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Ask questions

... and answer my questions.

Our main goal is to have interesting discussions that will help to
gradually understand the material

(it’s ok if not everything is clear, as long as you have questions!)
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Today’s agenda
2\

 Course logistics overview e u
| want you to speak up!
[and you can always interrupt me]

A brief history of databases
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Why you should take this course

* DBMS developers are in demand and there are many challenging
unsolved problems in data management and processing.

* If you are good enough to write code for a DBMS, then you can write
code for almost anything else.
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Course objectives

* Learn about modern practices in database internals and systems
programming.

* Next-generation challenges in data systems.

 Students will become proficient in:
* Writing high-performance and concurrent code
* Using tools to debug performance hot spots
* Working on a large code base
* Modern data system internals
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Course topics

* The internals of modern single-node data systems.
* We will not discuss distributed systemes.

* We will cover state-of-the-art topics in large-scale data management.

* This is not a course on classical DBMS.
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Course topics

* In-memory Indexing

e Concurrency control

* Data storage and File organization

* Key-value stores

* Logging and recovery

* Query optimization

* Parallel join and external sorting

e Data systems on modern hardware

* Learned indexes and ML for Databases
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Background

| assume you have already taken undergrad Database course (e.g., CS
5530) or similar.

* You are comfortable in writing concurrent C/C++ code.

 We will discuss modern variations to classical data structures and
algorithms that are designed for today’s hardware.

* Things that we will not cover:

SQL, Relational Algebra, Serialization, Basic Algorithms and Data
Structures
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Course logistics

* Course policies + Schedule

* Website:
https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/index.html

* Academic honesty
e Refer to SoC policy on academic conduct.

* |f you are not sure, ask me.
* | am serious. DO NO PLAGIARISE.
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https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/index.html
https://www.cs.utah.edu/docs/misc/cheating_policy.pdf

What is plagiarism

* Listening while someone dictates a solution.
* Basing your solution on any other written solution.

e Copying another student's code or sharing your code with any other
student.

 Searching for solution online (e.g., stack overflow, Github, Github
Copilot, ChatGPT).
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What is collaboration

* Asking questions on Canvas discussions.

* Working together to find a good approach for solving a problem.
e Students with similar understanding of the material.

* A high-level discussion of solution strategy.

* If you collaborate with other students, declare it upfront
* Put names of the collaborator at the start of the project report.
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Office hours

* Before class in my office
* Tu/Th 9:30 AM —10:30 AM
* WEB 2686

* Things that we can talk about:
* |ssues on implementing projects
 Paper clarification/discussions
e Getting involved in a research project
* How to get a database/systems dev job
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Teaching assistant/mentor

* TA: Hunter McCoy
« 2"dyear PhD student
* BS from UC Berkeley
e Research on Data Management and GPUs

* TA: James Mcmahon
« 2" year PhD CS student
 BS from U of U
* Research on Systems and Architecture
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Instructor

* Previous:

e Research Scientist, VMware Research
* Postdoc: CMU/UC Berkeley
* PhD: Stony Brook University

* Research: S Ve v
e Data management Somewhere in Patagonia, Chile
 Storage systems & graph processing
* Computational biology

* Interests:
e Outdoors: Running/hiking/biking/swimming/surfing/...
 Sports: Cricket/Soccer/Badminton/TT/...
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Course rubric

* Reading assignments
* Programming projects
* Pop quizzes

* Final exam
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Reading assignments

* Pick five papers from the reading list.
* Write a one-paragraph synopsis of each of the five papers.
* There will be five deadlines throughout the semester.

* Synopsis:
e Overview of the main idea (Three sentences).
* Main finding/takeaway of the paper (One sentence).
e System used and how it was modified (One sentence).
* Workloads evaluated (One sentence).
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Plagiarism warning

* Each review must be your own writing.

* You may not copy text from the papers or other sources that you find
on the web.

* Plagiarism will not be tolerated.
See SoC policy on academic conduct for additional information.
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https://www.cs.utah.edu/docs/misc/cheating_policy.pdf

Programming projects

* Do all development on your local machine.
* The initial code for projects builds on linux.
* We will provide configuration/build files.

* Do all benchmarking using Cade clusters.
* Cade setup instructions are available in Canvas.
* We will provide further details later in semester.
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Projects #1 and #2

* We will provide you with test cases and scripts for the first
programming
* We will teach you how to profile a system using a tool

Project #1 will be done individually.

Project #2 will be done in a group of three.
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Final project

e Each group (3 people) will choose a project that is:
* Relevant to the materials discussed in class.
* Requires a significant programming effort from all team members.
* Unique (i.e., two groups cannot pick same idea).
* Approved by me.

