CS 6530: Advanced Database Systems Fall 2022

Lecture 06
Concurrency control #1

Prashant Pandey
prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO

http://prashant.pandey@utah.edu

OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct” results for
concurrent operations on a shared object.

Aprotocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is

supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LOCKS VS. LATCHES

Locks

— Protects the database’s logical contents from other txns.
— Held for tn duration.

— Need to be able to rollback changes.

Latches

— Protects the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LOCKS VS. LATCHES

Locks Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts = Coding Discipline

Keptin...

Source: Goetz Graefe

Lock Manager

Protected Data Structure

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LOCKS VS. LATCHES

_ﬂLocks

Latches

Separate... User transactions
Protect... Database Contents
During... Entire Transactions

Modes... Shared, Exclusive, Update,
Intention

Deadlock Detection & Resolution
...by... Waits-for, Timeout, Aborts

Keptin... Lock Manager

Source: Goetz Graefe

Threads

In-Memory Data Structures

Critical Sections
Read, Write

Avoidance
Coding Discipline
Protected Data Structure

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

B+ TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

B+ TREE MULTI-THREADED EXAM PLE

10 35 B

6 12 H23 C ||381/44||D

9 1{10|11}{12]1320|22}{23|31}35|36 138 41{44])
:

E F G H

——
o e
/

W
1S

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

B+ TREE MULTI-THREADED EXAM PLE

20 A « T,: Delete 44

10 35 B

6 12 H23 C ||381/44||D

9 1{10|11}{12]1320|22}{23|31}35|36 138 41{44])
:

E F G H

——
o e
/

W
1S

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

B+ TREE MULTI-THREADED EXAM PLE

ol TlA T;: Delete 44

10 35 B

6 12 H}23/C3844D

/ &' j \ Rebalance!
9 10111 n1213 20122 0 23|31 H3536 1 38|41 H44 «
I

E F G H

——
o [
/

W
D

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

OOOOOOOOOOOOOOOOO

B+ TREE MULTI-T

20

A o

READED EXAM PLE

T,: Delete 44

/ T,: Find 41
10 35 B
12 ﬂ}za/ C\3‘8 44 ||ID z
S\ LN /) l\émw
3|4 6]971011 {12013 [+ 20|22 {2331 {3536 { 3§41 [)44 «
E F G H

OOOOOOOOOOOOOOOOO

B+ TREE MULTI-T

20

READED EXAM PLE

T,: Delete 44

X

44 D«

10 35 B
12 H23 C ||38
3 16| 9 H10|11H12|13H20{22H23|31H35 36-34
E F G H

OOOOOOOOOOOOOOOOO

B+ TREE MULTI-T

READED EXAM PLE

T,: Delete 44

X

41 D«

Rebalance!

‘S

20 A
/
10 35 B
N\
12 23 C |38
[\ \ /|
3 16| 9 H10|11H12[1320|22H23|31H35|36
E F G

H

B+ TREE MULTI-T

READED EXAM PLE

T,: Delete 44

Rebalance!

20
/
10 35 B
N\

6 12 23 C |[38|/41|D
[\ \ /L)\
3/4H6|9H10|11H12|13H20(22H23|31H35|36H3 41

E F G

OOOOOOOOOOOOOOOOO

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:

— Get latch for parent.
— Get latch for child

— Release latch for parent if “safe”.

Asafe node is one that will not split or merge

when updated.
— Not full (on insertion)

— More than half-full (on deletion)

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly;
— Acquire Rlatch on child
— Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining Wlatches as needed. Once child
is latched, check if it is safe:

— If child is safe, release all latches on ancestors.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

OOOOOOOOOOOOOOOOO

EXAMPLE

/

1- FIND 38

120

A -

10 35 B
12 H23 C ||38]/44|D
L6 9-011%213 20 (22 H23 |31 H35/36 384}71‘4
E F G H

OOOOOOOOOOOOOOOOO

EXAMPLE

10

/

1- FIND 38

120

It is now safe to release

A

R

the latch on A.

