CS 6530: Advanced Database Systems Fall 2023

Lecture 10
Write-Optimized Indexes

Prashant Pandey
prashant.pandey@utah.edu

Slides taken from Prof. Alex Conway, Cornell Tech
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The Story of SplinterDB

Metadata is fine-grained

Model the problem:
external memory dictionary

4 KiB

10 4 KiB

Here B is the number of
items in an |O:

B=4KiB/48B
If the items were larger, the model Internal A B-sized block can be read or
wouldn’t be as good Memory of size  written in 110

M

External Memory Model
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The Story of SplinterDB

Model the problem:
external memor y dictionary

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)
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Comparison-Based Dictionaries

Comparison External Memory
Model

user024299 = user082587

Hashing Filters

Lower bounds for external memory dictionaries,

Brodal, G., Fagerberg, R. SODA ‘03
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Brodal-Fagerberg Lower
Bound

Insertions in

A
0, (E logAN)
Lookups in

where /1 is a tuning parameter

Q(log;N)
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General Dictionaries

External Memory Model

user024299

YoV REALLY

Hashing QJE . Do
i (a50£024259) WHATEVER
You WANT

Filters

gf_ insert(user024299)

Using hashing to solve the dictionary problem (in external memory),
lacono, J., Patrascu, M. SODA ‘12
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Lower Bounds

Brodal-Fagerberg Lower Bound

lacono-Patrascu Lower Bound

Insertions in
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Lower Bounds

Brodal-Fagerberg Lower Bound lacono-Patrascu Lower Bound

Insertions in Lookups in Insertions in Lookups in
A =) A =)
0 (E log,lN) Q(logN) 0 ( )

Q(l N
B (logaN)

/M

B-Trees B:-Trees BoA/BoT

(A= B) (A = B?)

lacono-Patrascu Hash Table

Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018
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Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in
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B&-Trees

(4 = B%)

lacono-Patrascu Lower Bound

Insertions in Lookups in
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5 (logaN)

lacono-Patrascu Hash Table
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BoA/BoT
Hash Table

No scans!

General External Memory Model
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Lower Bounds

Brodal-Fagerberg Lower Bound
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lacono-Patrascu Lower Bound

Insertions in Lookups in
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/O Amplification

Read amplification is the ratio of the number of blocks read
from the disk versus the number
of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks
written to the disk versus the number of blocks required to
write the key-value pair.
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B-Trees

B-ary Search Tree

N
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N
E
(o)
©
o
------*

O(logg N)

Insertion Cost < 0(loggN)

«------

Lookup Cost < O(loggN)
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BE-Trees

A B®-tree is a search tree (like a B-tree)
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BE-Trees
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BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages
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BE-Trees

Inserts get put in the root buffer

39 64 When a buffer is full:
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BE-Trees

ot buffer

Inserts get put in the ro

When a buffer is full:
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1. Pick child receiving most messages
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BE-Trees

Inserts get put in the root buffer 66

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer
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B-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages

94 (13 |66
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BE-Trees

Inserts get put in the root buffer 65

When a buffer is full:
1. Pick child receiving most messages
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BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages
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BE-Trees

Inserts get put in the root buffer

66 65 When a buffer is full:
1. Pick child receiving most messages
37 |86 |94 |13
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BE-Trees

Inserts get put in the root buffer

59 (60 (61 |65
40 |29 |11
SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU

C rn aas

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

50 |14 (29

72



BE-Trees

ot buffer

Inserts get put in the ro

When a buffer is full:
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BE-Trees

Inserts get put in the root buffer

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer
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Lookups in BE-Trees
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BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way
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Query(71)

Lookups follow pivots, but check buffers along the way

37 86 mﬂ
OB

58 83 |39 (40

o0 o0,

41 48

2

67 |75

00
omaag

59 (60 (61 |65

79 |80 T81 TBZ

5 (40 (29 |11
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




BE-Trees

Query(71)

Lookups follow pivots, but check buffers along the way
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Query(71)

Lookups follow pivots, but check buffers along the way
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BE-Trees

Query(71) > 2
Lookups follow pivots, but check buffers along the way
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BE-Trees

Lookups follow pivots, but check buffers along the way
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Insertions in B&-Trees are more expensive than they look
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Insertions in B&-Trees are more expensive than they look

(Also most LSMS)
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6

OOOOOOOOOOOOOOOOO
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

11 50 6

58 (83 |39 T64 Tss
O [s [o

Read the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

65 72 80

Merge the .

