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• Please fill course evaluations!!
• Final paper report due on December 1st. 
• Please write reports on paper based on the current topics.

• Final quiz due on December 6th.
• Project presentations slots are up.
• Prepare your final presentations and reports according to the guidelines.

• Final project reports due on December 8th.

Some reminders…
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Use ML models to replace the 
navigational part of an Index



B-Trees vs. Learned Indexes



What is the difference?

B-Tree

key

page

Conceptually, a B-Tree maps a key to a location (page)



Alternative view: data is sorted

B-Tree

key

position

(a) B-tree: key à position
(b) Search within position, position+error
(binary, linear, interpolation, exponential search)

error



A B-Tree is a Model

Model

key

position

(a) Model: key à position estimate
(b) Search within [position-error, position+error]

error

A B-Tree is already a model!



A B-Tree is a Model

key

position

A form of regression model
key à pos is equivalent to modeling 

the empirical CDF of the data
position estimate = 𝐏 𝐗 ≤ 𝒌𝒆𝒚 ∗ #𝒌𝒆𝒚𝒔

error

Model



𝐏 𝐗 ≤ 𝒂 ∗ #𝒌𝒆𝒚𝒔

𝒂



B-Trees are regression trees

B-Tree

key

position

What does this mean?B-Trees is already a form of a learned index



Learned Indexes

key

position

A form of regression model
key à pos is equivalent to modeling 

the empirical CDF of the data
position estimate = 𝐏 𝐗 ≤ 𝒌𝒆𝒚 ∗ #𝒌𝒆𝒚𝒔

error

Model

What is the problem if we use an arbitrary model?

B-Trees have bounded error

Can we bound the 
error here?



Last-mile indexing

Every level provides gain in accuracy

B-TreeB-Tree

Some models can be replaced sub-B-Trees



Use case: FITing-Tree

Piece-wise linear approximation



A segment from (x1,y1) to (x3,y3) is not 
valid if (x2,y2) is further than error from 
the interpolated line.



Point 4 is outside the dotted cone and 
therefore starts a new segment

Point 1 is the origin of the cone

Point 2 is then added, 
resulting in the dashed cone

Point 3 is added next, yielding in the 
dotted cone



What if base data is not sorted?



Need to materialize sorted data



What about updates and learned indexes?



B+ Tree

• Traverses tree using comparisons
• Supports OLTP-style mixed workloads

• Point lookups, range queries
• Inserts, updates, deletes

• Traverses tree using computations (models)
• Supports point lookups and range queries
• Advantages: 3X faster reads, 10X smaller size
• Limitation: does not support writes

Learned Index (Kraska et al., 2018)
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ALEX goals

21

B+ Tree Learned Index ALEX

Lookup time Slow Fast Faster

Insert time Fast Not Supported Fast

Space usage High Low Low

(every row should be read independently)
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ALEX design overview

Structure
• Dynamic tree structure
• Each node contains a linear model

• internal nodes à models select the child node
• data nodes à models predict the position of a key

Core operations
• Lookup

• Use RMI to predict location of key in a data node
• Do local search to correct for prediction error

• Insert
• Do a lookup to find the insert position
• Insert the new key/value (might require shifting)

Current design constraints
a) In memory
b) Numeric data types
c) Single threaded
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ALEX Core Ideas

Faster Reads Faster Writes Adaptiveness
1. Gapped Array ✔

2. Model-based Inserts ✔

3. Exponential Search ✔

4. Adaptive Tree Structure ✔ ✔ ✔
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1. Gapped Array
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How should data be stored in data nodes?



1. Gapped Array
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1. Gapped Array
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Dense Array 0 1 2 3 4 5 6 7 8



1. Gapped Array
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1. Gapped Array
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1. Gapped Array
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1. Gapped Array
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Storing data in Gapped Arrays achieves inserts using fewer shifts, leading to faster writes



1. Gapped Array
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Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

0 1 2 3 4 5 5 6 7 7 8 SGapped Array 𝑂(log 𝑛)

Storing data in Gapped Arrays achieves inserts using fewer shifts, leading to faster writes



2. Model-based Inserts
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Where do we put gaps in the Gapped Array?



2. Model-based Inserts
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2. Model-based Inserts
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2. Model-based Inserts
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2. Model-based Inserts
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2. Model-based Inserts
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Model-based inserts achieve lower prediction error, leading to faster reads



3. Exponential Search
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Can we do better than binary search?



Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

Core algorithm: binary search! Key difference: exp. increasing search bound
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Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

Exp. Search is ideal for a search key at the beginning of the array!

Why is this helpful in our case?

We begin our search from the “predicted” location, low error expected!



3. Exponential Search
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Model errors are low, so exponential search is faster than binary search



4. Adaptive Structure
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What happens if data nodes become full?

What happens if models become inaccurate?



4. Adaptive Structure

• Flexible tree structure
• Split nodes sideways
• Split nodes downwards
• Expand nodes
• Merge nodes, contract nodes

• Key idea: all decisions are made 
to maximize performance
• Use cost model of query runtime
• No hand-tuning
• Robust to data and workload shifts
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Results

• High-level results
• Fast reads
• Fast writes

67

~4x faster than B+ Tree
~2x faster than Learned Index

~2-3x faster than B+ Tree



Results

• High-level results
• Fast reads
• Fast writes
• Smaller index size

• Other results
• Efficient bulk loading
• Scales
• Robust to data and 

workload shift

68~3 orders of magnitude less space for index



ALEX Summary

• Combines the best of B+ 
Tree and Learned Indexes
• Supports OLTP-style mixed 

workloads
• Point lookups, range queries
• Inserts, updates, deletes

• Up to 4X faster, 2000X 
smaller than B+ Tree

• Current research
• String keys
• Concurrency
• Persistence
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Faster 
Reads

Faster 
Writes

Adaptiveness

Gapped Array ✔

Model-based Inserts ✔

Exponential Search ✔

Adaptive Tree Structure ✔ ✔ ✔

github.com/microsoft/ALEX

https://github.com/microsoft/ALEX


Learned Indexes

Replace data structure with learned models

üSimple approaches like linear approximation work well
üEmpty space for updates
üError bounds to split model nodes
üExponential search for last-mile searching

ØA very fertile area of research!
ØA comprehensive list of papers: 

http://dsg.csail.mit.edu/mlforsystems/papers/#learned-range-indexes

http://dsg.csail.mit.edu/mlforsystems/papers/



