CS 6530: Advanced Database Systems Fall 2023

Lecture 10
Write-Optimized Indexes

Prashant Pandey
prashant.pandey@utah.edu

Slides taken from Prof. Alex Conway, Cornell Tech

OOOOOOOOOOOOOOOOO

mailto:prashant.pandey@utah.edu

The Story of SplinterDB

Model the problem:
external memory dictionary

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Story of SplinterDB

Metadata is fine-grained

Model the problem:
eeeeeee | memory dictionary

4 KiB

10 4 KiB

The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB

10 4 KiB

Internal A B-sized block can be read or
Memory of size writtenin 110
M

External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB

10 4 KiB

Here B is the number of
items in an |O:

B=4KiB/48B
If the items were larger, the model Internal A B-sized block can be read or
wouldn’t be as good Memory of size written in 110

M

External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Story of SplinterDB

Model the problem:
external memor y dictionary

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)

Comparison-Based Dictionaries

Comparison External Memory
Model

user024299 = user082587

OOOOOOOOOOOOOOOOO

Comparison-Based Dictionaries

Comparison External Memory
Model

user024299 = user082587

OOOOOOOOOOOOOOOOO

Comparison-Based Dictionaries

Comparison External Memory
Model

user024299 = user082587

Hashing Filters

Lower bounds for external memory dictionaries,

Brodal, G., Fagerberg, R. SODA ‘03

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Brodal-Fagerberg Lower
Bound

Insertions in

A
0, (E logAN)
Lookups in

where /1 is a tuning parameter

Q(log;N)

General Dictionaries

External Memory Model

OOOOOOOOOOOOOOOOO

General Dictionaries

External Memory Model

YoV REALLY
CAN DO

WHATEVER
YOUR"TI\ I

General Dictionaries

External Memory Model

YoV REALLY
CAN DO

WHATEVER
YOUR"TI\ I

General Dictionaries

External Memory Model

YoV REALLY
Hashing Q—A‘N : DO
XXH(user024299) WHATEVEP

YOUR'T\

Filters

gf_insert (user024299)

General Dictionaries

External Memory Model

user024299

YoV REALLY

Hashing QJE . Do
i (a50£024259) WHATEVER
You WANT

Filters

gf_ insert(user024299)

Using hashing to solve the dictionary problem (in external memory),
lacono, J., Patrascu, M. SODA ‘12

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

lacono-Patrascu Lower
Bound

Insertions in

0 (’1 1zrg~+\n)
B °* .
\ Lookups in

where /1 is a tuning parameter

Q(log,N)

Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in
A =) A =)
0 (E log,lN) Q(log;N) 0 ()

Q(l N
B (logyN)

Comparison External Memory Model General External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Lower Bounds

Brodal-Fagerberg Lower Bound

lacono-Patrascu Lower Bound

Insertions in

Insertions in Lookups in
A =) A =)
0 (E log,lN) Q(log;N) 0 ()

Q(l N
5 (logaN)

Py=u)
e

BEB |

B-Trees

(4=B)

Comparison External Memory Model

General External Memory Model
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in

0 (g log,lN) > Q(log;N) 0 (g) «> Q(log;N)

//‘[ﬁé{é@]x

sl

71[72] 80
| | BEE ||

B-Trees B:-Trees BoA/BoT

(A= B) (A = B?)

lacono-Patrascu Hash Table

HE
(3] (N3

Comparison External Memory Model General External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in
A =) A =)
0 (E log,lN) Q(logN) 0 ()

Q(l N
B (logaN)

/M

B-Trees B:-Trees BoA/BoT

(A= B) (A = B?)

lacono-Patrascu Hash Table

Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in

A
0 (E log,lN)

//‘EE]%E]&

sl

(3] (X

71[72] 80
| | BEE ||

B-Trees

(4=B)

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

B&-Trees

(4 = B%)

lacono-Patrascu Lower Bound

Insertions in Lookups in

o)

Q(l N
5 (logaN)

lacono-Patrascu Hash Table

P 4
=

BoA/BoT
Hash Table

No scans!

General External Memory Model

U

Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in

0 (g log,lN> > Q(log;N)

i &lu , x
e
@/f? ;_

B-Trees

(4=B)

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

lacono-Patrascu Lower Bound

Insertions in Lookups in

0 (E) «> Q(logN)

PR

—1—4 lacono-Patrascu Hash Table
= = &

— '

= =

BoA/BoT

Mapped B:-Trees Hash Table

(A = B%,B® = Q(logg:N)

General External Memory Model

Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in

A
0 (E log,lN>

i &lm‘x
U wsiant iy

b

e I

B-Trees

(4=B)

Comparison External Memory Model

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

lacono-Patrascu Lower Bound

Insertions in Lookups in

om)

Q(l N
5 (logaN)

lacono-Patrascu Hash Table

/,
=] [&EE 558
— 1
=

ash Table

Mapped B:-Trees

(A = B%,B® = Q(logg:N)

General External Memory Model

/O Amplification

Read amplification is the ratio of the number of blocks read
from the disk versus the number
of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks
written to the disk versus the number of blocks required to
write the key-value pair.