35

1Z

Z5

N

-

38

44

D e

=
o [€——

11

:

13

20

23

31

4}4

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

1- FIND 38

20

12

35

N

-

38

44

D e

o

11

13

4}4

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

20

12

A

35

23

/

1- FIND 38

38

44

D e

o

11

13

}3

31

35

36

38

OOOOOOOOOOOOOOOOO

EXAMPLE #1— FIND 38
20 A
—
12 23
[\ N/
3 161911011 #1213 20122 H 23

OOOOOOOOOOOOOOOOO

EXAMPLE #1- FIND 38
20 A
12 23 C\a‘s 44
AR AR T AR
3|4H6|9H10[11 H12[13 — 20|22 H 23(31 H35336 (38]J1
E F G H

OOOOOOOOOOOOOOOOO

EXAMPLE

2 — DELETE 38

A -

/

10

12

35

44

D e

38

4}4

OOOOOOOOOOOOOOOOO

EXAMPLE

]
/

10

2 — DELETE 38

A

W

35

We may need to coalesce
we can't release the latch onA.J

B, s0

=

12

23

\

N

-

38

44

D

\

3

i

11

:

13

20

23

31

36 38

4}4

F

G

H

OOOOOOOOOOOOOOOOO

EXAMPLE

)R
/ W

10

2 — DELETE 38

35 B

12

23 @\ﬁés %]D 4=

W

o €

11

L | | L \
We know that D will not \
merge with C, soit is safe to eRipy

Release latches on A and B

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

2 — DELETE 38

20

A

12

35 B

23 @\ﬁés %]D 4=

W

o €

11

L | | L \
We know that D will not \
merge with C, soit is safe to eRipy

Release latches on A and B

OOOOOOOOOOOOOOOOO

EXAMPLE

2 — DELETE 38

20

A

/

10

12

o €

35 B

H23 C ||38]/44|D

W

i R

OOOOOOOOOOOOOOOOO

EXAMPLE #3 - INSERT 45
%zo A
/ w
10 35 B «
" We know that if D needsto \
split, B has room soit is safe
release latch on A. J{|C ||38]|44| D
16 |9 110 11}2 13 —20|22123 3135|3638 4&4
E F G H I

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

3 — INSERT 45

20

12

A
W

35

D e

o

11

13

31 F

EXAMPLE #3 - INSERT 45

/

10 35 B

\

C ||381|44||D

23
911011 1213 2022 12331 13536 138
[Nodelwillnot split, sowe

20 A

——
o €

w
N

aan release B+D.

OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

EXAM PLE

/

3 — INSERT 45

20

A

10 35 B
12 23 C ||381|44||D
3(4H6|9H10/11H12[1320|22H23B1 H35B6 H387 M’
Nodelwillnotsplit, sowe
aan release B+D.

OOOOOOOOOOOOOOOOO

EXAMPLE

A

— INSERT 25

/

10

A
W

35

N

-

12 23 ((31||C |38 |44 ||D
16 |9 H10(11 %z 13 20|22 H23 |31 H35|36 H38 4}71‘4
E F € H I

OOOOOOOOOOOOOOOOO

EXAMPLE

/

A

— INSERT 25

20

A
W

10 35 B «
12 23 (131 ||C |38 (44 ||D
16 |9 | 011%2 13 20(22 H23 |31 H35|36 H38 4}71‘4
E F G H I

EXAMPLE #4 - INSERT 25

/ W

10 35 B

OOOOOOOOOOOOOOOOO

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

A

— INSERT 25

A

12

W

o €

11+

13

OOOOOOOOOOOOOOOOO

EXAMPLE

A

/

A

35

10
6 12
314r 9 11011 4218 20
WeneedlospllthoweneaIlo

hold the latch on its parent node.

— INSERT 25

44

38

OOOOOOOOOOOOOOOOO

EXAMPLE

A

— INSERT 25

20

A

/

10

6 12

L L\

35

W

4+ 11011 42 13

We needlvspIItF S0 we needto
hold the latch on its parent node.

