CS 6530: Advanced Database Systems Fall 2022

Lecture O/
Concurrency control #2

Prashant Pandey
prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO

http://prashant.pandey@utah.edu

CONCURRENCY CONTROL

* The system assumes that a txn could stall at any time whenever it
tries to access data that is not in memory.

e Execute other txns at the same time so that if one txn stalls then
others can keep running.

» Set locks to provide ACID guarantees for txns.
* Locks are stored in a separate data structure to avoid being swapped to disk.

OOOOOOOOOOOOOOOOO

ACID guarantee

* Atomicity - each statement in a transaction (to read, write, update or
delete data) is treated as a single unit. Either the entire statement is
executed, or none of it is executed.

* Consistency - ensures that transactions only make changes to tables
in predefined, predictable ways

* Isolation - when multiple users are reading and writing from the same
table all at once, isolation of their transactions ensures that the
concurrent transactions don’t interfere with or affect one another.

* Durability - ensures that changes to your data made by successfully
executed transactions will be saved, even in the event of system
failure.

OOOOOOOOOOOOOOOOO

STORAGE ACCESS LATENCIES

L3

DRAM SS5D

HDD

Read Latency ~20ns

Write Latency ~20ns

=== | LET'S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
~ | VOLATILE MEMORY DATABASE SYSTEMS
| SIGMOD 2015

60 ns 25,000 ns

60 ns 300,000 ns

10,000,000 ns

10,000,000 ns

CONCURRENCY CONTROL

* The protocol to allow txns to access a database in a multi-
programmed fashion while preserving the illusion that each of them
is executing alone on a dedicated system.

* The goal is to have the effect of a group of txns on the database’s state is
equivalent to any serial execution of all txns.

* Provides Atomicity + Isolation in ACID

OOOOOOOOOOOOOOOOO

CONCURRENCY CONTROL

* For in-memory DBMSs, the cost of a txn acquiring a lock is the same
as accessing data.

* New bottleneck is contention caused from txns trying access data at
the same time.

 The DBMS can store locking information about each tuple together
with its data.
* This helps with CPU cache locality.
* Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.

OOOOOOOOOOOOOOOOO

COMPARE-AND-SWAP

e Atomic instruction that compares contents of a memory location M to
a given value V
* If values are equal, installs new given value V’ in M
e Otherwise operation fails

M

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

New
Address Value

—

__sync_bool_compare_and_swap(&M, 20, 30)

Compar
e Value

CONCURRENCY CONTROL SCHEMES

* Two-Phase Locking (2PL)

* Assume txns will conflict so they must acquire locks on database objects before
they are allowed to access them.

* Timestamp Ordering (T/0)

* Assume that conflicts are rare so txns do not need to first acquire locks on
database objects and instead check for conflicts at commit time.

OOOOOOOOOOOOOOOOO

TWO-PHASE LOCKING
Txn #1

LOCK(A) READ(A) LNLOCK(A) WRITE(B) UNLOCK(B)

N]

XN #2 Gro 'g Shrinking Phase

LOCK(B) WRITE(B) LOCK(A) g |A)

UNLOCK(A) | UNLOCK(B)

10

OOOOOOOOOOOOOOOOO

TWO-PHASE LOCKING

* Deadlock Detection
* Each txn maintains a queue of the txns that hold the locks that it waiting for.
* A separate thread checks these queues for deadlocks.

* |f deadlock found, use a heuristic to decide what txn to kill in order to break
deadlock.

* Deadlock Prevention
* Check whether another txn already holds a lock when another txn requests it.

* If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill
the other txn.

OOOOOOOOOOOOOOOOO

TIMESTAMP ORDERING

* Basic T/O
* Check for conflicts on each read/write.
* Copy tuples on each access to ensure repeatable reads.

e Optimistic Currency Control (OCC)
 Store all changes in private workspace.
* Check for conflicts at commit time and then merge.