OOOOOOOOOOOOOOOOO

U

B-Trees

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

45

B-Trees

B-ary Search Tree

B-Trees

B-ary Search Tree

B-Trees

IIIIII

B-ary Search Tree

B-Trees

B-Trees

IIIIII

B-ary Search Tree

B-Trees

IIIIII

B-ary Search Tree

B-Trees

IIIIII

B-ary Search Tree

B-Trees

B-ary Search Tree

N
=
(*]
N
E
(o)
©
o
------*

O(logg N)

Insertion Cost < 0(loggN)

«------

Lookup Cost < O(loggN)

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

53

U

BE-Trees

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

54

BE-Trees

A B®-tree is a search tree (like a B-tree)

OOOOOOOOOOOOOOOOO

59 (60 (61 |65

5 (40 (29 |11

'4

}
OOAOE

9 |2 |[50 (14 |29

DOOC

99 (6 |77 |44

55

BE-Trees

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

67 |75

¥ Ny
O00DD o0

9 |2 |[50 (14 |29 99 (6 |77 |44

BE-Trees

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

¥ Ny
O00DD o0

9 |2 |[50 (14 |29 99 (6 |77 |44

BE-Trees

58 83

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

v
=l

v\ "2
69<T51<T52<T53<T}4 [79<T30<T§1<T82

9 |2 |[50 (14 |29 99 (6 |77 |44

58

BE-Trees

58 83

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

v
=l

v\ "2
69<T51<T52<T53<T}4 [79<T30<T§1<T82

9 |2 |[50 (14 |29 99 (6 |77 |44

59

BE-Trees

58 83

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

v
=l

v\ "2
69<T51<T52<T53<T}4 [79<T30<T§1<T82

9 |2 |[50 (14 |29 99 (6 |77 |44

60

BE-Trees

58 83

v
=l

v\ "2
69<T51<T52<T53<T}4 [79<T30<T§1<T82

9 |2 |[50 (14 |29 99 (6 |77 |44

—
o

\

AR /

59 |60 (61 |65
5 (40 (29 |11
OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

BE-Trees

\

S

59 (60 (61 |65

—
o

Y 4

5 (40 (29 |11

OOOOOOOOOOOOOOOOO

37 |86

0

58 83

o0

94 TéQ T64

4 |2 |8

\

\

\

OOAOE

9 |2 |[50 (14 |29

.................H.‘ 90 |92
\ \ 4

\\ "2
DOOC

99 (6 |77 |44

62

BE-Trees

37 |86 94T39 T64

DB - s
/58 i * \go 92

/ { \ _ \ 4
o0

VA T N S
O00DD o0

9 |2 |[50 (14 |29 99 (6 |77 |44

\

¥ ¥\

59 (60 (61 |65

5 (40 (29 |11

OOOOOOOOOOOOOOOOO

BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages

94 (39 |64 (13
37 |86 T T T 2. Move them to the child’s buffer

/@@ —~—

58 83

~—
Ny

'S

\

¥ ¥V N
C rn aaC Doag

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 64

\ AR

BE-Trees

Inserts get put in the root buffer

39 64 When a buffer is full:
' 1. Pick child receiving most messages
37 |86 |94 13 _
2 |8 2. Move them to the child’s buffer

@@4 1

58 83

90 92

@

84 85

@@
4

41 48

@@

@-
¥ ¥ X\
69<T51<T52<T53<T54

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 65

BE-Trees

ot buffer

Inserts get put in the ro

When a buffer is full:

37 |86

0

—

1. Pick child receiving most messages
2. Move them to the child’s buffer

\

94 (13

4

\

58 83

\

¥ ¥\

@@!ﬂ

39 |64

¥ ¥ 2

N

C rn aas

Doag

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUUU

59 |60 (61 |65
40 |29 |11

50 |14 (29

77 44
66

BE-Trees

Inserts get put in the root buffer 66

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

\

37 |86

0

—

58 83 ||39 |64

@@

¥ ¥ 2

\

¥ ¥V N
C rn aaC Doag

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 67

N

B-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages

94 (13 |66
37 |86 T T 2. Move them to the child’s buffer

IR

— ‘;6 —~—

58 83 ||39 |64

@@

'S

\

¥ ¥V N
C rn aaC Doag

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 68

\ AR

N\

BE-Trees

Inserts get put in the root buffer 65

When a buffer is full:
1. Pick child receiving most messages

37 /86 /|94 |13 |66
T T 2. Move them to the child’s buffer

IR

— ‘;6 —~—

58 83 ||39 |64

@@

'S

\

¥ ¥V N
C rn aaC Doag

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 69

\ AR

N

BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages
94 |13 |66 |65
T T T 2. Move them to the child’s buffer

\4 \

39 |64

37 |86

IR

58 83

@@

'S

\ AR

Ny
Doag

77 44

C rn aas

50 |14 (29

59 |60 (61 |65
40 |29 |11
ccccccccccccccccc

UUUUUUUUUUUUUUUU 70

BE-Trees

Inserts get put in the root buffer

66 65 When a buffer is full:
1. Pick child receiving most messages
37 |86 |94 |13
T 6 |1 2. Move them to the child’s buffer

A .

