
Lecture 13
Query processing

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu

Query

Query Result

Database Server

Select R.text from
Report R, Weather W
where W.image.rain()

and W.city = R.city
and W.date = R.date

and
R.text.

matches(“insurance claims”)

Query
Syntax Tree and

Logical Query Plan

Parser

Physical
Query Plan

Optimizer

Segments

Query
Scheduler |…|……|………..|………..|

…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..

Query
Result

Execute
Operators

Lifecycle of a Query

The Netflix Schema

RatingID Stars RateDate UID MID
1 3.5 08/27/15 79 20
… … … … …

UID Name Age JoinDate
79 Alice 23 01/10/13
80 Bob 41 05/10/13

MID Name Year Director
20 Inception 2010 Christopher Nolan
16 Avatar 2009 Jim Cameron

Ratings

Users

Movies

Example SQL Query

RatingID Stars RateDate UID MID
UID Name Age JoinDate
MID Name Year Director

SELECT M.Year, COUNT(*) AS NumBest
FROM Ratings R, Movies M
WHERE R.MID = M.MID
 AND R.Stars = 5
GROUP BY M.Year
ORDER BY NumBest DESC

Suppose, we also have a B+Tree Index on Ratings (Stars)

SELECT
R.stars = 5

Ratings Table

SELECT
No predicate

Movies Table

JOIN
R.MID = M.MID

GROUP BY AGGREGATE
M.Year, COUNT(*)

SORT
On NumBest

Result Table

Called “Logical”
Operators

From extended RA

Each one has
alternate “physical”
implementations

Logical Query Plan

Indexed Access
Use Index on Stars

Ratings Table

File Scan
Read heapfile

Movies Table

Index-Nested
Loop Join

Sort-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table

Called “Physical”
Operators

Specifies exact
algorithm/code to
run for each logical
operator, with all
parameters (if any)

Aka “Query
Evaluation Plan”

Physical Query Plan

File Scan
Read Index leaf pages

Ratings Table

File Scan
Read heapfile

Movies Table

Hash Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table

This is also a correct
PQP for the given LQP!

Q: Which PQP is faster?

This is a key job of the
RDBMS Query Optimizer!

Physical Query Plan

Logical = Tells you “what” is computed
Physical = Tells you “how” it is computed

Logical-Physical Separation in DBMSs

Declarative “querying” (logical-physical separation) is a
key system design principle from the RDBMS world:
Declarativity often helps improve user productivity

Enables behind-the-scenes performance optimizations

People are still (re)discovering the importance of this key
system design principle in diverse contexts…

(MapReduce/Hadoop, networking, file system checkers,
interactive data-vis, graph systems, large-scale ML, etc.)

Declarativity!

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

But first, what metadata does the

RDBMS have?

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)
❖ For each Relation:
 Relation name, File name
 File structure (heap file vs. clustered B+ tree, etc.)
 Attribute names and types; Integrity constraints; Indexes
❖ For each Index:
 Index name, Structure (B+ tree vs. hash, etc.); IndexKey
❖ For each View:
 View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)
❖ For each Table R:
 Cardinality, i.e., number of tuples, NTuples (R)
 Size, i.e., number of pages, NPages (R), or just NR or N
❖ For each Index X:
 Cardinality, i.e., number of distinct keys IKeys (X)
 Size, i.e., number of pages IPages (X) (for a B+ tree, this

is the number of leaf pages only)
 Height (for tree indexes) IHeight (X)
 Min and max keys in index ILow (X), IHigh (X)

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Selection: Access Path

❖ Access path: how exactly is a table read (“accessed”)
❖ Two common access paths:

File scan:
Read the heap/sorted file; apply SelectCondition
I/O cost: O(N)
Indexed:
Use an index that matches the SelectCondition
I/O cost: Depends! For equality check, O(1) for hash index,
and O(log(N)) for B+-tree index

Indexed Access Path

RatingID Stars RateDate UID MIDR

Selectivity of a Predicate

❖ Selectivity of SelectionCondition = percentage of number of
tuples in R satisfying it (in practice, count pages, not tuples)

RatingID Stars RateDate UID MID
2 3.0 … … …

39 5.0 … … …
12 2.5 … … …

402 5.0 … … …
293 2.5 … … …
49 1.0 … … …
66 2.5 … … …

R

Selectivity = 2/7 ~ 28%

Selectivity = 3/7 ~ 43%

Selectivity = 1/7 ~ 14%

Selectivity and Matching Indexes

❖ An Index matches a predicate if it brings I/O cost very close to
(N * predicate’s selectivity); compare to file scan!

