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Some reminders...

* Paper report #1 due today deadlines are posted
* Project #1 posted

OOOOOOOOOOOOOOOOO




U

What is a Skip List

* Askip list for a set .§ of distinct (key, element) items is a series of lists
Sy, 8, ..., such that

e Each list §; contains the special keys +o0 and —o©
* List.§, contains the keys of § in non-decreasing order

* Each list is a subsequence of the previous one, i.e.,
$o28512...28,

* List.S), contains only the two special keys

» Skip lists are one way to implement the dictionary
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Implementation

* We can implement a skip list
with quad-nodes

* A quad-node stores:
* item

guad-node

* link to the node before
* link to the node after
* link to the node below

* Also, we define special keys
PLUS_INF and MINUS_INF, and
we modify the key comparator
to handle them

U 3%733&%?3%”%&”6 Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt
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Search

SCHOOL OF COMPUTING
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We search for a key x in a a skip list as follows:
* We start at the first position of the top list
* At the current position p, we compare x with y <— key(after(p))
X = y: we return element(after(p))
x > y: we “scan forward”
x < y: we “drop down”
* If we try to drop down past the bottom list, we return NO SUCH KEY

Example: search for 78

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Insertion

* Toinsert an item (x, 0) into a skip list, we use a randomized algorithm:

* We repeatedly toss a coin until we get tails, and we denote with i the
number of times the coin came up heads

e Ifi > h, we add to the skip list new lists S}, ... ,S;.;, each containing
only the two special keys

* We search for x in the skip list and find the positions p,, p;, ..., p;of the
items with largest key less than x in each list Sy, S, ..., S;

* Forj<«0,..., i, weinsertitem (x, o) into list S; after position p;
* Example: insert key 15, withi =2

S B4

D>
S, EF S, B3

y4

s, = — s
VNP0

S, B3 Y oo | 36 g 400

SCHOOL OF COMPUTING ) o
U UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt




Deletion

* To remove an item with key x from a skip list, we proceed as follows:

* We search for x in the skip list and find the positions p,, pi, ..., p;of the
items with key x, where position p;is in list §;

* We remove positions py, pi, ..., p; from the lists Sy, S, ... , S;
* We remove all but one list containing only the two special keys

* Example: remove key 34

S =4
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Randomized Algorithms
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* Arandomized algorithm controls
its execution through random
selection (e.g., coin tosses)

|t contains statements like:
b < randomBit()
if b=0
do A ...
else {b=1}
do B ...

* Its running time depends on the
outcomes of the coin tosses

Through probabilistic analysis we can
derive the expected running time of
a randomized algorithm

We make the following assumptions
in the analysis:

* the coins are unbiased
* the coin tosses are independent

The worst-case running time of a
randomized algorithm is often large
but has very low probability (e.g., it
occurs when all the coin tosses give
“heads”)

We use a randomized algorithm to
insert items into a skip list to insert
in expected O(log n)-time

When randomization is used in data
structures they are referred to as
probabilistic data structures

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Space Usage

* The space used by a skip list * Consider a skip list with n items
depends on the random bits used * By Fact 1, we insert an item in
by each invocation of the insertion list S; with probability 1/2¢
algorithm * By Fact 2, the expected size of

* We use the following two basic st $; is n/2!
probabilistic facts: * The expected number of nodes

Fact 1: The probability of getting i used by the skip list is
consecutive heads when flipping a
coin is 1/2¢

Fact 2: If each of m items is present in Z? N nZ— <2n
a set with probability p, the =0 -

expected size of th i
xpected size of the set is np @ Thus, the expected space usage

of a skip list with n items is O(n)

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt




Height

* The running time of the search * Consider a skip list with n items
and insertion algorithms is * By Fact 1, we insert an item in list
affected by the height & of the S; with probability 1/2¢
skip list * By Fact 3, the probability that list

« We show that with high S; h.as at least one item is at most
probability, a skip list with n n/2
items has height O(log n) * By picking i = 3log n, we have that

the probability that §5,,, , has at

* We use the following additional least one item is

probabilistic fact:

at most
Fact 3: If each of n events has n/23ogn — pind = 1/n2
probability p, the probability
that at least one event occurs is * Thus, a skip list with n items has
at most np height at most 3log n with

probability at least 1 — 1/n?

