
Lecture 20
Databases on Modern Hardware

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

Prof. Xiangyao Yu, University of Wisconsin

http://prashant.pandey@utah.edu

Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture

(i) assumes CPU is fast enough (for our applications)

(ii) assumes memory can keep-up with CPU and can hold all data

CPU

Memory
is this the case?

for (i): applications increasingly complex, higher CPU demand
is the CPU going to be always fast enough?

Moore’s law

Often expressed as:
“X doubles every 18-24 months”

where X is:
“performance”
CPU clock speed
the number of transistors per chip

based on William Gropp’s slides

which one is it?

but …

exponential
growth!

Can (a single) CPU cope with increasing application complexity?

No, because CPUs (cores) are not getting faster!!!

.. but they are getting more and more (higher parallelism)

Research Challenges
how to handle them?

how to parallel program?

CPU vs. GPU

7

CPU: A few powerful cores with large caches. Optimized for sequential computation

8

CPU: A few powerful cores with large caches. Optimized for sequential computation

GPU: Many small cores. Optimized for parallel computation

CPU vs. GPU

CPU vs. GPU – Processing Units

9

Nvidia

Throughput Power Throughput/Power
Intel Skylake 128 GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

CPU vs. GPU — Memory Bandwidth

10

2010 2012 2014 2016 2018 2020

0

200

400

600

800

1000

P
ea

k
B
an

dw
id

th
(G

B
/s

)

Nvidia GPU

Intel CPU

125GBps
Grown 7% per year

1200 GBps

GPU has one order of magnitude higher memory bandwidth than CPU
Memory Bandwidth is the bottleneck for in-memory analytics
A natural idea: use GPUs for data analytics

GPU-DB Limitations
Limitation 1: Low interconnect bandwidth

11

PCIe
Main

Memory

CPU GPU

Device
Memory

100GB/s 1000GB/s10GB/s

GPU-DB Limitations
Limitation 1: Low interconnect bandwidth
Limitation 2: Small GPU memory capacity

12

PCIe
Main

Memory

CPU

Device
Memory

GPU

100GB—10 TB capacity 8—80GB

GPU-DB Limitations
Limitation 1: Low interconnect bandwidth
Limitation 2: Small GPU memory capacity
Limitation 3: Coarse-grained cooperation of CPU and GPU

13

PCIe
Main

Memory

CPU

Device
Memory

GPU

100GB—1TB capacity 8—48GB

GPU Database Operation Mode

Coprocessor mode: Every query loads data from CPU memory to GPU

GPU-only mode: Store working set in GPU memory and run the entire
query on GPU

14

CPU-only vs. Coprocessor

15

Key observation: With efficient implementations that can saturate memory bandwidth
GPU-only > CPU-only > coprocessor

Star-Schema Benchmark

16

Crystal-based implementations always
saturate GPU memory bandwidth

GPU is on average 25X faster than CPU

Emerging Fast Interconnect

Fast Interconnect can solve the PCIe bottleneck
Emerging alternative interconnect technologies:
• NVLink
• Infinity Fabric
• Compute Express Link (CXL)

17

PCIe
Main

Memory

CPU GPU

Device
Memory

100GB/s 1000GB/s10GB/s

NVLink
Main

Memory

CPU GPU

Device
Memory

100GB/s 1000GB/s75GB/s

NVLink Bandwidth and Latency
NVLink has much higher bandwidth
than PCIe

18

NVLink has much higher bandwidth
than PCIe

NVLink has comparable bandwidth as
CPU local memory

19

NVLink Bandwidth and Latency

NVLink Bandwidth and Latency
NVLink has much higher bandwidth
than PCIe

NVLink has comparable bandwidth as
CPU local memory

NVLink bandwidth has much lower
bandwidth than GPU memory

20

GPU Transfer Methods

Pinned copy and zero copy can saturate PCIe bandwidth
Coherence can saturate NVLink bandwidth

21

Non-Partitioned Hash Join Methods

Build phase: build the hash table using inner relation R

Probe phase: lookup hash table for each record in outer relation S

22

Hash Join – Build Phase

Build phase: build the hash table using inner relation R

23

Hash Join – Probe Phase

Probe phase: lookup hash table for each record in outer relation S

24

Hash Join

This hybrid design subsumes the previous designs in the paper
• Dynamically schedule tasks to both CPU and GPU

