
Lecture 06
Concurrency control #1

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

O BSERVATI O N

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

CO N CURREN CY CO N TRO L

A concurrency control protocol is the method
that the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

LO CKS VS. LATCH ES

Locks
→ Protects the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

LO CKS VS. LATCH ES

Source: Goetz Graefe

Locks Latches
Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures
During… Entire Transactions Critical Sections
Modes… Shared, Exclusive, Update,

Intention
Read, Write

Deadlock Detection & Resolution Avoidance
…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LO CKS VS. LATCH ES
Locks Latches

Separate… User transactions Threads
Protect… Database Contents In-Memory Data Structures
During… Entire Transactions Critical Sections
Modes… Shared, Exclusive, Update,

Intention
Read, Write

Deadlock Detection & Resolution Avoidance
…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

Next

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

B+ TREE CO N CURREN CY CO N TRO L

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

38

B+ TREE M ULTI- TH READED EXAM PLE

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

38

B+ TREE M ULTI- TH READED EXAM PLE

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

3510

T1: Delete 44

41
E F G H I

B+ TREE M ULTI- TH READED EXAM PLE

20

31 38 44

A

B3510

T1: Delete 44

44

C D6 12 23

Rebalance!

3 4 6 9 10 11 12 13 20 22
E

23 31
F

35 36
G

38 41
H I

B+ TREE M ULTI- TH READED EXAM PLE

20

31 38 44

A

B3510

T1: Delete 44
T2: Find 41

44

C D6 12 23

Rebalance!

3 4 6 9 10 11 12 13 20 22
E

23 31
F

35 36
G

38 41
H I

38

B+ TREE M ULTI- TH READED EXAM PLE

3 4 6 9 10 11 12 13 20 22 23 31 35 36

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

44

38

B+ TREE M ULTI- TH READED EXAM PLE

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

38 41

38

B+ TREE M ULTI- TH READED EXAM PLE

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

38 41

???

LATCH CRABBI N G/ CO UPLI N G

Protocol to allow multiple threads to
access/modify B+Tree at the same time.
Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

LATCH CRABBI N G/ CO UPLI N G

Find: Start at root and go down; repeatedly,
→ Acquire R latch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child
is latched, check if it is safe:
→ If child is safe, release all latches on ancestors.

EXAM PLE # 1 FI N D 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R
A

EXAM PLE # 1 FI N D 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

3510

R

R

It	is	now	safe	to	release
the	latch	on	A.

A

E F G H I

EXAM PLE # 1 FI N D 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

3510
R

A

E F G H I

EXAM PLE # 1 FI N D 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

D

3510

R
C

A

E F G H I

EXAM PLE # 1 FI N D 3 8

20

6 12 23 38 44

B

C D

3510

R

A

3 4 6 9 10 11 12 13 20 22
E

23 31
F

35 36
G

38 41
H I

EXAM PLE # 1 FI N D 3 8

20

6 12 23 38 44

B

C D

3510

A

3 4 6 9 10 11 12 13 20 22
E

23 31
F

35 36
G

38 41
H

44
I

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

3510

W

E F G H I

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 38 44

A

B

C D

3510

W

W

We	may	need	to	coalesce	B,	so
we	can’t	release	the	latch	on	A.

12 23

E F G H I

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 38 41 44

20

6 12 23 38 44

A

B

D

3510

W

W

W
C

We	know	that	D	will	not
merge	with	C,	so	it	is	safe	to
Release	latches	on	A	and	B

H I

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 38 41 44

20

6 12 23 38 44

A

B

D

3510

W
C

We	know	that	D	will	not

H I

merge	with	C,	so	it	is	safe	to
Release	latches	on	A	and	B

38 41

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

3510

W

E F G H I

EXAM PLE # 3 I N SERT 4 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 38 44

A

B

C D

3510

W

W

We	know	that	if	D	needs	to	
split,	B	has	room	so	it	is	safe
release	latch	on	A.

E F G H I

EXAM PLE # 3 I N SERT 4 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

D

3510
W

W
C

E F G H I

EXAM PLE # 3 I N SERT 4 5

45

20

6 12 23 38 44

A

B

C D

3510

W
38 413 4 6 9 10 11 12 13 20 22 23 31 35 36 44

INode	I	will	not	split,	so	we
can	release	B+D.

EXAM PLE # 3 I N SERT 4 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44 45

20

6 12 23 38 44

A

B

C D

I

3510

W

Node	I	will	not	split,	so	we
can	release	B+D.

EXAM PLE # 4 I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

W

W

E F G H I

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
W

E F G H I

EXAM PLE # 4

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
W

W

E F G H I

EXAM PLE # 4

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

EXAM PLE # 4

38 41

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

EXAM PLE # 4

38 41

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

F G H I

3510

W

W
25

We		need		to	split		F,		so	we			need			to	
hold	the	latch	on	its	parent	node.

EXAM PLE # 4

31

38 41

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

F G H I

3510

W

W
25

We	need	to	split	F,	so	we	need	to
hold	the	latch	on	its	parent	node.

31 J

EXAM PLE # 4

O BSERVATI O N

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

20
W

20A A 20 A
W W

What was the first step that all the update
examples did on the B+Tree?

Delete 38 Insert 45 Insert 25

BET TER LATCH I N G ALGO RI TH M

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

If you guess wrong, repeat traversal
with the pessimistic algorithm.

