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OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.
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CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct” results for
concurrent operations on a shared object.

Aprotocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is

supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?
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LOCKS VS. LATCHES

Locks

— Protects the database’s logical contents from other txns.
— Held for tn duration.

— Need to be able to rollback changes.

Latches

— Protects the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.
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LOCKS VS. LATCHES

Locks Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts = Coding Discipline

Keptin...

Source: Goetz Graefe

Lock Manager

Protected Data Structure
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B+ TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.
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LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:

— Get latch for parent.
— Get latch for child

— Release latch for parent if “safe”.

Asafe node is one that will not split or merge

when updated.
— Not full (on insertion)

— More than half-full (on deletion)
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LATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly;
— Acquire Rlatch on child
— Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining Wlatches as needed. Once child
is latched, check if it is safe:

— If child is safe, release all latches on ancestors.
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OBSERVATION

What was the first step that all the update
examples did on the B+Tree?
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Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.
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BETTER LATCHINGALGORIT

Most modifications to a B+T1ree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

It you guess wrong, repeat traversal
with the pessimistic algorithm.
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Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that each operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures are being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for each
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high,

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used ad 2 ly in a mult

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees, This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been ined for possible use in a multi
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation [1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 10 the profile of the current set of users. Another property of the

*  Permanent address: Institut fur Informatik der Technischen Universitit Miinchen, Arcisstr, 21,

D-8000 Minchen 2, Germany (Fed. Rep.)




BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set Wlatch on

leaf.
— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leat
node will be modified; if not, Rlatches set on the
first pass to leaf are wasteful.
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OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.
— Athread can only acquire a latch from anode that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node
to another leaf node?
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LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4
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LEAF NODE SCAN EXAMPLE #2
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LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4

: Find Keys > 1
Both T,and T, now hold ( Both T, and T, nowhold
this read latch.
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
J T,: Find Keys > 1
|4
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LEAF NODE SCAN EXAMPLE #3
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

FOL

C

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU




LEAF NODE SCAN EXAMPLE #3
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LEAF NODE SCAN EXAMPLE #3
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1
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LEAF NODE SCANS

Latches do not support deadlock detection or
avoldance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU




DELAYED PARENT UPDATES

Every time a leaf node overflows, we must update

at least three nodes.

— The leat node being split.

— The new leaf node being created.
— The parent node.

B*-Tree Optimization: When a leaf node
overflows, delay updating its parent node.
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EXAMPLE #4 — INSERT 25
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EXAMPLE #4 — INSERT 25
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Next lecture

* Locking and transactions
* MVCC
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