OOOOOOOOOOOOOOOOO

A 10000 10006
B 10000 10000

OPTIMISTIC CONCURRENCY CONTROL

* Timestamp-ordering scheme where txns copy data read/write into a
private workspace that is not visible to other active txns.

* When a txn commits, the DBMS verifies that there are no conflicts.

* First proposed in 1981 at CMU by H.T. Kung.

~— ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
= ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

OOOOOOOOOOOOOOOOO

14

http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung

SCHC .
UNIVE

OPTIMISTIC CONCURRENCY CONTROL
Txn #1

65| @ | @

READ(A) WRITE(CA) WRITE(B)

10001

_IDATE PHASE WRITE PHASE

Workspacen ¢ e

write Write

Record Value Record Value

p [imestamp Timestamp
A | 6| oo 888 | 10001
B | 999 | oo 999 | 10001
SIS 15

OBSERVATION

* When there is low contention, optimistic protocols perform better
because the DBMS spends less time checking for conflicts.

* At high contention, the both classes of protocols degenerate to
essentially the same serial execution.

OOOOOOOOOOOOOOOOO

16

CONCURRENCY CONTROL EVALUATION

 Compare in-memory concurrency control protocols at high levels of
parallelism.
* Single test-bed system.

* Evaluate protocols using core counts beyond what is available on today's
CPUs.

* Running in extreme environments exposes what are the main
bottlenecks in the DBMS.

— | STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY CONTROL WITH
ONE THOUSAND CORES
VLDB 2014

SCHOOL OF COMPUTING 17
UNIVERSITY OF UTAH

1000-CORE CPU SIMULATOR

e DBx1000 Database System

* In-memory DBMS with pluggable lock manager.

* No network access, logging, or concurrent indexes.

* All txns execute using stored procedures.

* MIT Graphite CPU Simulator
* Single-socket, tile-based CPU.
» Shared L2 cache for groups of cores.
* Tiles communicate over 2D-mesh network.

OOOOOOOOOOOOOOOOO

18

https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

TARGET WORKLOAD

* Yahoo! Cloud Serving Benchmark (YCSB)

e 20 million tuples
e Each tuple is 1KB (total database is ~20GB)

* Each transactions reads/modifies 16 tuples.
* Varying skew in transaction access patterns.
* Serializable isolation level.

OOOOOOOOOOOOOOOOO

CONCURRENCY CONTROL SCHEMES

DL DETECT 2PL w/ Deadlock Detection
NO WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention

TIMESTAMP Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

Sdﬂnﬁﬁﬁm Z?@tﬁcg LABS
L = ByPers " INGRES

READ-ONLY WORKLOAD

__14 . . | .
L o—o DL DETECT a—a TIMESTAMP
S 12r o NO WAIT o- o MVCC .
g 10k oo WAIT_DIE += + OCC |
g 8
S 6
=
o> 4
>
S 2
=
O]]]]
0 200 400 600 800 1000

Number of Cores

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

WRITE-INTENSIVE / MEDIUM-CONTENTION

45
4.0
3.5
3.0
2.5

(Million txn/s

t
O =~ a N
N O o1 O

Throughpu

o
o

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

o—e DL DETECT
- | O=<0 NO_WAIT
oo WAIT _DIE

&=A TIMESTAMP ' '
o= o MVCC
+= + OCC

‘-

0 200

400 600 800 1000
Number of Cores

22

WRITE-INTENSIVE / HIGH-CONTENTION

N N
1.0
0.8 N
EEE Useful Work
0.6 Abort
1 Ts Alloc.
0.4 1 Index
0.2 2 Wait
B Manager

G

X
@?‘\ 0\6 6« P&‘\? N\QOO OO

Numper or Lores

OOOOOOOOOOOOOOOOO 23

UNIVERSITY OF UTAH

BOTTLENECKS

* Lock Thrashing
« DL_DETECT, WAIT_DIE

* Timestamp Allocation
* All T/O algorithms + WAIT_DIE

* Memory Allocations
* OCC+ MVCC

OOOOOOOOOOOOOOOOO

LOCK THRASHING

* Each txn waits longer to acquire locks, causing other txn to wait
longer to acquire locks.