44

38

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

Delete 38

o

_

A

J

-

Insert 45

W

_

A

\

J

(

_

o

Insert 25

\

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

BETTER LATCHINGALGORIT

Most modifications to a B+T1ree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

It you guess wrong, repeat traversal
with the pessimistic algorithm.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acta Informatica 9, | =21 (1977)

© by Springer-Verlag 1977

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that each operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures are being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for each
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high,

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used ad 2 ly in a mult

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees, This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been ined for possible use in a multi
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation [1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 10 the profile of the current set of users. Another property of the

* Permanent address: Institut fur Informatik der Technischen Universitit Miinchen, Arcisstr, 21,

D-8000 Minchen 2, Germany (Fed. Rep.)

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set Wlatch on

leaf.
— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leat
node will be modified; if not, Rlatches set on the
first pass to leaf are wasteful.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

EXAMPLE #2 - DELETE 38
na: A «

/

10 35 B

OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

2 — DELETE 38

20

A

R

35

-

12 38 |44 ||D
16 |9 H10 |11 %z 13 —20(22 H23 |31 H35 (36 138 4}71‘4
E F G H I

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

2 — DELETE 38

20

12

A

35

D e

o

11

13

31~

OOOOOOOOOOOOOOOOO

EXAMPLE

/

10

o €

2 — DELETE 38

20

A

12

35 B

és 4]|D

W

11+

13

20122123 31-3@ 4&

EXAMPLE #2 - DELETE 38

/

10 35 B

N

C ||381|44||D

20 A

——
o €

w
N

23
9 110011 1213 2022 2331 35 k

Hwillnotneed to coalesce, so
weresdfe!

OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

EXAMPLE #2 - DELETE 38
20 A
13//////////' 35 B
12 (;\\ég 44 ||D

\

w

o €

9 110011 1213

/1

2 H23B1 H3536 §

:

Hwillnotneed to coalesce, so
weresdfe!

OOOOOOOOOOOOOOOOO

EXAMPLE

4 — INSERT 25

20

A

/

10

12

W

{

g We needtospilitE; so we
have to restart andre-

. execute like before.

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.
— Athread can only acquire a latch from anode that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4

A o

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4

[+] 4n

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4

3 | Do not release latch on C
until thread has latch on B

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4

3 | Do not release latch on C
until thread has latch on B

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #1
T: Find Keys < 4

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #2

T: Find Keys < 4
y 3 A «
N\

T,: Find Keys > 1

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #2

T: Find Keys < 4
T,: Find Keys > 1

A o

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #2

T: Find Keys < 4
T,: Find Keys > 1

[+] 4n

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #2

T: Find Keys < 4
T,: Find Keys > 1

[+] 4n

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4

: Find Keys > 1
Both T,and T, now hold (Both T, and T, nowhold
this read latch.

OOOOOOOOOOOOOOOOO

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4

: Find Keys > 1
Both T,and T, now hold (Both T, and T, nowhold
this read latch.

5+ 4o

OOOOOOOOOOOOOOOOO

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
J T,: Find Keys > 1
|4

Only T, holds
this read latch.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
y 3 A «
N\

T,: Find Keys > 1

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys> 1

A o

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

FOL

C

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1
3 (T, cannot acquire J

/ the read latch on C
i][2] W) 4m

C

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1
3 (T, cannot acquiire J

/ the read latch on C
%i |

9 |E 3 «°]

» C

T>, does not know
what T; is doing...

OOOOOOOOOOOOOOOOO

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1
3 (T, cannot acquiire J

/ the read latch on C
)

T, does not know J

what T, is doing...

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

LEAF NODE SCANS

Latches do not support deadlock detection or
avoldance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

DELAYED PARENT UPDATES

Every time a leaf node overflows, we must update

at least three nodes.

— The leat node being split.