11 50 6 FE 9.
data _ @ \
(.«33:,@"\?' P

58 (83 |39 T64 Tss
O [s [o

Read the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
AN
58 |83 ||39 T64 TGS TGG T72 TSO
0.

Read the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
AN
58 |83 ||39 T64 TGS TGG T72 TSO
0.

Read the
node

Write the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| \ CPU Work = O(old + new)
data _ é%@;\\
A F Volume of IO = O(old + new)

=T T64 Tss Tss Tn Tso '
AR

Read the
node

Write the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

S Merge the . _
e data _ @9\ CPU Work = O(old + new)
°‘f“* > Volume of IO = O(old + new)
58 (83 ||39 T64 TGS TGG T72 TBO
LU@@MZ Older data gets written over
and over again
Read the Write the
node

node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| | CPU Work = O(old + new)
data @\
= Volume of IO = O(old + new)

58 |83 ||39 T44 T64 TGS TGG T72 TSO T98
LU@@LM Older data gets written over
and over again
Read the Write the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

28 91

— Merge the o CPU Work = O(old + new)
24 43 data ¢ &)
AN Volume of IO = O(old + new)
58 |83 ||39 T44 T64 TGS T66 T72 TSO T98
I@]@I{Z l l l l l l l - Older data gets written over
and over again
Read the Write the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the PN
P CPU Work = O(old + new)
data _ é%@;\\
N Volume of I0 = O(old + new)

58 |83 || 28 n 72 T80 T91 T98
OO a2 Jo]ufesls [«]s Older data gets written over

and over again

Read the

Write the
node
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Insertions in B&-Trees are more expensive than they look
Recall: Insertions in B:-trees

Merge the -
| : CPU Work = O(old + new)
data _ @&\
N\ Volume of IO = O(old + new)

65 72 T80 T91 T98
11 50 [6 |43 |1

58 (83 ||28 n
O x5 Older data gets written over
and over again
Read the Write the
node node

Up to B¢ times per node!
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Size-Tiered B&-Trees

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

B® pivots

4

37 |58 93
Recall:

a B®-tree node has pivots and a buffer @ @ @
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

BE pivots the rest buffer

4 ¥

37 |58 93
Recall: '
a B®-tree node has pivots and a buffer @ @ @

nanste-tree, the buffer is
stored separately
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

BE pivots the rest buffer

¥ ¥
37 |58 |93 —p

Recall: '
a Be-tree node has pivots and a buffer @ @ @ _

nanse-tree, the buffer is
stored separately
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

trunk [node]

B¢ pivots

4

37 |58 93
Recall:

a Be-tree node has pivots and a buffer @ @ @

nanste-tree,

the rest buffer

¥
—
—>
—>

the buffer is

stored separately
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

trunk [node]

B¢ pivots

4

37 |58 93
Recall:

a Be-tree node has pivots and a buffer @ @ @

nanste-tree,

the rest buffer

¥
—
—>
—>

the buffer is

stored separately
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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When new data is flushed into the trunk node...
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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When new data is flushed into the trunk node...

..itis added as a new branch
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a Bé-tree where the buffer is stored
discontiguously

When new data is flushed into the trunk node...
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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Branches may have overlapping key ranges
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When new data is flushed into the trunk node...
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The old branches do not need to be rewritten
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A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously
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Branches may have overlapping key ranges
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When new data is flushed into the trunk node...