* Can measure this phenomenon by removing deadlock
detection/prevention overhead.

* Force txns to acquire locks in primary key order.
* Deadlocks are not possible.

OOOOOOOOOOOOOOOOO

scl
UN

—

6.4 performance 155

converts the update lock to a write lock. This lock conversion can’t Jead to a lock conversion deadlock, because
at most one ransaction ¢an have an update lock on the data item. (Two (ransactions must try 10 convert the lock
at the same tme 1© create a lock conversion deadlock.) On \he other hand. \he benefit of (his approach is that an
update Jock does not plock other (ransactions that read without expecting 10 update later on- The weakness is that
the request 10 convert the update lock to a write Jock may be delayed by other read locks. If a large number of data
items are read and only a few of them arc updated, the tradeoff is worthwhile. This approach is used in Microsoft
SQL Server. SQL Server also allows update Jocks to be obtained in @ QELECT (i.e. read) statement. but in this
case, it will not downgrade the update Jocks 10 read locks, since it doesn’t know when itis safe 1o do so.

Lock Thrashing

By reducing the frequency of lock conversion deadlocks, we have dispensed with deadlock as @ major perfor:
mance consideration, SO we are left with plocking situations. Blocking affects performance in a rather dramatic
way. Until lock usage reaches a saturation point. it introduces only modest dclays-—signiﬁcam. but not a seri-
ous problem. Al some point, when too many \ransactions request locks. a large aumber of \ransactions sud-
denly become plocked, and few transactions can make Progress: Thus, transaction throughput stops growing.
surprisinglys if enough ransactions are initiated, throughput actually decreases. This is called lock thrashing
(see Figure 6.7). The main issue in locking performance is to maximize throughput without reaching the point
where thrashing oceurs:

One way © understand Jock thrashing is 1o consider the effect of slowly increasing the transaction load,
which is measured by the number of active {ransactions. When the system is idle, the first transaction to run
cannot block due to locks. because it's the only one requesting locks. As the number of active transactions
LIOWS, each successive \ransaction has @ higher pmbabili\y of hecoming blocked due © \ransactions already
running. When the number of active (ransactions is high enough, the next (ransaction © be started has virtally
no chance of running 10 completion without blocking for some lock. Worse, it probably will get some locks
hefore encountering one that blocks it, and these locks contribute 10 the likelihood that other active transac-
tions will become blocked. So, not only does it not contribute (o increased throughput, but by getting some
locks that block other ransactions, it actually reduces throughput. This leads 1© thrashing, where increasing
{he workload decreases the throughput.

Throughput

: Thrashing
- Region

Number of Active
Transactions

i.ﬁak Thﬁd\ll\i ‘Nhen the numbéf o act fco highr,rr'nrara ny lransachon;srétrjrdrﬂrenly becumé blocked
and few {ransactions can make progress.

F
ive transactions gels

e

s

\ 10°
umber of Cores

26

TIMESTAMP ALLOCATION

* Mutex
* Worst option.

* Atomic Addition
* Requires cache invalidation on write.

* Batched Atomic Addition
* Needs a back-off mechanism to prevent fast burn.

e Hardware Clock
e Not sure if it will exist in future CPUs.

* Hardware Counter
* Not implemented in existing CPUs.

OOOOOOOOOOOOOOOOO

TIMESTAMP ALLOCATION

10000 - o—o (Clock
@ F| =0 Hardware
2 [| &~ Atomic batch=16
S 1000ffo o Atomic batch=8
= Atomic
\E: 100_ Mutex
S F]
o i i
= _ _
S 10 3
2 :]
£ :
< _

1 10 100 1000

Number of Cores

OOOOOOOOOOOOOOOOO

MEMORY ALLOCATIONS

* Copying data on every read/write access slows down the DBMS
because of contention on the memory controller.