* We will provide sample project topics.
* Will have two milestones.
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Plagiarism warning

* These projects must be all of your own code.
* You may not copy source code from other groups or the web.

* Plagiarism will not be tolerated.
See SoC policy on academic conduct for additional information.
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Grade breakdown

* Project #1 10%

* Project #2 20%

* Final project 40%
* Paper reports 10%
* Pop quizzes 10%

* Final 10%
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More logistics

* Prashant traveling to VLDB 2023 [08/29—08/31]

 Lecture 09/29: Hunter McCoy/James Mcmahon
* Introduction to project #1
* Tutorial on tools for profiling and build system
e Atomics and memory consistency
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Course mailing list

* Online discussion through Canvas
* Use Canvas Discussion

* If you have a technical question about the projects, please use Canvas
* Don’t email me or TAs directly

* All non-project questions should be sent to me.
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A brief history of databases

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU
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History repeats itself

* Old database issues are still relevant today.

e The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.

* Spoiler: The relational model almost always wins.

* Many of the ideas in today’s database systems are not new.
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1960s — IDS

* Integrated Data Store
* Developed internally at GE in the early 1960s.

* GE sold their computing division to
Honeywell in 1969.

 One of the first DBMSs:
« Network data model. Honeywe“

* Tuple-at-a-time queries.

OOOOOOOOOOOOOOOOO 30

UNIVERSITY OF UTAH




1960s — CODASYL

* COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.
* Network data model.
* Tuple-at-a-time queries.

%, 4

Bachman

* Bachman also worked at Culliane Database Systems in the 1970s to
help build IDMS. @

N

Turing award 1973
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Network data model

Schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
SUPPLIES SUPPLIED BY

SUPPLY
(qty, price)
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Network data model

1 A Complex Queries |

1001 |Dirty R1 New Yor p1 999 |[Batte Large
1002 | Sg rels Bosto MA .

I_ e ]

OOOOOOOOOOOOOOOOO




19605 — IBM IMS

* Information Management System

 Early database system developed to keep track of purchase orders for
Apollo moon mission.

 Hierarchical data model.

* Programmer-defined physical storage format.
* Tuple-at-a-time queries.
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hierarchical data model

JdY U C D O IR

' A Duplicate Data

T —
A No Independence

p100

(pno, pname, psize, qty, price) pno  |pname psize qty price

999 Batteries Large 14 $99
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A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal rep, ion). A p pting service which supplies

such information is not a satisf Y solution, Activities of users

at terminals and most application programs should remain
affected when the int | rep ion of data is ch ged

and even when some p of the external rep i

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inad quacies of these model
are discussed. A model based on n-ary relations, @ normal
form for data base relati , and the pt of a al
data sublang ge are introduced. In Secti 2, certain opera-
tions on relations (other than logical inference) are discussed
and

. |

_"'bfhe,_ bl of redund, y ond . y

in the user's model,
KEY WORDS AND PHRASES: date bonk, data base, data structure, data
hi hies of data, ks of data, relations, derivability,

d Y Y '+ foin, retrieval language, predicate
calculus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

L1.  INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-nnswexing systems,
Levein and Maron [2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
independ the indep of application programs
and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems,

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will vield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relati I view is that it
forms a sound basis for treating derivability, redundancy,
and i 'y of relati these are di ed in Secti
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “ec trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint ) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. Data DEPENDENCIES IN PRESENT SysTems

The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank, However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: orderip Zonendence, indexing depend-
ence, and access path & In some systems these
dependencies are not ole from one another.

12.1. Ordering De, °ments of data in a
data bank may be store." .y of ways, some involy-
ing no concern for orde itting each element
to participate in ane o thers permitting each
element to participate in se; erings. Let us consider
those existing a HAr or permit data
elements to bemmfgs %ﬁdﬁelt?ﬁ?rdeﬁng which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377




Relational data model

Schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)

SUPPLY

(sno, pno, gty, price)

OOOOOOOOOOOOOOOOO
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Relational data model

Instance

SUPPLIER PART
sho shame scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 [Squirrels Boston MA

SUPPLY

sho pno qty price

1001 | 999 10 $100

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

1002 |999 $99
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1970s — Relational model

* Early implementations of relational DBMS:

e System R — IBM Research
* INGRES — U.C. Berkeley
* Oracle — Larry Ellison

ward 2015

Stonebraker

UNIVERSITY OF UTAH

Ellison
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1980s — Relational model

 The relational model wins.
 |BM comes out with DB2 in 1983.
e “SEQUEL” becomes the standard (SQL).