..itis added as a new branch

The old branches do not need to be rewritten
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored
discontiguously

r Y
41 42T43T79‘T85<T§1<]
When new data is flushed into the trunk node...
2 5 ‘11 1 ‘2 ‘9 I

..itis added as a new branch
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\ - - - The old branches do not need to be rewritten
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Branches may have overlapping key ranges
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored

discontiguously
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When new data is flushed into the trunk node...
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..itis added as a new branch

The old branches do not need to be rewritten
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Branches may have overlapping key ranges
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored

discontiguously
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When the node is full:
Pick child receiving most messages
Merge them into a new branch for the child
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When new data is flushed into the trunk node...
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..itis added as a new branch

The old branches do not need to be rewritten
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Size-Tiered B&-Trees

A Size-Tiered BE-tree is a Bé-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

[ - 79 I 85 I 91 I When new data is flushed into the trunk node...

r— 58 75 | 76 I ..itis added as a new branch
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Branches may have overlapping key ranges
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The old branches do not need to be rewritten
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node...
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Size-Tiered B&-Trees

A Size-Tiered Bt-tree is a B5-tree where the buffer is stored . .
discontiguously When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node...

’v
41 T42 T43
/ ..itis added as a new branch
37 |58 93

@@@:
A/A/
LYY ii LY

N Each key-value pair is read/written once per trunk node
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Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch

OOOOOOOOOOOOOOOOO
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch
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Query(71)
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Size-Tiered B&-Trees

Lookups in a STBE-tree are like lookups in a B-tree, except they must check
each branch
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch
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Size-Tiered B&-Trees

Query(71)

Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch
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Size-Tiered B&-Trees

Query(71)
Lookups in a STBE-tree are like lookups in a Bé-tree, except they must check
each branch
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Fixing Lookups (almost)
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Fixing Lookups (almost)

The problem is that each node has multiple branches
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Fixing Lookups (almost)

r Y
The problem is that each node has multiple branches 41 T42 T43 T79 85 91 1

2 |5 11 |1 2 9

Idea: use filters to avoid searching them

=
N
o
H

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64)
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Query(64)
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The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key

- = (plus rare false positives)
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Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
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Examples: Bloom, cuckoo, quotient
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Query(64)
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Idea: use filters to avoid searching them

U

The problem is that each node has multiple branches

58 |93

0D

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Query(64)

*
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Now a lookup will only search those branches which contain the key
(plus rare false positives)
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Query(64)
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Fixing Lookups (almost)

Query(64) —3

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key

= (plus rare false positives)
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Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)

Query(64) — 8

r g Y
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Y

Idea: use filters to avoid searching them

g
False Positive Rate < O ( Belog, N)
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Fixing Lookups (almost)

Query(64) —3

r g Y
The problem is that each node has multiple branches 41 T42 43 T79 85 91 1

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Y

Idea: use filters to avoid searching them

E
FH]SE' Positive Rate < 0 ( ) Lookups in O(1) 10s
BéloggN —
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Really Fixing Lookups in Size-Tiered B&-Trees
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Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive
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Root-to-leaf path

Rea//y Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

Multiple filters per
node

=>
=>

I@]@l@l
I@]@l@l

OOOOOOOOOOOOOOOOO

=>
=>
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Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

=> .
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Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

High Memory/Hot Queries No 10, performance limited by CPU

=>
=>
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Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

Multiple filters per
node

BUT...

High Memory/Hot Queries No 10, performance limited by CPU
. 110 per query,
Medium Memor
CPU cost of filter lookups = more threads

=>
=>
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Root-to-leaf path

Really Fixing Lookups in Size-Tiered B&-Trees

Querying all these filters is expensive In practice, we see 15-40 filter lookups per point query

We could hope to amortize against 10

BUT...

High Memory/Hot Queries No 10, performance limited by CPU
. 110 per query,
Medium Memor
CPU cost of filter lookups = more threads
Low Memory Filters paged out to storage,
Lookup performance degrades

=>
=>
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Maplets

A maplet is a filter which can also
store small values
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A maplet is a filter which can also
store small values

Is X'in the set?

no yes

Filter
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Maplets

A maplet is a filter which can also
store small values

Is X'in the set? Is X'in the set?
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no yes

Filter
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A maplet is a filter which can also
store small values

Is X'in the set?

