
Lecture 02
Data system architecture

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

http://prashant.pandey@utah.edu


Data system architecture 
essentials

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU



A data system is a large software system that stores data, 
and provides the interface to
update and access them efficiently

data system analysis
knowledge 

insights 
decisions

data



Growing need for tailored systems

new applications new hardware more data



Data system, what’s inside?



application/SQL 
access patterns 
complex queries

Indexing Data

op

op
op

op

op
algorithms 

and 
operators



Memory

application/SQL 
access patterns 
complex queries

Query 
Parser

Query 
Compiler Optimizer

Evaluation 
Engine

Memory/Storage 
Management

Indexing Transaction 
Management Disk

Memory

Caches

Hierarchy 

CPU
modules



Data system, what’s underneath?



Memory hierarchy

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

smaller 
faster

more expensive (GB/$)



Memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

109x

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto 
2 years

Andromeda 
2000 years



Memory hierarchy and latencies

Memory Size Latency Bandwidth

L1 cache 32 KB 1 nano sec 1 TB/sec

L2 cache 256 KB 4 nano sec 1 TB/sec (shared by cores)

L3 cache 8 MB or more ~30-40 nano sec > 400 GB/sec

Main memory DDR DIMM 4 GB to 1 TB ~80-100 nano sec 100 GB/sec

I/O devices on memory 
bus

6 TB 100X-1000X slower than 
memory

25 GB/sec

I/O devices on PCIe bus Limited only by cost Milli sec – minutes GB-TB/hour (depends on 
HW and distance)



Memory wall

CPU

on-chip cache

on-board cache 

main memory 

flash storage 

disks flash

fa
st

er
ch

ea
pe

r/
la

rg
er



fa
st

er
ch

ea
pe

r/
la

rg
er

Memory wall

CPU

on-chip cache

on-board cache 

main memory 

flash storage 

disks flash



Cache/memory misses

CPU

on-chip cache

on-board cache

main memory

flash storage

cache miss: looking 
for something that 
is not in the cache

memory miss: looking 
for something that 
is not in memory

what happens if I miss?

disks flash



Data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data go through 
all necessary levels

also read
unnecessary data X page

Photo by Gary Dineen/NBAE via Getty Images

need to read only X 
read the whole page

disks flash



CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through 
all necessary levels

also read
unnecessary data X page

remember!
disk is millions (mem, hundreds) times slower than CPU

need to read only X 
read the whole page

Photo by Gary Dineen/NBAE via Getty Images

Data movement



size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Page-based access & random access
query x<7

scan



Page-based access & random access
query x<7

scan

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

1, 5, 12, 24, 23

output

1, 5

40 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5

40 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

40 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

80 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

120 bytes

page size = 5*8 = 40 bytes



What if we had an oracle (perfect index)?



size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Page-based access & random access
query x<7

scan



Page-based access & random access
query x<7

oracle

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

1, 5, 12, 24, 23

output

1, 5

40 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

40 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

40 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes



disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

oracle

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes



Page-based access & random access

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

query x<7

10, 11, 6, 14, 15

120 bytes

oracle
was the oracle helpful?

output

2, 7, 13, 9, 8 1, 5, 2, 6

page size = 5*8 = 40 bytes



When is the oracle helpful?

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

for which query would an oracle help us?

how to decide whether to use the oracle?



how we store data
layouts, indexes

every byte counts
overheads and tradeoffs

know the query
access path selection

index 
design space



Rules of thumb
sequential access
read one block; consume it completely; discard it; read next;

hardware can predict and start prefetching

random access prefetching can exploit full memory/disk bandwidth

read one block; consume it partially; discard it; (may re-use); 
read random next;

ideal random access?

the one that helps us avoid a large number 
of accesses (random or sequential)



The language of efficient systems: C/C++
why?

low-level control over hardware

make decisions about physical data placement and consumptions 

fewer assumptions



The language of efficient systems: C/C++
why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptionswe want you in the project to make low-level decisions



A “simple” database operator

select operator (scan)

main-memory optimized-systems

data

qualifying positions

query: value<x
over an array of N slots



qualifying positions

How to implement it?

result = new array[data.size]; 
j=0;
for (i=0; i<data.size; i++) 

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

data

what if only 0.1% qualifies?

memory
data

result



qualifying positions

How to implement it?

result = new array[data.size]; 
j=0;
for (i=0; i<data.size; i++) 

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

data

what if only 0.1% qualifies?

memory
data



data

qualifying positions

result = new array[data.size]; 
j=0;
for (i=0; i<data.size; i++) 

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

what about multi-core?
NUMA? SIMD? GPU?

data

core1 core2 core3 core4
needs coordination! 

what about result writing?



data
result = new array[data.size]; 
j=0;
for (i=0; i<data.size; i++) 

if (data[i]<x)
result[j++]=i;

query1: value<x1 
query2: value<x2 …

What about having multiple 
queries?



data

query: value<x
over an array of N slots

should I scan?

should I probe an index?

how to decide which one is best?

total data movement 
&

computation



Next class

• In-memory indexing

50

Make sure to read the related papers from the 
reading list