RatingID Stars RateDate UID MID
2 3.0 … … …

39 5.0 … … …
12 2.5 … … …

402 5.0 … … …
293 2.5 … … …
49 1.0 … … …
66 2.5 … … …

R

Hash index on R(Stars)
Cl. B+ tree on R(Stars)
Uncl. B+ tree on R(Stars)?

Assume only one tuple per page

N x Selectivity = 2

Matching an Index: More Examples

RatingID Stars RateDate UID MIDR

B+ tree has a
nice “prefix-match”
property!

Hash index on R(Stars) does not match! Why?
Cl. B+ tree on R(Stars) still matches it! Why?
Cl. B+ tree on R(Stars,RateDate)?
Cl. B+ tree on R(Stars,RateDate,MID)?
Cl. B+ tree on R(RateDate,Stars)?
Uncl. B+ tree on R(Stars)?

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Project

❖ SELECT R.MID, R.Stars FROM Ratings R
 Trivial to implement! Read R and discard other attributes
 I/O cost: NR, i.e., Npages(R) (ignore output write cost)

❖ SELECT DISTINCT R.MID, R.Stars FROM Ratings R
 Relational Project!

RatingID Stars RateDate UID MIDR

Need to deduplicate tuples of (MID,Stars) after discarding
other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

❖ Sorting-based:
Idea: Sort R on ProjectionList (External Merge

Sort!)
1. In Sort Phase, discard all other attributes
2. In Merge Phase, eliminate duplicates
Let T be the temporary “table” after step 1
I/O cost: NR + NT + EMSMerge(NT)

❖ Hashing-based:
Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

❖ To build a hash table on R(ProjectionList), read R and
discard other attributes on the fly

❖ If the hash table fits entirely in memory:
 Done!
 I/O cost: NR

❖ If not, 2-phase algorithm:
 Partition
 Deduplication

F x P pages
(“Fudge factor” F ~ 1.4

for overheads)

Q: What is the size of a hash
table built on a P-page file?

Needs B >= F x NR

Hashing

Partitions
of T

Input buffer
for partition i

Hash table for
partition i

B buffer pagesDisk

Output
 buffer

Disk

Output
hash
func.
h2

h2

B buffer pages DiskDisk

Original
R OUTPUT

2INPUT

1

hash
func.
h1 B-1

Partitions
of T

1

2

B-1
. . .

Partition phase

Deduplication phase

Assuming uniformity,
size of a T partition

= NT / (B-1)
Size of a hash table

on a partition
= F x NT / (B-1)

If B is smaller, need to
partition recursively!

I/O cost: NR + NT + NT

Thus, we need:
(B-2) >= F x NT / (B-1)
Rough:

Project: Comparison of Algorithms
❖ Sorting-based vs. Hashing-based:
 1. Usually, I/O cost (excluding output write) is the same:

NR + 2NT (why is EMSMerge(NT) only 1 read?)
 2. Sorting-based gives sorted result (“nice to have”)
 3. I/O could be higher in many cases for hashing (why?)
❖ In practice, sorting-based is popular for Project
❖ If we have any index with ProjectionList as subset of IndexKey
 Use only leaf/bucket pages as the “T” for sorting/hashing
❖ If we have tree index with ProjectionList as prefix of IndexKey
 Leaf pages are already sorted on ProjectionList (why?)!
Just scan them in order and deduplicate on-the-fly!

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Join

This course: we focus primarily on equi-join
(the most common, important, and well-studied form of join)

R RatingID Stars RateDate UID MID
UserID Name Age JoinDateU

We study 4 major (equi-) join implementation algorithms:
 Page/Block Nested Loop Join (PNLJ/BNLJ)
 Index Nested Loop Join (INLJ)
 Sort-Merge Join (SMJ)
 Hash Join (HJ)

Nested Loop Joins: Basic Idea

“Brain-dead” idea: nested for loops over the tuples of R and U!

1. For each tuple in Users, tU :
2. For each tuple in Ratings, tR :
3. If they match on join attribute, “stitch” them, output

But we read pages from disk, not single tuples!