u ﬁiﬂ‘v’f&ﬂiﬁ%’ﬂ’ﬂ”G Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Height

* The running time of the search * Consider a skip list with n items
and insertion algorithms is * By Fact 1, we insert an item in list
affected by the height & of the S; with probability 1/2¢
skip list * By Fact 3, the probability that list

« We show that with high S; h.as at least one item is at most
probability, a skip list with n n/2
items has height O(log n) * By picking i = 3log n, we have that

the probability that §5,,, , has at

* We use the following additional least one item is

pr(F)bilzllllitlc f?ctf: . At most With High
act 3: If each of n events has /2310gn — pind = 1/n2 T
probability p, the probability " nn " PrObablllty
that at least one event occurs is * Thus, a skip list with n items KHas (WH p)
at most np height at most 3log n with

probability at least 1 — 1/n?

u ﬁiﬂ?ﬁ’&ﬂiﬁ%’fﬁ,’\ﬂNG Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Height

* The running time of the search * Consider a skip list with n items
and insertion algorithms is * By Fact 1, we insert an item in list
affected by the height & of the S; with probability 1/2¢
skip list

e By Fact 3, the probablllty that list

An event that occurs with high probability (WH P) iS one

whose probability depends on a certain number n and
goes to 1 as n goes to infinity. [Wikipedia]

Fact 3: If h of ts h At mos Wlth ngh
act 3: If each of n events has /23logn — p/p3 = 1/n2 °1:
probability p, the probability " nn " PrObablllty
that at least one event occurs is * Thus, a skip list with n items KHas (WH p)
at most np height at most 3log n with

probability at least 1 — 1/n?

SCHOOL OF CO
UNF:VE;-S]TFY OFNLPTL:\THING Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt




Search and Update Times

* The search time in a skip list is
proportional to
* the number of drop-down steps,
plus

* the number of scan-forward
steps

* The drop-down steps are
bounded by the height of the skip
list and thus are O(log n) with
high probability

* To analyze the scan-forward steps,
we use yet another probabilistic
fact:

Fact 4: The expected number of

coin tosses required in order to
get tails is 2

u SCHOOL OF COMPUTING

When we scan forward in a list, the
destination key does not belong to a
higher list

* A scan-forward step is associated

with a former coin toss that gave
tails

By Fact 4, in each list the expected
number of scan-forward steps is 2

Thus, the expected number of scan-
forward steps is O(log n)

We conclude that a search in a skip
list takes O(log n) expected time

The analysis of insertion and
deletion gives similar results

UNIVERSITY OF UTAH Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Question?

Are Binary trees and skip lists optimal for in-
memory indexing?

OOOOOOOOOOOOOOOOO




B+ Trees

* A B+Tree is a self-balancing tree data structure that
keeps data sorted and allows searches, sequential
access, insertions, and deletions in O(logz(N)).

* The fanout of the tree is B

* Generalization of a binary search tree in that a node can
have more than two children.

* Optimized for systems that read and write large blocks of
data.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The Ubiquitous B-Tree

20




B+ Trees

B J{ Pivots

Internal nodes —<
... = Bchildren ...

5 }{ 5 }{ O (logg N)

Leaf nodes B J{

A
v

...~N/Bleaves...

SCHOOL OF COMPUTING
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B+ Trees

B J{ Pivots

Internal nodes —<
... = Bchildren ...

How to size the B+-tree nodes?

... =N /Bleaves...

OOOOOOOOOOOOOOOOO




B+ Trees

Search begins at root, and key comparisons direct it to a leaf.
Search for 5*, 15%*, all data entries >= 24* ...