/N

yes, 3,4 and 7

no yes, 4

Maplet

|

No false negatives, same
false positive guarantee
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Is X'in the set?

no yes

Filter
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A maplet is a filter which can also
store small values

Is X'in the set?

no

Maplet

yes, 4

yes, 3,4and 7

No false negatives, same
false positive guarantee

Same memory footprint
as multiple filters




Maplets

A maplet is a filter which can also
store small values

Is X'in the set? Is X'in the set?

No false negatives, same
false positive guarantee

Same memory footprint
ves, 3, 4and7 as multiple filters

no yes no yes, 4

4 )
. Lookups same cost as 1
Filter Maplet quotient filter:
2 cache line misses
110
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Mapped B¢ Trees

SplinterDB and Maplets: Improving the Trade-Offs in LSM Compaction Policy
Conway, Farach-Colton, Johnson,
SIGMOD 2023
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Mapped B € -Trees

r—y vy—vY
41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9

37 |58 |93

~
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Mapped B € -Trees

Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Query(64)
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Query(64)
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Use the values to store which buffers contain matching keys
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Mapped B € -Trees

Query(64) — 8
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41 |42 T43 79 |85 T911

Replace individual filters with a single maplet 2 5 11 |1 2 9
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Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space
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Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space
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Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Compaction can recover disk space when there are many updates
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Using Maplets to Manage Space

Compaction saves little space when there is little redundant data
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So we don't want to waste time compacting branches with few updates



Using Maplets to Manage Space

Maplets can tell us how much redundant data there is
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Using Maplets to Manage Space

Maplets can tell us how much redundant data there is
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Maplets can tell us how much redundant data there is

3

/ 4\

’»
41T42T4
2 5 |1

1

ots of multiple entries

37 58 |93

0D

~
—
N




Using Maplets to Manage Space

Maplets can tell us how much redundant data there is
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Using Maplets to Manage Space
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SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant
data

Update estimate every time we rebuild maplet
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SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant \
data E

Whenever disk usage gets too high, SplinterDB initiates compaction on top node of the heap.

Goal: maximal gains, minimal pains

Update estimate every time we rebuild maplet
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S P l interDB ¢ —e— SplinterDB+Maplets —s— SplinterDB —— RocksDB

28 2Ghz cores

Intel Optane 905P
24B keys 100B values

' 120 GiB

B 112 GiB
104 GiB

A 96 GiB 0 GiB

IM 2M 3M

Updates/Second

607% 807 100%
Space Efficiency

100% uniform updates
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- -Compact

24 |37 |86 |90 : : :
.... After inserting the first
@ @ @ @ essage, the root-to-leaf path
/ s in cache
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Sequen‘tlaﬁnse tions Into a

After inserting the first
essage, the root-to-leaf path
s in cache
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Flush-Then-Compact « » » »

Sequential Insertions into a
Bé-tree

9 2 50 14

/58 83 \ 9092
v / ¢ \ v

oo

'S

67 |75
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¥ ¥ ) e I \o
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Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
37 (86 [69 Tn Tn T73 o ]
bringing the root-to-leaf path into

22.5

@@ 9 |2 |50 (14 Cache
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Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

\
il
\

\
{69<T51
\
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Flush-Then-Compact

Sequential Insertions into a

Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache
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Flush-Then-Compact

Sequential Insertions into a

Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache
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Flush-Then-Compact

Sequential Insertions into a
Bé-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

v

¥ ¥ 2
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Flush-Then-Compac? = = »

Sequential Insertions into a
Bé-tree

1 2 3 4

B insertions trigger a flush to the leaf

37 86 . . .
.. bringing the root-to-leaf path into
(LI cache

Subsequent insertions are cheaper.
(only incur 10 at node boundaries)

v

¥
Doag

77 44

\
¥ ¥\

59 (60 (61 |65 69 (71 (72 |73
40 |29 |11 50 (14
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Flush-Then-Compact

m‘!
4

4

4
d

Want:
Cheap sequential insertions /

r—Yy—vy—v
37 |58 |93 62 (63 (64 |65 ]

oans (L 5
=

0D ii D
7 |\

78
After merging and flushing another flush will be triggered
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

\@58 59 60 61 62 63 64 65 66 67 68 69

/ \ 1 2 8 4 42 5 7 1 2 5 11 1

After merging and flushing another flush will be triggered
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

