

.......

virtual memory mapping

OOOOOOOOOOOOOOOOO
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Hash Join — Probe Phase

Probe phase: lookup hash table for each record in outer relation S

-----------------------------
ey

i T T
=
4 CPU | <y GPU CPU |« GPU |:
L NVLink 2.0 T E— NVLink 2.0
hash(ke)|E 1 = 0 Tt » hash(key) :
#

(a) Data and hash table in (b)Datain CPU memory and
GPU memory. hash table in GPU memory.

OOOOOOOOOOOOOOOOO




Hash Join

CPU |« GPU [I

NVLink 2.0
hash(key)f-=------- »(hash(key)

A N

ETY 5Ty #Ty =Ty

< G

(a) Cooperatively process
join on CPU and GPU with
hash table in CPU memory.

CPU |«Guunlpy| GPU |:

NVLink 2.0

I"|hash(key) hash(key)

f %

........................ (@)memcopy ..

(b) Build hash table on
GPU, copy the hash table to
processor-local memories,

and then cooperatively
probe on CPU and GPU.

This hybrid design subsumes the previous designs in the paper
* Dynamically schedule tasks to both CPU and GPU

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH
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Hash Table Locality

Hash Table Location: M Gpu B cpu ™ rcPU B rGPU

Q)

g >14.17

a2 . |3.82 | pm

E34 4
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o0 1 - o N 9N 1 s 9«
8 o © © o
50- 0-

= Workload A Workload B

S = N W D,
| N R | | |

12.62
I N
(e = =
Workload C

Figure 14: Join performance of the GPU when the hash
table is located on different processors, increasing the
number of interconnect hops from 0 to 3.

Best performance achieved when the hash table is in GPU memory
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Scaling Data Size in TPC-H Q6

® CPU # PCl-e30 & NVLink 2.0

%\ — Branching — Predication —- PCl-e3.0 =-- NVLink 2.0

L . . SR R — . A R
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Scale Factor

Figure 15: Scaling the data size of TPC-H query 6.

TPC-H Q6 contains a simple scan + aggregation with no join
Running the query on CPU leads to the highest performance
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Scaling the Probe Side Relation

® CPU(PRA) # PCl-e30 1 NVLink2.0
— PCI-e3.0 -- NVLink2.0 -- GPUmemory

W) w =
54
el
iz}
g}
et
B

e
1

Throughput (G Tuples/s)
S

0 2048 4096 6144 8192
Probe relation size (million tuples)

Figure 16: Scaling the probe-side relation.

NVLink is faster than both PCle and CPU only
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Scaling the Build Side Relation

. ® CPU(PRA) # PCl-e3.0 ™ NVLink2.0 -+ NVLink 2.0 Hybrid HT
2 — PCl-e3.0 -- GPUmemory
ks .
o,
2.0 7
=
QO 1.5
2 101 o N
'-SD 4
= 0.5
= 0 512 1024 1536 2048

Build & probe relation size (million tuples)
Figure 17: Scaling the build-side relation.

Performance drops when the hash table does not fit in GPU memory
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Discussion

Query Type SPJA analytical queries Non-partitioned hash join
Execution Model Data fits in GPU memory Coprocessor
Interconnect PCle 3.0 NVLink 2.0

Research question: How to maximize GPU database performance
with different interconnect technology?

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH
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WHAT I SAY WHAT [ THINK

SO ANY PLEASE DON'T ASK

QUESTIONS? ANY QUESTIONS!
PLEASE LET THIS BE OVER.

THANK YO
END OF PRESENTATIQ)

workchronicles.com

follow on Instagram / Twitter / Facebook
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Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture {
CPU

(i) assumes CPU is fast enough (for our applications)
not always!

(ii) assumes memory can keep-up with CPU and can hold all data
Memory

is this the case?

for (ii): is memory faster than CPU (to deliver data in time)?

OOOOOO does it have enough capacity?




Which one is faster?

A
o)
&
© Memory Wall
g FQ\:\
Q \_J
& oRs-
® , :
Old times! * Time

SESENEEEEE

As the gap grows, we need a deep memory hierarchy
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A single level of main memory is not enough

We need a memory hierarchy

OOOOOOOOOOOOOOOOO




What is the memory hierarchy ?