* In-place updates and non-copying reads are not affected as much.

e Default libcmalloc is slow. Never use it.
e We will discuss this further later in the semester.

OOOOOOOOOOOOOOOOO

NOTABLE IN-MEMORY DBMSs

. Oge TimesTen Microsoft Hekaton
. ;‘ DataBlitz Harvard Silo

* Altibase TUM HyPer

. PWE MemSQL

* SAP HANA IBM DB2 BLU

* \VoltDB / H-Store Apache Geode

OOOOOOOOOOOOOOOOO 31
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/

TIMESTEN

* Originally SmallBase from HP Labs in 1995.

* Multi-process, shared memory DBMS.

 Single-version database using two-phase locking.
* Dictionary-encoded columnar compression.

* Bought by Oracle in 2005.

e Can work as a cache in front of Oracle DBMS.

=== | ORACLE TIMESTEN: AN IN-MEMORY DATABASE FOR
ENTERPRISE APPLICATIONS
VLDB 2004

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Prof. Andy Pavlo, CMU

DALI / DATABLITZ

* Developed at AT&T Labs in the early 1990s.

* Multi-process, shared memory storage manager using memory-
mapped files.

* Employed additional safety measures to make sure that erroneous
writes to memory do not corrupt the database.

* Meta-data is stored in a non-shared location.
* A page’s checksum is always tested on a read; if the checksum is invalid, recover
page from log.

DALI: A HIGH PERFORMANCE MAIN MEMORY STORAGE

MANAGER
= | VLDB 1994

u SCHOOL‘OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: Prof. Andy Pavlo, CMU

P*TIME

e Korean in-memory DBMS from the 2000s.
* Performance numbers are still impressive.
* Lots of interesting features:

» Uses differential encoding (XOR) for log records.

* Hybrid storage layouts.
* Support for larger-than-memory databases.

* Sold to SAP in 2005. Now part of HANA.

P*TIME: HIGHLY SCALABLE OLTP DBMS FOR MANAGING UPDATE-
| INTENSIVE STREAM WORKLOAD
= | VLDB 2004

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Prof. Andy Pavlo, CMU

WHY NOT MMAP?

* Memory-map (mmap) a database file into DRAM and let the OS control
swapping data in and out.

 Use madvise and msync to give hints to the OS about what data is
safe to flush.

* Notable mmap DBMSs:
* MongoDB (pre WiredTiger)
* MonetDB
* LMDB
 MemSQL (before 2017)

OOOOOOOOOOOOOOOOO 35
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

http://mongodb.org/
http://wiredtiger.com/
https://www.monetdb.org/
http://symas.com/mdb/
https://memsql.com/

WHY NOT MMAP?

* Using mmap gives up fine-grained control on the contents of memory.
e Cannot perform non-blocking memory access.

* The "on-disk" representation has to be the same as the "in-memory"
representation.

 The DBMS has no way of knowing what pages are in memory or not.
* Various mmap-related syscalls are not portable.

* A well-written DBMS always knows best.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Prof. Andy Pavlo, CMU

CONCURRENCY CONTROL

e Observation: The cost of a txn acquiring a lock is the same as
accessing data.

* In-memory DBMS may want to detect conflicts between txns at a
different granularity.
* Fine-grained locking allows for better concurrency but requires more locks.

* Coarse-grained locking requires fewer locks but limits the amount of
concurrency.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Prof. Andy Pavlo, CMU

LARGER-THAN-MEMORY DATABASES

* DRAM is fast, but data is not accessed with the same frequency and
in the same manner.

* Hot Data: OLTP Operations
* Cold Data: OLAP Queries

* We will study techniques for how to bring back disk-resident data
without slowing down the entire system.

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Andy Pavlo, CMU

NEXT CLASS

* Multi-Version Concurrency Control

OOOOOOOOOOOOOOOOO

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