Root \

13 17 24 30

2% | 3 [ 5 | 7* 14*| 16* 19* 20*| 22* 24% | 27%| 29* 33*| 34*| 38* | 39*

Based on the search for 15*, we know it is not in the tree!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Example B+ Tree - Inserting 8*

Root

13

17

24

2*

3*

5*

7*

14*

16*

19*

20"

22*

23*

24*

27*

29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Example B+ Tree - Inserting 8*

Root
13 17 24
N\ N\ v £ N\
2* [ 3* | 5% | 7* 14*| 16* 19% 20*( 22* | 23* 24* | 27*| 29*
£\ £\
2* [ 3* | 5% | 7* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Example B+ Tree - Inserting 8*

Root
13 17 24
N\ N\ v £ N\
2* [ 3* | 5% | 7* 14*| 16* 19% 20*( 22* | 23* 24* | 27*| 29*
N\ £\ £ N\ £\
2% | 3* 5 | 7% | 8* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Example B+ Tree - Inserting 8*

Root
13 17 24
N\ N\ v £ N\
2* [ 3* | 5% | 7* 14*| 16* 19% 20*( 22* | 23* 24* | 27*| 29*
13 17 24
N\ £\ £ N\ £\
2% | 3* 5 | 7% | 8* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Example B+ Tree - Inserting 8*

Root
13 17 24
VRN £ N\ v £ N\
2* | 3* | 5% | 7* 14*| 16* 19*| 20*| 22* | 23* 24* | 27*| 29*
5 13 17 24
y 4 \ b h
£ £\ r £\ £\
2% | 3F 5 | 7% | 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH




Example B+ Tree <nserting 21*

2% | 3* 5| 7% | 8* 14*|16* 191 20% 22*| 23+ |24*| 27*|29*

N

data page split

17

2| 3* 5| 7% | 8* 14*|16* 191 20% 22*| 23" 24*| 27% 29*

SCHOOL OF COMPUTING
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Example B+ Tree <nserting 21*

2% | 3* 5| 7% | 8* 14*|16* 191 20% 22*| 23+ |24*| 27*|29*

17

index page split

2% | 3* 5« | 7+ | 8* 14* 16* 194 20 (21* 2223+ 24*( 27+ 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Example B+ Tree <nserting 21*

2% | 3* 5| 7% | 8* 14*|16* 191 20% 22*| 23+ |24*| 27*|29*

17

5 13 21 24
y A\ b y ~
2* | 3* 5¢ 7*| 8* 14*| 16* 197 20" 21*| 22*|23* 24*| 27% 29*

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



Example B+ Tree <nserting 21*

//

5

1

17

24

3
A

P

20

1 update (worse case logg(N))

2% | 3* 5+ 7¢| 8* 14*16* 1971 20%( 22*{ 23+| | 24*| 27+{ 29+
Read Cost: logg (N)
Root\,\ Update Cost
17 logg(N) reads
15 1] what about growing dataset size?
2*| 3 5+ 7¢| 8* 14*| 16 197 207 21*( 22%23* 24+ 27% 29*

OOOOOOOOOOOOOOOOO




Observation

* The inner node keys in a B+tree cannot tell you whether a key exists
in the index. You always must traverse to the leaf node.

* This means that you could have (at least) one cache miss per level in
the tree.

OOOOOOOOOOOOOOOOO




Trie index
Keys: [HELLO] HAT, HAVE

e Use a digital representation of keys
to examine prefixes one-by-one
instead of comparing entire key.

* Also known as Digital Search Tree,
Prefix Tree.

OOOOOOOOOOOOOOOOO 34
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Trie index properties

e Shape only depends on key space and lengths.
* Does not depend on existing keys or insertion order.
* Does not require rebalancing operations.

 All operations have O(k) complexity where k is the length of the key.
* The path to a leaf node represents the key of the leaf
» Keys are stored implicitly and can be reconstructed from paths.

OOOOOOOOOOOOOOOOO




Trie index properties

* Shape only depends on key space and lengths. History
* Does not depend on existing keys or insertion order./ independent
* Does not require rebalancing operations.

 All operations have O(k) complexity where k is the length of the key.
* The path to a leaf node represents the key of the leaf
» Keys are stored implicitly and can be reconstructed from paths.

OOOOOOOOOOOOOOOOO




Trie key span

* The span of a trie level is the number of bits that each partial key /
digit represents.

* |f the digit exists in the corpus, then store a pointer to the next level in the
trie branch. Otherwise, store null.