OOOOOOOOOOOOOOOOO




/

L1 <1lns \

/

L2 ~3ns \

Bigger Faster
Cheaper = Smaller
Slower 10ns More
expensive
/ Main Memory ~100ns \
/ SSD (Flash) ~100us \
/ HDD / Shingled HDD ~2ms \



What is a core?

What is a socket?

Cache Hierarchy

Memory controller

Inter-socket links

<10 cycles
50 cycles
500 cycles

Core Core Core Core Core Core Core Core
W (o (o ]| (feJle e ](lu]

| 1 1 | | 1 |

2 L2 2 2 L2 2 2 )

I I | |
| 3 ]

Memory controller

Inter-socket links

L1

L2

H
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Storage Hierarchy

/ Main Memory \

/ Shingled Disks \

/ Tape

OOOOOOOOOOOOOOOOO
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Hard Disk Drives

Secondary durable storage that support both random and sequential access

Data organized on pages/blocks (across tracks) Disk head (

Multiple tracks create an (imaginary) cylinder

_— —Spindle

) Tracks

7:

Disk access time:

SN

Sector

=

seek latency + rotational delay + transfer time
(0.5-2ms) + (0.5-3ms) + <0.1ms/4KB

Sequential >> random access (~10x)

< )

Arm movement
Goal: avoid random access

Platters

Arm assembly

UNIVERSITY O
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Seek Profile of a Modern Disk Drive

Seek time + Rotational delay + Transfer time

Seek time: the head goes to the right track

Seek time [ms]

Short seeks are dominated by “settle” time

(D is on the order of hundreds or more) |
oL
0 Seek distance ~ MAX

Rotational delay: The platter rotates to the right sector.
What is the min/max/avg rotational delay for 10000RPM disk?

min: 0, max: 60s/10000=6ms, avg: 3ms

Transfer time: <0.1ms / page - more than 100MB/s
Head Here =~

N\

Block I Want




Sequential vs. Random Access

Bandwidth for Sequential Access (assuming 0.1ms/4KB):
0.04ms for 4KB > 100MB/s

Bandwidth for Random Access (4KB):

0.5ms (seek time) + 3ms (rotational delay) + 0.04ms = 3.54ms

4KB/3.54ms - 1.16 MB/s

OOOOOOOOOOOOOOOOO




Flash

Secondary durable storage that support both random and sequential access
Data organized on pages (similar to disks) which are further grouped to erase blocks

Main advantage over disks: random read is now much more efficient

L

BUT: Not as fast random writes!

Goal: avoid random writes
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The internals of flash

Flash Package
DleS " - ~ s — N g p— ™ r—— . .
Planes @ = 8 8 interconnected flash chips
s ——E) | B 8| |E
Pages ~— E E E‘ no mechanical limitations
\. y S S St
SSD R
maintain the block API
Internal —m ﬂ Flash compatible with disks layout
Memory —p —- -
Flash
Controller internal parallelism

'y L_Ha}"u Lﬂ—ﬂ L&H for both read/write

interface (SATA / PCI) complex software driver
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Flash access time

... depends on:

device organization (internal parallelism)
software efficiency (driver)
bandwidth of flash packages

the Flash Translation Layer (FTL), a complex device driver (firmware) which
tunes performance and device lifetime

OOOOOOOOOOOOOOOOO




Flash vs HDD

igh Performance HDD

1000 : 1sive Memory
®ESSD @ C-SSD V' Large - cheap capacity
— 100 1 +E-HDD X C-HDD X Inefficient random reads
%) 3
a. -
O i
5 -
g 10 :
c ]
© ] Low Performance
E . _ Cheap Memory Flash
o -
Q. - A+ % X Small - expensive capacity
0.1 ; l ; - X ] L
V' Very efficient random reads
0.03125 0.125 0.5 2 8 32

Capacity (GB/S) X Read/Write Asymmetry
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Technology Trends & Research Challenges

(1) From fast single cores to increased parallelism
(2) From slow storage to efficient random reads
(3) From infinite endurance to limited endurance

(4) From symmetric to asymmetric read/write performance

OOOOOOOOOOOOOOOOO




Technology Trends & Research Challenges

How to exploit increasing parallelism (in compute and storage)?

How to redesign systems for efficient random reads?

e.g., no need to aggressively minimize index height!

How to reduce write amplification (physical writes per logical write)?

How to write algorithms for asymmetric storage?

OOOOOOOOOOOOOOOOO
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