— \ T~

58 83 ||39 |64

@@

¥ ¥ 2

\

¥ ¥V N
C rn aaC Doag

59 (60 (61 |65
40 |29 |11 50 (14 29 77 |44
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU 71

N

BE-Trees

Inserts get put in the root buffer

59 (60 (61 |65
40 |29 |11
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU

C rn aas

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

50 |14 (29

72

BE-Trees

ot buffer

Inserts get put in the ro

When a buffer is full:

37 |86

0

—

1. Pick child receiving most messages
2. Move them to the child’s buffer

{64 66 65 \

94 (13

4

\
ool 10

¥ ¥\

eoimmd
@-

\ AR

C rn aas

l
G

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUUU

59 |60 (61 |65
40 |29 |11

50 |14 (29

73

BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

57 75 |64 ‘66 |65 l
59 (60 |61 |65 59 Tn Tn T73 T74
a0 |29 |11
SCHOOL OF COMPUTING

50 |14 (29 77 |44
UUUUUUUUUUUUUUUU 74

Lookups in BE-Trees

OOOOOOOOOOOOOOOOO

BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |86 ||94

90

58 83 |39

) 9

41 48

2

67 |75

00
omaag

59 (60 (61 |65

79 80<T§1<T82

5 |40 |29 |11
U SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 86 mﬂ
OB

58 83 |39 (40

o0 o0,

41 48

2

67 |75

00
omaag

59 (60 (61 |65

79 |80 T81 TBZ

5 (40 (29 |11
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |8 |94 |13

88

58 83 E:II‘:II
.

)

41 48

2

67 |75

00
omaag

59 (60 (61 |65

79 80<T§1<T82

5 |40 |29 |11
U SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way

37 |86

90

58 83

) 9

41 48

2

67 |75 |iil

omaag

59 (60 (61 |65

79 80<T§1<T82

5 (40 (29 |11
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

BE-Trees

Query(71) > 2
Lookups follow pivots, but check buffers along the way

37 |86

90

58 83

9

)

41 48

2

59 (60 (61 |65

79 80<T§1<T82

5 (40 (29 |11
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

80

BE-Trees

Lookups follow pivots, but check buffers along the way

12 24

)

41 48

)

59 (60 (61 |65

5 (40 (29 |11
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(71) — 2

37 |86

90

94 (13

58 83

9

39 |40 90 |92

2 |3)

67 |75 ||79 84 |85

I 2
71

69 2 72 (73 |74 79 80<T§1<T82

9 50 |14 (29

81

Insertions in B&-Trees are more expensive than they look

OOOOOOOOOOOOOOOOO

Insertions in B&-Trees are more expensive than they look

(Also most LSMS)

OOOOOOOOOOOOOOOOO

83

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6

OOOOOOOOOOOOOOOOO

84

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6

58 (83 |39 T64 Tss
O [s [o

Read the
node

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

85

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

Merge the .

11 50 6 FE 9.
data _ @ \
(.«33:,@"\?' P

58 (83 |39 T64 Tss
O [s [o

Read the
node

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

86

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
AN
58 |83 ||39 T64 TGS TGG T72 TSO
0.

Read the
node

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

87

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
AN
58 |83 ||39 T64 TGS TGG T72 TSO
0.

Read the
node

Write the
node

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

88

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| \ CPU Work = O(old + new)
data _ é%@;\\
A F Volume of IO = O(old + new)

=T T64 Tss Tss Tn Tso '
AR

Read the
node

Write the
node

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

89

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

S Merge the . _
e data _ @9\ CPU Work = O(old + new)
°‘f“* > Volume of IO = O(old + new)
58 (83 ||39 T64 TGS TGG T72 TBO
LU@@MZ Older data gets written over
and over again
Read the Write the
node

node

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 90

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| | CPU Work = O(old + new)
data @\
= Volume of IO = O(old + new)

58 |83 ||39 T44 T64 TGS TGG T72 TSO T98
LU@@LM Older data gets written over
and over again
Read the Write the
node

node

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 91

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

28 91

— Merge the o CPU Work = O(old + new)
24 43 data ¢ &)
AN Volume of IO = O(old + new)
58 |83 ||39 T44 T64 TGS T66 T72 TSO T98
I@]@I{Z l l l l l l l - Older data gets written over
and over again
Read the Write the
node

node

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 92

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
P CPU Work = O(old + new)
data _ é%@;\\
N Volume of I0 = O(old + new)

58 |83 || 28 n 72 T80 T91 T98
OO a2 Jo]ufesls [«]s Older data gets written over

and over again

Read the

Write the
node

node

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 93

Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| : CPU Work = O(old + new)
data _ @&\
N\ Volume of IO = O(old + new)

65 72 T80 T91 T98
11 50 [6 |43 |1

58 (83 ||28 n
O x5 Older data gets written over
and over again
Read the Write the
node node

Up to B¢ times per node!

