
Lecture 21
ML for Databases

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

http://prashant.pandey@utah.edu

• Final paper report due on December 1st.
• Please write reports on paper based on the current topics.

• Final quiz due on December 6th.
• Project presentations slots are up.
• Prepare your final presentations and reports according to the guidelines.

• Final project reports due on December 8th.

Some reminders…

Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions

without being explicitly programmed to do so.

Which database systems components can
benefit/be replaced by ML algorithms?

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to replace the cost-
models of the database Tuner

Tuner

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to replace the
navigational part of an Index

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to replace the cost-
model of the Query Optimizer

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to estimate the actual
data and replace the Query Evaluation

Self-driving Data systems

Types of actions that
a self-driving system
needs to take
automatically

Use-case: Peloton Self-Driving Architecture

(A) Application (B) Workload Monitoring

(C) Workload Classification
[unsupervised learning to
group similar queries]

(D) Workload Forecasting
[predict future workload to
autoscale cloud instances]

(E) Action Planning
[use tools like receding-horizon control
model to select actions that might lead
to better performance in the future]

(F) Action Generator
[select action and log them,
reversals may also happen]

Workload forecasting
Using Recurrent
Neural Networks (RNN)
the model learns patterns
and adapts to changes

Action example: adapting the storage layout

Columns are better for OLAP

Rows are better for OLTP

Hybrid matches the best when workload alternates

Why automatic tuning is hard? (1/2)

Complex interdependencies between
different tuning knobs!

Continuous domain (“too many” knob options)
with irregular benefits

Why automatic tuning is hard? (2/2)

Non-reusable configurations! Increasing tuning complexity

Use case: Ottertune

Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs

All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.

OtterTune Machine Learning Pipeline

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)

How to classify/characterize a workload?

OtterTune Machine Learning Pipeline

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering

OtterTune Machine Learning Pipeline

Identify important knobs

Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations

OtterTune Machine Learning Pipeline

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
this is done when (i) there is not enough data for this workload (so more data are needed), or
(ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data

OtterTune in Action

The optimal number of knobs varies per DBMS and workload! Increasing the number of knobs gradually is the best
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.

Start by sweeping values of knobs to collect “training data”

OtterTune vs iTuned on TPCC

OtterTune is trained with more data, so it can achieve a better end result!

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.

OtterTune vs iTuned on TPCH

Actian Vector allows fewer “bad” options, so the training is easier.

“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!

OtterTune Efficacy Comparison

MySQL PostgreSQL

It is hard (but not impossible) to beat an expert DBA!

A Learned
Database System

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to replace the cost-
model of the Query Optimizer

Learned Query Optimization

Learned Query Optimization

A perspective on
ML in Database Systems
from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin

New Forces

(1) End-users want to
democratize data (all business units to have access to all data)
make data-driven decisions (often in real time)

(2) New applications
structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)

New Forces

(3) Data integration
diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud
moving from full ownership to pay-as-you-go
self-tuning systems en masse in the cloud (as we discussed today)

Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)

ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server