* This determines the fan-out of each node and the physical height of
the tree.
* n-way Trie = Fan-Out of n

OOOOOOOOOOOOOOOOO




Trie key span
1-bit Span Trie

g 01| 0
2|01 |0 | ¢<Repeat 10x
1| 3 1%1 3 K10-|0p0000oo 00 1@1@
@@@n| dlalhlx K25-10p000000 00911601
— K31-|0p000000 00911111
o5l ¢ /0] ARUEE
- v
olollo]slldlslollllolsl]ls
B A v B
o 5|l slolldlolslkllelsl]ls
4 | !

Tuple Node
Pointer ® > pointer ® ’

SCHOOL OF COMPUTING
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Radix tree

1-bit Span Radix Tree
* Omit all nodes with only a single child.

 Also known as Patricia Tree.

* Can produce false positives, so the
DBMS always checks the original tuple to
— see whether a key matches.

<o |¢teU |e+rex
(S
=
<

Tuple Node
Pointer ® > Ppointer

OOOOOOOOOOOOOOOOO 39
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Trie variants

* Judy Arrays (HP)
* ART Index (HyPer)
* Masstree (Silo)

OOOOOOOOOOOOOOOOO



Judy arrays

 Variant of a 256-way radix tree. First known radix tree that supports
adaptive node representation.

* Three array types
 Judyl: Bit array that maps integer keys to true/false.
* JudyL: Map integer keys to integer values.
* JudySL: Map variable-length keys to integer values.

* Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.
* Not an issue according to authors.
e http://judy.sourceforge.net/

OOOOOOOOOOOOOOOOO

41


https://patents.google.com/patent/US6735595B2/en
http://comments.gmane.org/gmane.comp.lib.judy.devel/244
http://judy.sourceforge.net/

Adaptive radix tree (ART)

* Developed for TUM HyPer DBMS in 2013.

e 256-way radix tree that supports different node types based on its
population.

e Stores meta-data about each node in its header.

e Concurrency support was added in 2015.

-==| THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR MAIN-
"~ MEMORY DATABASES

ICDE 2013

OOOOOOOOOOOOOOOOO



ART vs. JUDY

 Difference #1: Node Types
* Judy has three node types with different organizations.

* ART has four nodes types that (mostly) vary in the maximum number of
children.

 Difference #2: Purpose
* Judy is a general-purpose associative array. It "owns" the keys and values.

* ART is a table index and does not need to cover the full keys. Values are
pointers to tuples.

OOOOOOOOOOOOOOOOO




MASSTREE

Masstree
Bytes [0-7]
+—I—+
Bytes [8-15] Bytes [8-15]
ﬁl—+ ﬁl—+
I — — —
o] o] o] o] o] o jo] o]

~_ | CACHE CRAFTINESS FOR FAST MULTICORE KEY-

VALUE STORAGE
EUROSYS 2012

SCHOOL OF COMPUTING
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* Instead of using different layouts for
each trie node based on its size, use
an entire B+Tree.

e Each B+tree represents 8-byte span.
* Optimized for long keys.

* Uses a latching protocol that is similar
to versioned latches.

* Part of the Harvard Silo project.

53


https://dbdb.io/db/silo

IN-MEMORY INDEXES

Processor: 1 socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

B Open Bw-Tree B Skip List M B+Tree B Masstree ART

60
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o
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,9 30.5
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o

N
o

Operations/sec (M)

=
o

3.68 3.43

O .

Insert-Only Read-Only Read/Update Scan/Insert

Source: Zigi Wang
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https://github.com/wangziqi2016/index-microbench

IN-MEMORY INDEXES

Processor: 1 socket, 10 cores w/ 2xHT

Workload: 50m Keys
B Open Bw-Tree B Skip List B B+Tree B Masstree ART
4.5 4,22
4
3.5 3.37
a 2.86
L
-
o
QEJ 1.44
=
0.42
Mono Int Rand Int Emails

Source: Zigi Wang
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https://github.com/wangziqi2016/index-microbench

PARTING THOUGHTS

* B+ trees are the go to in-memory indexing data structures.

* Radix trees have interesting properties, but a well-written B+tree is
still a solid design choice.

* Skip lists are amazing if you don’t want to implement self balancing
binary trees

OOOOOOOOOOOOOOOOO




Next class

* Concurrency control

Make sure to read the related papers from the

reading list

OOOOOOOOOOOOOOOOO
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