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 94

Size-Tiered B&-Trees

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

B® pivots

4

37 |58 93
Recall:

a B®-tree node has pivots and a buffer @ @ @

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

the rest buffer

¥

96

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

BE pivots the rest buffer

4 ¥

37 |58 93
Recall: '
a B®-tree node has pivots and a buffer @ @ @

nanste-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

97

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

BE pivots the rest buffer

¥ ¥
37 |58 |93 —p

Recall: '
a Be-tree node has pivots and a buffer @ @ @ _

nanse-tree, the buffer is
stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

and in several discontiguous pieces

98

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

trunk [node]

B¢ pivots

4

37 |58 93
Recall:

a Be-tree node has pivots and a buffer @ @ @

nanste-tree,

the rest buffer

¥
—
—>
—>

the buffer is

stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

and in several discontiguous pieces

99

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

trunk [node]

B¢ pivots

4

37 |58 93
Recall:

a Be-tree node has pivots and a buffer @ @ @

nanste-tree,

the rest buffer

¥
—
—>
—>

the buffer is

stored separately

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

branches

and in several discontiguous pieces

10

Insertions in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

When new data is flushed into the trunk node...

10

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

09

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

When new data is flushed into the trunk node...

10

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

09

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

When new data is flushed into the trunk node...

..itis added as a new branch

10

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

00

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

N

2000

42 |5 7 1

Doon

When new data is flushed into the trunk node...

..itis added as a new branch

10

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a Bé-tree where the buffer is stored
discontiguously

When new data is flushed into the trunk node...

..itis added as a new branch

r Y

37 |58 93 45 TSS T75 T76
#

00 2 s |7 s
\ The old branches do not need to be rewritten

U SCHOOL OF COMPUTING 10

UNIVERSITY OF UTAH

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

o0

— /"
ses oo oo

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Branches may have overlapping key ranges

> |

When new data is flushed into the trunk node...

..itis added as a new branch

The old branches do not need to be rewritten

10

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

37 |58 |93

o0

— /"
ses oo oo

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Branches may have overlapping key ranges

o |

45

y—y
58 |75 T76

42

> |

38

When new data is flushed into the trunk node...

..itis added as a new branch

The old branches do not need to be rewritten

108

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

r Y
41 42T43T79‘T85<T§1<]
When new data is flushed into the trunk node...
2 5 ‘11 1 ‘2 ‘9 I

..itis added as a new branch

r—y—y) |
37 58 (93 45 |58 75<T’6

ans (L |5 |

\ - - - The old branches do not need to be rewritten
38 (39 644T94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 109

Branches may have overlapping key ranges

> |

Branches may have overlapping key ranges

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored

discontiguously

37 |58 |93

o0

— /"
ses oo oo

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

~

r—y—vy Y
41 |42 |43 |79 |85

2 5 (11 |1 2 9
r—y—vy) |

45 |58 75<T’6

42 |5 |7 1
r—y—y %

38 (39 644T94

1 (2 8 |4

When new data is flushed into the trunk node...
o)

..itis added as a new branch

The old branches do not need to be rewritten

110

Branches may have overlapping key ranges

U

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored

discontiguously

37 |58 |93

@@@:
37 A/A/
see es oo

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

~

When the node is full:
Pick child receiving most messages
Merge them into a new branch for the child

r—y—vy Y
41 (42 |43 |79 |85

2 5 11 |1 2 9
r—y—vy) |

45 |58 75<T’6

42 |5 7 1
r—y—vy %

38 |39 64T94

1 |2 |8 |4

When new data is flushed into the trunk node...
o)

..itis added as a new branch

The old branches do not need to be rewritten

111

Size-Tiered B&-Trees

A Size-Tiered BE-tree is a Bé-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

[- 79 I 85 I 91 I When new data is flushed into the trunk node...

r— 58 75 | 76 I ..itis added as a new branch

37 |58 |93
Branches may have overlapping key ranges

/ 1\

The old branches do not need to be rewritten

D

&
e

&

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 112

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node...

’»
41 T42 T43
/ ...itis added as a new branch
37 (58 |93

o0 :
A/A/
(LELEL i LI

s
58 T64 T75 T76 T79 T85 T91
5 8 7 1 1 2 9
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 113

Branches may have overlapping key ranges

The old branches do not need to be rewritten

Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node...