— The new leaf node being created.
— The parent node.

B*-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

EXAMPLE

Tl: Insert 25

1

A
R

— INSERT 25

A

12

R

35

-

38144 ||D

\
D e

11

:

13

22 123 (31~

36 38 4}4

OOOOOOOOOOOOOOOOO

G H

EXAMPLE
T;: Insert 25

/

10

A

— INSERT 25

35

\
D e

13

31~

OOOOOOOOOOOOOOOOO

EXAMPLE
T;: Insert 25

/

10

A

— INSERT 25

A

35 B

\
D e

13

OOOOOOOOOOOOOOOOO

EXAMPLE

Tl: Insert 25

/

10

A

— INSERT 25

20

A

12

——
o €

w
N

11+

13

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
Tl: hlsert 25 20 A
10 35 B
6 12 23 C ||381|44 | D
3/4H6 011 4218 20 6 H38 4}14
Add ﬂlenewleafnodeasa G H

sibling to F, but do not update C

OOOOOOOOOOOOOOOOO

EXAMPLE #4

Tl: Insert 25

— INSERT 25

20

A

/

10

12

L L\

35

“

38

44

3|47 011 42 18 20 25
Add ﬂlenewleafnodeasa F
sibling to F, but do not update C L

OOOOOOOOOOOOOOOOO

38

4}4

e

EXAMPLE
T;: Insert 25

/

A

— INSERT 25

20

A % C: Add 31

J

10 B
" Update C the next time that a
thread takes a write latch on it.
6 12 38144]D
314 H6 9-1011%213 }71‘4

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
T: Insert 25 o[[A 4 W C: Add 31
10 35 B
6 12 H23 % |(/C (/3844 |D
31416 9-011%213 20|22 H23 (25 ||35 |36 138 |41 H44
E H

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
T;: Insert 25 50 A % C: Add 31
T,: Find 31
| 16/ 35 B
\
6 12 [g* C |[38]/44|D
3j4 -ésl 9 H10 11%2 13 2‘0/22 z&; 25 3! 36-§8 41 144

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
T: Insert 25 o[A 4= W C: Add 31
T, Insert 33 13/ TR
6 12 H23 w!|/C |[38|44| D
3|14 H6 9-011%2 13 —20({22H23|25(|35|36 H38 |41 44
E -

OOOOOOOOOOOOOOOOO

EXAMPLE #4
Tl: Insert 25 nqﬂ.
T3: Insert 33 10
6 12

— INSERT 25

A « % C: Add 31
35 B
H23 % |(/C (/3844 |D

D e

11

13

22 H23|25||35|36

38

41

44

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
T;: Insert 25 50 A % C: Add 31
T,: Find 31
2. I'IIY / .
T3:Illsert33 10 35 E «

6 12 H23 % |(/C |(|38]44|D
3446 9-011%213 20 (22 H23 |25 4}71‘4
E Lej H I

OOOOOOOOOOOOOOOOO

3
3

5|36 38
1

EXAMPLE #4 — INSERT 25
T;: Insert 25 50 A W C: Add 31
T, Insert 33 13/ i
6 12 % C¥8 44 ||1D
31446 9-011%213 2022 H23|25(|3536 384}71‘4
E

OOOOOOOOOOOOOOOOO

EXAMPLE #4 — INSERT 25
Ty: Insert 25 >0 A % C: Add 31
Ty Insert 33 44 T
6 12 %1 C¥8 44 ||D
314 H6 9-011%2 13 2022-2325\3536-3841 44
E FLL H
OOOOOOOOOOOOOOOOO 31

EXAMPLE #4 — INSERT 25
T: Insert 25 ol 1A W C: Add 31
T, Insert 33 13/ T
6 12 %1 38 (144 ||D
3/14H6(19110(11R112/(13 36 H38 4}4

LGjH |
33

https://15445.courses.cs.cmu.edu/

Next lecture

* Locking and transactions
* MVCC

OOOOOOOOOOOOOOOOO