=

ot B8 —[PEEEREEEEEER

78
After merging and flushing another flush will be triggered
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

0L

—

DOOOOOOCCGOC
(LLLLL /ﬁi\\ 11

Any data already present will get
1 2 |8 |a merged again

78
After merging and flushing another flush will be triggered
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Flush-Then-Compact

Want:
Cheap sequential insertions

Can still end up merging on each level
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37 |58 |93
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5 |7 2 |5

11

Any data already present will get
merged again

After merging and flushing another flush will be triggered
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Flush-Then-Compact A

2 5 11 |1
Want:
Cheap sequential insertions

37 |58 |93

@@@ a2 (5 |7 |1

Idea: Flush-then-compact
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

soe

Idea: Flush-then-compact ///

i
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Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

v/

\\

&
&

First flush references to the branches, but do not compact

i
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Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

0D ii e
/

\i

>

€

First flush references to the branches, but do not compact

Use metadata to mask out data
78
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Flush-Then-Compact

The parent only sees the unflushed data

Want:
Cheap sequential insertions

‘37 ‘58 ‘93 \
Idea: Flush-then-compact /@<® @

First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

ooe

Idea: Flush-then-compact /

—
(LT ii (LY
Z [ \

The child only sees the flushed data

First flush references to the branches, but do not compact

Use metadata to mask out data
78
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Flush-Then-Compact

Want:
Cheap sequential insertions

‘ 37 |58 ‘ 93
Idea: Flush-then-compact @ @ @

0D ii e
/

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data
78
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Compact

Want:
Cheap sequential insertions

37 |58 |93

oo

Idea: Flush-then-compact

Then can flush again First flush references to the branches, but do not compact

Use metadata to mask out data

Finally, asynchronously compact the flushed buffers in each node
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Flush-Then-Compact

No work on immediately flushed data

37 |58 |93

oo

First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Comnact

No work on immediately flushed data

Sequential insertions have write amp ~1

First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Comnact

No work on immediately flushed data

Sequential insertions have write amp ~1

Break a serial chain of compactions into parallel

First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Comnact

No work on immediately flushed data

Break a serial chain of compactions into parallel

Sequential insertions have write amp ~1

Concurrent compactions in trunk nodes
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First flush references to the branches, but do not compact

Use metadata to mask out data
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Flush-Then-Comnact

No work on immediately flushed data

Break a serial chain of compactions into parallel

Concurrent compactions in trunk nodes
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Sequential insertions have write amp ~1

Improve insertion concurrency
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Flush-Then-Compact

1000

aF{%SplinterDB

@08

Run a single-threaded workload with a percentage sequential insertions and the rest random

866

01 185 193
Percehtad@@®Se§8enti8lo
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Flush-Then-Compact

le-th rkloa h | h "
+ 33
f flush-th hl h h h ki
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Flush-Then-Compact

1000

Run a single-threaded workload with a percentage sequential insertions and the rest random
| |
+ ®SplinterDB

Ll

s u
Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets s e

58430

Higher is Better

185 193
Percehtad@@®Se§8enti8lo

X-axis not to scale

RocksDB improves, but at a much lower rate
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Flush-then-Compact
3000 ®SplinterDB

Insertions in SplinterDB scale well
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Flush-then-Compact
®SplinterDB

3000
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Insertions in SplinterDB scale well
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Conclusion

Model the problem:
external memory dictionary
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VSAN needed a new way of storing metadata SplinterDB
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SplinterDB is in vSAN 8.0

VSAN needed a new way of storing metadata SplinterDB
Open-source at

https://github.com/vmware/splinterdb
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