’v
41 T42 T43
/ ..itis added as a new branch
37 |58 93

@@@:
A/A/
LYY ii LY

N Each key-value pair is read/written once per trunk node
58 T64 T75 T76 T79 T85 T91
5 8 7 1 1 2 9
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 114

Branches may have overlapping key ranges

The old branches do not need to be rewritten

a

Lookups in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

116

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

117

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

118

Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

13 |27 |34 |94

58 (67 |75

)

OOOOOOOOOOOOOOOOO

119

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

120

Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

121

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

122

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

123

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

124

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

125

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

126

Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO

127

Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

12 |24

0L,

37 |41 (48 >

- a—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(71) — 2

1 |37 g6 |~

37 (58 |83

)

58 |67 |75 T
(LI

71

72

73

0L

74

(-}

50

14

29

128

Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch

1 (37 |ge =

20

37 |58 (83

200 opek g
N
B¢ —Tree Lookup Cost= 0 (logBe M)

N
Size—Tiered B* —Tree Lookup Cost = O (Bglog BE M)

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 129

Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch

1 (37 |ge =

20

1 (12 |24 37 |58 |83 | 86 ‘Q
L@I@I_]» DAl N -»_
B* X more

o

N
B¢ —Tree Lookup Cost= 0 (long M)

N
Size—Tiered B* —Tree Lookup Cost = O (Bglog BE M)

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 130

Size-Tiered B&-Trees

Query(71)
Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch
1 (37 |86 |~
2l
(I)
1 (12 |24 37 |58 |83 .Q
— .
200, I N @@»-

N
B¢ —Tree Lookup Cost= 0 (logBe M) B xmore

N
Size—Tiered B* —Tree Lookup Cost = O (Bglog BE M)

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 131

Fixing Lookups (almost)

OOOOOOOOOOOOOOOOO

U

Fixing Lookups (almost)

The problem is that each node has multiple branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

37 58 |93

00

—
N

r Y
41 T42 T43 T79 85 |91 1

2

9

133

Fixing Lookups (almost)

r Y
The problem is that each node has multiple branches 41 T42 T43 T79 85 91 1

2 |5 11 |1 2 9

Idea: use filters to avoid searching them

=
N
o
H

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

134

Fixing Lookups (almost)

r Y
The problem is that each node has multiple branches 41 T42 T43 T79 85 91 1

2 |5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| (plus rare false positives)
T58 T75 T76

Idea: use filters to avoid searching them

=
N
o
H

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

135

Fixing Lookups (almost)

Query(64)

r Y
The problem is that each node has multiple branches 41 T42 T43 T79 85 91 1

2 |5 11 |1 2 9

Now a lookup will only search those branches which contain the key

| (plus rare false positives)
T58 T75 T76

Idea: use filters to avoid searching them

=
N
o
H

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

136

Fixing Lookups (almost)

Query(64)

',
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

- = (plus rare false positives)
37 |58 93

OO

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

137

Fixing Lookups (almost)

Query(64)

',
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

q - (plus rare false positives)
37 |58 193 &

OO

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

138

Fixing Lookups (almost)

Query(64)

',
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

q - (plus rare false positives)
37 |58 193 &

OO

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

139

Fixing Lookups (almost)

Query(64)

',
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

- = (plus rare false positives)
37 (58 93

OO

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

140

Fixing Lookups (almost)

Query(64)

'
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

= (plus rare false positives)
37 |58 |93

OO

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

141

Idea: use filters to avoid searching them

U

The problem is that each node has multiple branches

58 |93

0D

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Query(64)

*

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

r v Y
41 T42 43 T79 85 |91 1
2 |5 |11 |1 2 |9
r v
45 TSS 75 T76
42 5 |7 |1
&

Now a lookup will only search those branches which contain the key
(plus rare false positives)

142

Fixing Lookups (almost)

Query(64)

'
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

= (plus rare false positives)
37 |58 |93

0D

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

143

Fixing Lookups (almost)

Query(64) —3

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key

= (plus rare false positives)
37 |58 |93

0D

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

144

Fixing Lookups (almost)

Query(64) — 8

r g Y
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Y

Idea: use filters to avoid searching them

g
False Positive Rate < O (Belog, N)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 145

Fixing Lookups (almost)

Query(64) —3

r g Y
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Y

Idea: use filters to avoid searching them

E
FH]SE' Positive Rate < 0 () Lookups in O(1) 10s
BéloggN —
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 146

Really Fixing Lookups in Size-Tiered B&-Trees

OOOOOOOOOOOOOOOOO

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive

148

Root-to-leaf path

Rea//y Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

Multiple filters per
node

=>
=>

I@]@l@l
I@]@l@l

OOOOOOOOOOOOOOOOO

=>
=>

149

Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

=> .