25

Hash Table Locality

Best performance achieved when the hash table is in GPU memory

26

Scaling Data Size in TPC-H Q6

TPC-H Q6 contains a simple scan + aggregation with no join
Running the query on CPU leads to the highest performance

27

Scaling the Probe Side Relation

NVLink is faster than both PCIe and CPU only

28

Scaling the Build Side Relation

Performance drops when the hash table does not fit in GPU memory

29

Discussion

30

Crystal NVLink

Query Type SPJA analytical queries Non-partitioned hash join

Execution Model Data fits in GPU memory Coprocessor

Interconnect PCIe 3.0 NVLink 2.0

Research question: How to maximize GPU database performance
with different interconnect technology?

Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture

(i) assumes CPU is fast enough (for our applications)

(ii) assumes memory can keep-up with CPU and can hold all data

CPU

Memory
is this the case?

for (ii): is memory faster than CPU (to deliver data in time)?
does it have enough capacity?

not always!

Which one is faster?

Memory Wall

As the gap grows, we need a deep memory hierarchy

A single level of main memory is not enough

We need a memory hierarchy

What is the memory hierarchy ?

HDD / Shingled HDD

SSD (Flash)

Main Memory

L3

L2

L1

~2ms

Bigger
Cheaper
Slower

Faster
Smaller
More
expensive

~100μs

~100ns

~3ns

<1ns

~10ns

Cache Hierarchy

L3

L2

L1

What is a core?

What is a socket?

Storage Hierarchy

HDD

SSD (Flash)

Main Memory

Shingled Disks

Tape

Hard Disk Drives
Secondary durable storage that support both random and sequential access

Data organized on pages/blocks (across tracks)

Multiple tracks create an (imaginary) cylinder

Disk access time:
seek latency + rotational delay + transfer time
(0.5-2ms) + (0.5-3ms) + <0.1ms/4KB

Sequential >> random access (~10x)

Goal: avoid random access

Seek time + Rotational delay + Transfer time
Seek time: the head goes to the right track

Short seeks are dominated by “settle” time
(D is on the order of hundreds or more)

Rotational delay: The platter rotates to the right sector.
What is the min/max/avg rotational delay for 10000RPM disk?

min: 0, max: 60s/10000=6ms, avg: 3ms

Transfer time: <0.1ms / page → more than 100MB/s

Sequential vs. Random Access
Bandwidth for Sequential Access (assuming 0.1ms/4KB):

0.04ms for 4KB → 100MB/s

Bandwidth for Random Access (4KB):

0.5ms (seek time) + 3ms (rotational delay) + 0.04ms = 3.54ms

4KB/3.54ms → 1.16MB/s

Flash
Secondary durable storage that support both random and sequential access

Data organized on pages (similar to disks) which are further grouped to erase blocks

Main advantage over disks: random read is now much more efficient

BUT: Not as fast random writes!

Goal: avoid random writes

The internals of flash

interconnected flash chips

no mechanical limitations

maintain the block API
compatible with disks layout

internal parallelism
for both read/write

complex software driver

Flash access time
… depends on:

device organization (internal parallelism)

software efficiency (driver)

bandwidth of flash packages

the Flash Translation Layer (FTL), a complex device driver (firmware) which
tunes performance and device lifetime

High Performance
Expensive Memory

Low Performance
Cheap Memory

Flash vs HDD
HDD

✓ Large - cheap capacity

✗ Inefficient random reads

Flash

✗ Small - expensive capacity

✓ Very efficient random reads

✗ Read/Write Asymmetry

Technology Trends & Research Challenges

(1) From fast single cores to increased parallelism

(2) From slow storage to efficient random reads

(3) From infinite endurance to limited endurance

(4) From symmetric to asymmetric read/write performance

Technology Trends & Research Challenges

How to exploit increasing parallelism (in compute and storage)?

How to redesign systems for efficient random reads?
e.g., no need to aggressively minimize index height!

How to reduce write amplification (physical writes per logical write)?

How to write algorithms for asymmetric storage?