BET TER LATCH I N G ALGO RI TH M

Search: Same as before.
Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510
R

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

D

E F G H I

3510

R
C

38 41

EXAM PLE # 2 DELETE 3 8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

D

E F G H I

3510

R
C

W

EXAM PLE # 2 DELETE 3 8

20

6 12 23 38 44

A

B

C D

3510

W
383 4 6 9 10 11 12 13 20 22 23 31 35 36 41 44

IH	will	not	need	to	coalesce,	so
we’re	safe!

EXAM PLE # 2 DELETE 3 8

20

6 12 23 38 44

A

B

C D

3510

383 4 6 9 10 11 12 13 20 22 23 31 35 36 41 44
IH	will	not	need	to	coalesce,	so

we’re	safe!

38 41

I N SERT 2 5

3 4 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

F G H I

3510

W

We		need	to	split	F,		so		we
have	to	restart	and	re-	
execute	like	before.

EXAM PLE # 4

O BSERVATI O N

The threads in all the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

LEAF N O DE SCAN EXAM PLE # 1

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

LEAF N O DE SCAN EXAM PLE # 1

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

LEAF N O DE SCAN EXAM PLE # 1

B

3

1 2 3 4

C

T1: Find Keys < 4

R

Do not release latch on C
until thread has latch on B

LEAF N O DE SCAN EXAM PLE # 1

B

3

1 2 3 4

C

T1: Find Keys < 4

R R

Do not release latch on C
until thread has latch on B

LEAF N O DE SCAN EXAM PLE # 1

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

LEAF N O DE SCAN EXAM PLE # 2

A

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

LEAF N O DE SCAN EXAM PLE # 2

A

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1R

LEAF N O DE SCAN EXAM PLE # 2

A

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1R

R R

LEAF N O DE SCAN EXAM PLE # 2

A

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

R R

LEAF N O DE SCAN EXAM PLE # 2

B
1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

R R

1	 2Both	T	and	T	 now	hold
this	read	latch.

Both	T1	and	T2	now	hold
this	read	latch.

LEAF N O DE SCAN EXAM PLE # 2

B
1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

R R

Both	T1	and	T2	now	hold
this	read	latch.

1	 2Both	T	and	T	 now	hold
this	read	latch.

LEAF N O DE SCAN EXAM PLE # 2

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

R R

1Only	T	holds
this	read	latch.

Only	T2	holds
this	read	latch.

LEAF N O DE SCAN EXAM PLE # 3

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

LEAF N O DE SCAN EXAM PLE # 3

A

B

3

1 2 3 4

C

T1: Delete 4
2T : Find Keys > 1R

LEAF N O DE SCAN EXAM PLE # 3

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

LEAF N O DE SCAN EXAM PLE # 3

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2			cannot			acquire
the	read	latch	on	C

LEAF N O DE SCAN EXAM PLE # 3

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2	does	not	know	
what	T1	is	doing…

T2			cannot			acquire
the	read	latch	on	C

LEAF N O DE SCAN EXAM PLE # 3

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2	does	not	know	
what	T1	is	doing…

T2			cannot			acquire
the	read	latch	on	C

LEAF N O DE SCAN S

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

DELAYED PAREN T UPDATES

Every time a leaf node overflows, we must update
at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

B+-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

EXAM PLE # 4 I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

R

T1: Insert 25

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
R

R

T1: Insert 25

E F G H I

EXAM PLE # 4

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

T1: Insert 25

EXAM PLE # 4

38 41

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

T1: Insert 25

EXAM PLE # 4

38 41

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

F G H I

3510

W

Add	the	new	leaf	node	as	a	
sibling	to	F,	but	do	not	update	C

T1: Insert 25

EXAM PLE # 4

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

F G H I

3510

W
25

Add	the	new	leaf	node	as	a	
sibling	to	F,	but	do	not	update	C

T1: Insert 25

31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

3 4 6 9 10 11 12 13 20 22 23 25

Update	C	the	next	time	that	a	
thread	takes	a	write	latch	on	it.

T1: Insert 25 C: Add 31

E F G H I
31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

3 4 6 9 10 11 12 13 20 22 23 25

T1: Insert 25
T2: Find 31

C: Add 31

E F G H I
31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

3 4 6 9 10 11 12 13 20 22 23 25

T1: Insert 25
T2: Find 31

C: Add 31

E F G H I
31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

3 4 6 9 10 11 12 13 20 22 23 25

T1: Insert 25
T2: Find 31
T3: Insert 33

C: Add 31

E F G H I
31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510

R

3 4 6 9 10 11 12 13 20 22 23 25

T1: Insert 25
T2: Find 31
T3: Insert 33

E F G H I
31

C: Add 31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
R

3 4 6 9 10 11 12 13 20 22 23 25

T1: Insert 25
T2: Find 31
T3: Insert 33

C: Add 31

E F G H I
31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
R

3 4 6 9 10 11 12 13 20 22 23 25

W

T1: Insert 25
T2: Find 31
T3: Insert 33

E F G H I
31

C: Add 31

EXAM PLE # 4

I N SERT 2 5

31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

3510
R

3 4 6 9 10 11 12 13 20 22 23 25

W

T1: Insert 25
T2: Find 31
T3: Insert 33

E F G H I
31

C: Add 31

EXAM PLE # 4

I N SERT 2 5

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 31 38 44

A

B

C D

E G H I

3510
R

25

31

W

T1: Insert 25
T2: Find 31
T3: Insert 33

33

C: Add 31

F
W

15-445/645 (Fall 2020)

EXAM PLE # 4

https://15445.courses.cs.cmu.edu/

Next lecture

• Locking and transactions
• MVCC