‘@l@|@l.._
‘@l@l@li=

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

150

Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

High Memory/Hot Queries No 10, performance limited by CPU

=>
=>

I@]@l@l
l@]@l@l

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

=> .
=>

151

Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

High Memory/Hot Queries No 10, performance limited by CPU
. 110 per query,
Medium Memor
CPU cost of filter lookups = more threads

=>
=>

I@]@l@l
l@]@l@l

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

=> .
=>

152

Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

BUT...

High Memory/Hot Queries No 10, performance limited by CPU
. 110 per query,
Medium Memor
CPU cost of filter lookups = more threads
Low Memory Filters paged out to storage,
Lookup performance degrades

=>
=>

I@]@l@l
l@]@l@l

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

=> .
=>

153

Maplets

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Maplets

A maplet is a filter which can also
store small values

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Maplets

A maplet is a filter which can also
store small values

Is X'in the set?

no yes

Filter

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Maplets

A maplet is a filter which can also
store small values

Is X'in the set? Is X'in the set?

no yes no yes, 4

Filter Maplet

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Maplets

Is X'in the set?

no yes

Filter

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

A maplet is a filter which can also
store small values

Is X'in the set?

/N

yes, 3,4 and 7

no yes, 4

Maplet

Maplets

Is X'in the set?

no yes

Filter

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

A maplet is a filter which can also
store small values

Is X'in the set?

/N

yes, 3,4 and 7

no yes, 4

Maplet

|

No false negatives, same
false positive guarantee

|

Maplets

Is X'in the set?

no yes

Filter

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

A maplet is a filter which can also
store small values

Is X'in the set?

no

Maplet

yes, 4

yes, 3,4and 7

No false negatives, same
false positive guarantee

Same memory footprint
as multiple filters

Maplets

A maplet is a filter which can also
store small values

Is X'in the set? Is X'in the set?

No false negatives, same
false positive guarantee

Same memory footprint
ves, 3, 4and7 as multiple filters

no yes no yes, 4

4)
. Lookups same cost as 1
Filter Maplet quotient filter:
2 cache line misses
110

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Mapped B¢ Trees

SplinterDB and Maplets: Improving the Trade-Offs in LSM Compaction Policy
Conway, Farach-Colton, Johnson,
SIGMOD 2023

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Mapped B € -Trees

r—y vy—vY
41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9

37 |58 |93

~
LGS < drInEEe
~

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Mapped B € -Trees

r—y vy—vY
41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9

37 |58 |93

~
G | P
~

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Mapped B € -Trees

r—y vy—vY
41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9

/
37 |58 |93

Gl | Pt
~

Y) @) |
Use the values to store which buffers contain matching keys 38 |39 (64 (94

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

U

Mapped B € -Trees

Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(64)

37 |58 |93

)

~

—
N

r—y vy—Y

41 |42 T43 79 |85 T91 1
2 |5 (11 |1 2 9
r—y) G |

45 |58 T75 76

42 |5 |7 |1

v vy
38 |39 T64 94
1 |12 8 |4

Mapped B € -Trees

Query(64)

r vy
41 T42 T43 79 |85 T91 1

Replace individual filters with a single maplet 2 5 11 |1 2 9

37 |58 |93

)

=)
b
—4
n
)
—
N
(0
4

\l
o
v |

Use the values to store which buffers contain matching keys

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Mapped B € -Trees

Query(64) — 8

r—y vy—vY
41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9

37 |58 |93

)

¥ ¥ %

v 64 r—y
Use the values to store which buffers contain matching keys 38 |39 94
1 8
1 2 - 4

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

OOOOOOOOOOOOOOOOO

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

-h*
=

*
42 T43 T79
5 |11 |1 u

~

37 |58 |93 _>41 79 a
209 ;

N

-h*
=
=1
w
(<))
Sy
|
[
=

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

~

l@l@l@. —

N

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

~

|@|@|@. —

N

-h*
=
=1
w
(<))
Sy
|
[
=

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

r 42
41 43 T79

~

37 |58 |93 _>41 79 a
209 ;

N

-h*
=
=1
w
(<))
Sy
|
[
=

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Compaction can recover disk space when there are many updates

r—v
41 (42 T43 T79

2

37 |58 |93

-~
oo L
N

41 T42 T43 T64 T79
8 |1

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Compaction saves little space when there is little redundant data

~

—

~

37 58 |93

00

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

r v) g
41 T42 43 T79 85 |91 1
2 |5 |11 |1 2 9

r v
45 T58 75 T76
42 |5 |7 |1

So we don't want to waste time compacting branches with few updates

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

> |

v 2 g
41 TAZ 43<T}9 8 <T514]
9

5
2

N
u
[N
[N
=

~

v v
45T58 75<T§6
—

42 |5 7 1
N

v)|
38<T39 64<T94

> |

37 |58 |93 37 58 |93

00 0L

|

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

’»
41T42T43
2 5 |1

1

37 |58 |93

09

37 58 |93

~
oo L
N

/ 4\

LR

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Using Maplets to Manage Space