ORACLE

Informix %4/ TANDEM

* Many new “enterprise” DBMSs a

but Oracle wins marketplace. N SYBASE TERADATA

e Stonebraker creates Postgres. INGR=S InterBase

OOOOOOOOOOOOOOOOO 40

UNIVERSITY OF UTAH




1980s — Object-oriented databases

* Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

* Few of these original DBMSs from the 1980s still exist today but many
of the technologies exist in other forms (JSON, XML)

VERSAN T 0 b] e CtStO e '.MarkLogiC””
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Object-oriented model

(sid, phone)

E a

1001 |444-444-4444
1001 |555-555-5555
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1990s — Boring days

* No major advancements in database systems or application
workloads.

* Microsoft forks Sybase and creates SQL Server.
 MySQL is written as a replacement for mSQL.

* Postgres gets SQL support.

e SQLite started in early 2000.

PostgreSQL

@ %the
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2000s — Internet boom

* All the big players were heavyweight and expensive. Open-source
databases were missing important features.

* Many companies wrote their own custom middleware to scale out
database across single-node DBMS instances.
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2000s — Data warehouses

* Rise of the special purpose OLAP DBMSs.
* Distributed / Shared-Nothing
e Relational / SQL
* Usually closed-source.

e Significant performance benefits from using columnar data storage

model.
N)NETEZZA PARACCEL monetdb
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2000s — NoSQL Systems

* Focus on high-availability & high-scalability:
* Schemaless (i.e., “Schema Last”)

* Non-relational data models (document, key/value, etc)
* No ACID transactions

e Custom APIs instead of SQL
* Usually open-source

HERSE « Jahazon .mongoDB O @'

DynamobB ‘@, NOSQL
& redis RethinkDB i:

—~ Q Couchbase &QHGOA CouchDB
cassandra wrla k ) NDB
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2010s — NewSQL

* Provide same performance for OLTP workloads as NoSQL DBMSs
without giving up ACID:
e Relational / SQL
 Distributed
* Usually closed-source

_6, Cockroach LaBs

@ AbSh arels I}]'Store Clustrix o

A
3 ScaleArc w VOLTDB o @TiDB

Google

s
schooL or coupie YugaByte




2010s — Hybrid systems

* Hybrid Transactional-Analytical Processing.

* Execute fast OLTP like a NewSQL system while also executing complex
OLAP queries like a data warehouse system.
* Distributed / Shared-Nothing

e Relational / SQL
* Mixed open/closed-source.

A MEMSQL A HyPer gz SNAPPY w

JusEO e e SFM)"CG 55 Peloton

ACHINE
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2010s — Cloud systems

* First database-as-a-service (DBaaS) offerings were "containerized"
versions of existing DBMSs.

* There are new DBMSs that are designed from scratch explicitly for
running in a cloud environment.

i"o:< snow flake
. Amazon

- WFAUNA omsks V0 A

B® Microsoft

xeround Google
. gégg_zigg The Cloud Database S pa n n e r
o

o
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2010s — Shared-disk engines

* Instead of writing a custom storage manager, the DBMS leverages
distributed storage.

* Scale execution layer independently of storage.
* Favors log-structured approaches.

* This is what most people think of when they talk about a data lake.

splice ¥ Clougera
APACHE N\ O
oAcHE BACHINE X snowflake r‘ll(\z

e +as Spa
OOOOOOOOOOOOOOOOO presto .« -S'E'B?H’.‘%'T‘ & P
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2010s — Stream processing

* Execute continuous queries on streams of tuples.
* Extend processing semantics to include notion of windows.

» Often used in combination of batch-oriented systems in a lambda
architecture deployment.

APACHE

storm- () HERON
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2010s — Graph systems

» Systems for storing and querying graph data.

* Their main advantage over other data models is to provide a graph-

centric query API

e Recent research demonstrated that is unclear whether there is any benefit to
using a graph-centric execution engine and storage manager.

OOOOOOOOOOOOOOOOO
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http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf

2010s — Timeseries systems

* Specialized systems that are designed to store timeseries / event
data.

* The design of these systems make deep assumptions about the

distribution of data and workload query patterns.

@MS TIMESCALE () influxdb

E'%]';?Rm . ClickHouse

«
=<
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Parting thoughts

 The demarcation lines of DBMS categories will continue to blur over
time as specialized systems expand the scope of their domains.

* | believe that the relational model and declarative query languages
promote better data engineering.
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