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O BSERVATI O N

We assumed that all the data structures that we 
have discussed so far are single-threaded.

But we need to allow multiple threads to safely 
access our data structures to take advantage of 
additional CPU cores and hide disk I/O stalls.



CO N CURREN CY CO N TRO L

A concurrency control protocol is the method 
that the DBMS uses to ensure "correct" results for 
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is

supposed to see?
→ Physical Correctness: Is the internal representation of 

the object sound?



LO CKS VS. LATCH ES

Locks
→ Protects the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.



LO CKS VS. LATCH ES

Source: Goetz Graefe
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B+ TREE CO N CURREN CY CO N TRO L

We want to allow multiple threads to read and 
update a B+Tree at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the 

same time.
→ One thread traversing the tree while another thread 

splits/merges nodes.
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LATCH CRABBI N G/ CO UPLI N G

Protocol to allow multiple threads to 
access/modify B+Tree at the same time.
Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge 
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)



LATCH CRABBI N G/ CO UPLI N G

Find: Start at root and go down; repeatedly,
→ Acquire R latch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down, 
obtaining W latches as needed. Once child 
is latched, check if it is safe:
→ If child is safe, release all latches on ancestors.
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O BSERVATI O N

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

20
W

20A A 20 A
W                                            W
 

What was the first step that all the update 
examples did on the B+Tree?

Delete 38 Insert 45 Insert 25



BET TER LATCH I N G ALGO RI TH M

Most modifications to a B+Tree will 
not require a split or merge.

Instead of assuming that there will be 
a split/merge, optimistically traverse 
the tree using read latches.

If you guess wrong, repeat traversal 
with the pessimistic algorithm.



BET TER LATCH I N G ALGO RI TH M

Search: Same as before.
Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on 

leaf.
→ If leaf is not safe, release all latches, and restart thread 

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf 
node will be modified; if not, R latches set on the 
first pass to leaf are wasteful.
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O BSERVATI O N

The threads in all the examples so far have 
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait 

until it becomes available.

But what if we want to move from one leaf node 
to another leaf node?
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LEAF N O DE SCAN S

Latches do not support deadlock detection or 
avoidance. The only way we can deal with this 
problem is through coding discipline.

The leaf node sibling latch acquisition protocol 
must support a "no-wait" mode.

The DBMS's data structures must cope with failed 
latch acquisitions.



DELAYED PAREN T UPDATES

Every time a leaf node overflows, we must update 
at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

B+-Tree Optimization: When a leaf node 
overflows, delay updating its parent node.
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Next lecture

• Locking and transactions
• MVCC