37 |58 |93

09

LN

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Maplets can tell us how much redundant data there is

3

/ 4\

’»
41T42T4
2 5 |1

1

ots of multiple entries

37 58 |93

0D

~
—
N

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

r—Y—vy—v
41 |42 (43 |79 T85 T91 1
2 5 11 |1 2 9
/ /-f) D S 4
37 |58 |93 37 |58 |93 45 (58 |75 76]
- -
202) a2 s |7 |1
~ S
38 (39 (64 |94
1 2 |8 (4

ots of multiple entries

/
_

_ N

SCHOOL OF COMPUTING Maplet
UNIVERSITY OF UTAH

Using Maplets to Manage Space

37 |58 |93

00

_ N

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/ 4\

ots of multiple entries

Maplets can tell us how much redundant data there is

/
_

Maplet

Few multiple entries

rey—y—y
41 |42 |43 79<T854T§1 1
2 5 11 |1 2 9
/-f y—y—Y
37 58 93 45 (58 |75 |76]
—
) a2 s 7 1
\+ y—y—Y
38 (39 (64 |94
1 2 |8 (4

SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant
data

Update estimate every time we rebuild maplet

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant \
data E

Whenever disk usage gets too high, SplinterDB initiates compaction on top node of the heap.

Goal: maximal gains, minimal pains

Update estimate every time we rebuild maplet

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

S P l interDB ¢ —e— SplinterDB+Maplets —s— SplinterDB —— RocksDB

28 2Ghz cores

Intel Optane 905P
24B keys 100B values

' 120 GiB

B 112 GiB
104 GiB

A 96 GiB 0 GiB

IM 2M 3M

Updates/Second

607% 807 100%
Space Efficiency

100% uniform updates

Flush-Then-Compact

OOOOOOOOOOOOOOOOO

cardszthen; Compact

JLush-Then-Compact

Elush-Then-Compact

Elush-Then-Compact

- -Compact

24 |37 |86 |90 : : :
.... After inserting the first
@ @ @ @ essage, the root-to-leaf path
/ s in cache
58 |83 |84
U .
AN R

éé

OOOOOOOOOOOOOOOOO

UUUUUUUUUUUUUUUU 199

72

Compact

edbo
s 84 \
odbel—/\

\
o o

AN

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU 200

Sequen‘tlaﬁnse tions Into a

After inserting the first
essage, the root-to-leaf path
s in cache

AN

N

Flush-Then-Compact « » » »

Sequential Insertions into a
Bé-tree

9 2 50 14

/58 83 \ 9092
v / ¢ \ v

oo

'S

67 |75

o0

¥ ¥) e I \o

59 |60 (61 |65 [79<T30<T§1<T82
5 (40 (29 |11

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH

\ AR

99 (6 |77 |44

201

Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
37 (86 [69 Tn Tn T73 o]
bringing the root-to-leaf path into

22.5

@@ 9 |2 |50 (14 Cache

\

¥ ¥\

59 |60 (61 |65
5 (40 (29 |11
ccccccccccccccccc

UUUUUUUUUUUUUUUU 202

'S

Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

\
il
\

\
{69<T51
\

59 (60 (61 |65

5 (40 (29 |11
uuuuuuuuuuuuuuuuu
UUUUUUUUUUUUUUUU 203

Flush-Then-Compact

Sequential Insertions into a

Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

67 |75 (|69 |71 |72 |73
<::><::> 9 |2 (50 (14

N

¥ ¥ 2

T

99 (6 |77 |44

59 |60 (61 |65
40 |29 |11
ccccccccccccccccc

UUUUUUUUUUUUUUUU 204

Flush-Then-Compact

Sequential Insertions into a

Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

\
~—~

58 83

2

67

—
e

)

¥ ¥\

59 |60 (61 |65 69 T71
40 |29 |11
ccccccccccccccccc

UUUUUUUUUUUUUUUU 205

Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

v

¥ ¥ 2

OOOOOOOOOOOOOOOOO

206

Flush-Then-Compac? = = »

Sequential Insertions into a
Bé-tree

1 2 3 4

B insertions trigger a flush to the leaf

37 86 . . .
.. bringing the root-to-leaf path into
(LI cache

Subsequent insertions are cheaper.
(only incur 10 at node boundaries)

v

¥
Doag

77 44

\
¥ ¥\

59 (60 (61 |65 69 (71 (72 |73
40 |29 |11 50 (14
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