Page Nested Loop Join (PNLJ)

“Brain-dead” nested for loops over the pages of R and U!

1. For each page in Users, pU :
2. For each page in Ratings, pR :
3. Check each pair of tuples from pR and pU

4. If any pair of tuples match, stitch them, and output

U is called “Outer table”
R is called “Inner table”

I/O Cost:

Q: How many buffer pages are needed for PNLJ?

Outer table should be
the smaller one:

NU ≤ NR

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

1. For each sequence of B-2 pages of Users at-a-time :
2. For each page in Ratings, pR :
3. Check if any pR tuple matches any U tuple in memory
4. If any pair of tuples match, stitch them, and output

Step 3 (“brain-dead” in-memory all-pairs comparison) could be
quite slow (high CPU cost!)
In practice, a hash table is built on the U pages in-memory to
reduce #comparisons (how will I/O cost change above?)

I/O Cost:

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it?

1. For each sequence of B-2 pages of Users at-a-time :
2. Sort the U tuples (in memory) on UserID
3. For each U tuple tU in memory :
4. Lookup/probe index on R with the UserID of tU
5. If any R tuple matches it, stitch with tU, and output

Suppose there is an index (tree or hash) on R (UID)

I/O Cost: NU + NTuples(U) x IR
Index lookup cost IR depends on index properties (what all?)

A.k.a Block INLJ (tuple/page INLJ are just silly!)

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

I/O Cost: EMS(NR) + EMS(NU) + NR + NU

1. Sort R on UID
2. Sort U on UserID
3. Merge sorted R and U and check for matching tuple pairs
4. If any pair matches, stitch them, and output

If we have “enough” buffer pages, an improvement possible:
No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

I/O Cost: 3 x (NR + NU)

1. Obtain runs of R sorted on UID (only Sort phase)
2. Obtain runs of U sorted on UserID (only Sort phase)
3. Merge all runs of R and U together and check for

matching tuple pairs
4. If any pair matches, stitch them, and output

How many buffer
pages needed? NU ≤ NR

runs after steps 1 & 2 ~ NR/2B + NU/2B
So, we need B > (NR + NU)/2B
Just to be safe:

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

I/O Cost: 3 x (NU + NR)

1. Partition U on UserID using h1()
2. Partition R on UID using h1()
3. For each partition of Ui :
4. Build hash table in memory on Ui
5. Probe with Ri alone and check for matching tuple pairs
6. If any pair matches, stitch them, and output

This is very similar to the hashing-based Project!

NU ≤ NR

U becomes “Inner table”
R is now “Outer table”

❖ Block Nested Loop Join vs Hash Join:
Identical if (B-2) > F x NU! Why? I/O cost?
Otherwise, BNLJ is potentially much higher! Why?

❖ Sort Merge Join vs Hash Join:
To get I/O cost of 3 x (NU + NR), SMJ needs:
But to get same I/O cost, HJ needs only:
Thus, HJ is often more memory-efficient and faster

❖ Other considerations:
HJ could become much slower if data has skew! Why?
SMJ can be faster if input is sorted; gives sorted output

❖ Query optimizer considers all these when choosing phy. plan

Join: Comparison of Algorithms
NU ≤ NR

B buffer pages

More General Join Conditions

❖ If JoinCondition has only equalities, e.g., A.a1 = B.b1
and A.a2 = B.b2

 HJ: works fine; hash on (a1, a2)
 SMJ: works fine; sort on (a1, a2)

 INLJ: use (build, if needed) a matching index on A
What about disjunctions of equalities?

❖ If JoinCondition has inequalities, e.g., A.a1 > B.b1
 HJ is useless; SMJ also mostly unhelpful! Why?
 INLJ: build a B+ tree index on A
 Inequality predicates might lead to large outputs!

NA ≤ NB

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

❖ Easy case: X is empty!
 Simply aggregate values of Y
 Q: How to scale this to larger-than-memory data?
❖ Difficult case: X is not empty
 “Collect” groups of tuples that match on X, apply Agg(Y)
 3 algorithms: sorting-based, hashing-based, index-based

“Grouping Attributes”
(Subset of R’s attributes)

A numerical attribute in R
“Aggregate Function”

(SUM, COUNT, MIN, MAX, AVG)

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Set Operations

Similar to intersection, but need
to deduplicate upon matches
and output only once!
Sounds familiar?

Union/Difference Algorithms