\ AR

207

6 (67 |68 |69

Flush-Then-Compact

m‘!
4

4

4
d

Want:
Cheap sequential insertions /

r—Yy—vy—v
37 |58 |93 62 (63 (64 |65]

oans (L 5
=

0D ii D
7 |\

78
After merging and flushing another flush will be triggered
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 208

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

\@58 59 60 61 62 63 64 65 66 67 68 69

/ \ 1 2 8 4 42 5 7 1 2 5 11 1

After merging and flushing another flush will be triggered

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 209

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

=

ot B8 —[PEEEREEEEEER

78
After merging and flushing another flush will be triggered
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 210

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

—

DOOOOOOCCGOC
(LLLLL /ﬁi\\ 11

Any data already present will get
1 2 |8 |a merged again

78
After merging and flushing another flush will be triggered
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 211

Flush-Then-Compact

Want:
Cheap sequential insertions

Can still end up merging on each level

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

37 |58 |93

0L

—

o200 ii
"4

i

W

2 g vy
58 (59 TGO 61 (62 T63 T64 TGS 66 T67 T68 TGQ
5 |7 2 |5

11

Any data already present will get
merged again

After merging and flushing another flush will be triggered

212

Flush-Then-Compact A

2 5 11 |1
Want:
Cheap sequential insertions

37 |58 |93

@@@ a2 (5 |7 |1

Idea: Flush-then-compact
| ¢ V- D |
584T59 60<T§4

a |
o
N
|
00
o)
©

=

o
N
o
w
|
B
o
]

=

|ii||ii|

UNIVERSITY OF UTAH 213

U SCHOOL OF COMPUTING

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

soe

Idea: Flush-then-compact ///

i

UNIVERSITY OF UTAH 214

U SCHOOL OF COMPUTING

Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

v/

\\

&
&

First flush references to the branches, but do not compact

i

UNIVERSITY OF UTAH 215

U SCHOOL OF COMPUTING

Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

0D ii e
/

\i

>

€

First flush references to the branches, but do not compact

Use metadata to mask out data
78
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 216

Flush-Then-Compact

The parent only sees the unflushed data

Want:
Cheap sequential insertions

‘37 ‘58 ‘93 \
Idea: Flush-then-compact /@<® @

First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 217

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

ooe

Idea: Flush-then-compact /

—
(LT ii (LY
Z [\

The child only sees the flushed data

First flush references to the branches, but do not compact

Use metadata to mask out data
78
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 218

Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

0D ii e
/

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data
78
U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH 219

\i

>

€

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 220

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 221

Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data

Finally, asynchronously compact the flushed buffers in each node

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 222

Flush-Then-Compact

No work on immediately flushed data

37 |58 |93

oo

First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 223

Flush-Then-Comnact

No work on immediately flushed data

Sequential insertions have write amp ~1

First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 224

Flush-Then-Comnact

No work on immediately flushed data

Sequential insertions have write amp ~1

Break a serial chain of compactions into parallel

First flush references to the branches, but do not compact

Use metadata to mask out data

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 225

Flush-Then-Comnact

No work on immediately flushed data

Break a serial chain of compactions into parallel

Sequential insertions have write amp ~1

Concurrent compactions in trunk nodes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

First flush references to the branches, but do not compact

Use metadata to mask out data

226

Flush-Then-Comnact

No work on immediately flushed data

Break a serial chain of compactions into parallel

Concurrent compactions in trunk nodes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Sequential insertions have write amp ~1

Improve insertion concurrency

227

Flush-Then-Compact

1000

aF{%SplinterDB

@08

Run a single-threaded workload with a percentage sequential insertions and the rest random

866

01 185 193
Percehtad@@®Se§8enti8lo

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 228

Flush-Then-Compact

le-th rkloa h | h "
+ 33
f flush-th hl h h h ki
eeeeeeeeeeee | s

Percehtad@@®Se§8enti8lo

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 229

Flush-Then-Compact

1000

Run a single-threaded workload with a percentage sequential insertions and the rest random
| |
+ ®SplinterDB

Ll

s u
Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets s e

58430

Higher is Better

185 193
Percehtad@@®Se§8enti8lo

X-axis not to scale

RocksDB improves, but at a much lower rate

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH 230

Flush-then-Compact
3000 ®SplinterDB

Insertions in SplinterDB scale well

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH 231

Flush-then-Compact
®SplinterDB

3000

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

Insertions in SplinterDB scale well

232

Flush-then-Compact
®SplinterDB

3000

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

233

Conclusion

Model the problem:
external memory dictionary

&
Mapped B -tree

eost=
000

T
eser== —
e) .

,, > m— ->—
(o)) o000 o000

Theory

Systems

o=

Powered By
vmware

‘ VSAN"

VSAN needed a new way of storing metadata SplinterDB

Conclusion

Model the problem:
external memory dictionary

&
Mapped B -tree

eost=
000

T
— 009 —
— ' ~

Theory

Systems

o=

Powered By
vmware

VSAN"

SplinterDB is in vSAN 8.0

VSAN needed a new way of storing metadata SplinterDB
Open-source at

https://github.com/vmware/splinterdb

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

