
Lecture 05
The Design Space of Data 

Structures

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

http://prashant.pandey@utah.edu


data structures

b+ trees
hash tables

zonemaps

radix trees

bitmap indexes

are in the core of:

database systems

file systems

operating systems

machine learning systems

systems for data science

how to decide which one to use?
workload (access patterns)

hardware (memory/storage/network/compute)

current focus

next
Acknowledgement: Prof. Manos Athanassoulis, BU



how to decide how to design a data structure?

break it down to design dimensions

Acknowledgement: Prof. Manos Athanassoulis, BU



how to break down the design in independent dimensions?

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

buffer

batching via buffering

Acknowledgement: Prof. Manos Athanassoulis, BU



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

adaptivity

batching via buffering

Acknowledgement: Prof. Manos Athanassoulis, BU



data structure designs navigate a three-way tradeoff

Reads

Updates
Memory

Acknowledgement: Prof. Manos Athanassoulis, BU



The RUM Conjecture

every access method has a (quantifiable)
• read overhead
• update overhead
• memory overhead

the three of which form a competing triangle

Read

Update Memorywe can optimize for two of 
the overheads at the 
expense of the third

13

max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

14

R

U M

?

max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

15

R

U M

? ?

max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



what would be an optimal read behavior?

16

1 4 5 82 17

insert 2insert 17delete 8

minimum read overhead

bound update overhead

unbounded memory overhead

update 4 -> 3

3

Acknowledgement: Prof. Manos Athanassoulis, BU



X

what would be an optimal update behavior?

data

always append, and on update invalidate 

17

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

more data?

C D

what about reads?
max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



X

what would be an optimal update behavior?

data

always append, and invalidate on update

18

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

C D

higher read and memory overhead

max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



what would be an optimal memory overhead?

X data

scan and find

scan and in-place updates

19

R

U M
?

?

no metadata whatsoever, would result in the smallest memory footprint

do we need to reach the optimal(s)?

No!
max

min

minmin

Acknowledgement: Prof. Manos Athanassoulis, BU



are there only three overheads?

Reads

Updates
Memory

Acknowledgement: Prof. Manos Athanassoulis, BU



are there only three overheads?

Read

Update Memory

Acknowledgement: Prof. Manos Athanassoulis, BU



are there only three overheads?

Point Read Range Read (short/long/full scan)

Update

MemoryInsert

Delete

PyRUMID overheads

Acknowledgement: Prof. Manos Athanassoulis, BU



data structures design dimensions and their values

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

batching via buffering

adaptivity

Acknowledgement: Prof. Manos Athanassoulis, BU



unsorted

sorted

logging

key-level partition-level

range

radix

hash partitioning

partitioning logging

global data organization

1-5 6-10

001 010 011

11-15

h(x)=1 h(x)=2 h(x)=3

epoch 1 epoch 2 epoch 3

another decision to be made for each partition

Acknowledgement: Prof. Manos Athanassoulis, BU



global search algorithm

SCAN

binary search

direct addressing

data-driven search

any data organization

radix/range

radix

more suited for long range queries

point or range queries

more suited for point queries

better match the data
example: interpolation search

data organizations that can use it? comments

radix/range

Acknowledgement: Prof. Manos Athanassoulis, BU



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 10 11

mid = low + (high - low) / 2 = 5
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[5] = 6; so x < val[mid] è high = mid - 1 = 4

mid = low + (high - low) / 2 = 2
low = 0; high = 4;

val[mid] = val[2] = 3; so x > val[mid] è low = mid + 1 = 3

mid = low + (high - low) / 2 = 3.5 (rounding to 4)
low = 3; high = 4;

val[mid] = val[4] = 5; so x == val[mid] è success!!

Acknowledgement: Prof. Manos Athanassoulis, BU



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 10 11

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = (5-1)*(10-0)/(11-1) = 4
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[4] = 5 è success!

does it always need 1 hop?

Acknowledgement: Prof. Manos Athanassoulis, BU



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 11 15

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = (5-1)*(10-0)/(15-1) = (rounding to) 3
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[3] = 4 ; so x > val[mid] è low = mid + 1 = 4

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = 4 + (5-5)*(10-4)/(15-5) = 4
low = 4; high = 10;

val[mid] = val[4] = 5 è success!

still better than binary!
works well with uniform distribution

Acknowledgement: Prof. Manos Athanassoulis, BU



global search using metadata (indexing)

SCAN

binary search

direct addressing

data-driven search

every search algorithm can be materialized and further optimized using indexing

Zonemaps Bloom Filters Imprints

k-ary
tree b+ tree

Hash Index

learned 
indexes

Acknowledgement: Prof. Manos Athanassoulis, BU



unsorted

sorted

logging

local data organization
decision per partition

hashing

cracking

gradually from unsorted towards sorted

SCAN
binary search

direct addressing
data-driven search

local search algorithms

Acknowledgement: Prof. Manos Athanassoulis, BU



in-place

modification policy (updates/deletes/inserts)

out-of-place

every update needs to find the “correct” position

every read needs to search all data

deferred in-place will eventually merge

Acknowledgement: Prof. Manos Athanassoulis, BU



how to break down popular designs 
to those design decisions?

Acknowledgement: Prof. Manos Athanassoulis, BU



b+ trees

global data organization

local data organization

local search algorithm

modification policy

range partitioning

search tree

sorted

binary search / scan

in-place

range

tree

Workload?

point and range queries, modifications, and some scans

global searching (algorithm or index)

Acknowledgement: Prof. Manos Athanassoulis, BU



insert optimized b+ trees

global data organization

global searching (algorithm or index)

local data organization

local search algorithm

modification policy

range partitioning

search tree

logging

binary search / scan

deferred in-place

range

treeWorkload?

increased number of modifications

Acknowledgement: Prof. Manos Athanassoulis, BU



bounded disorder access method

global data organization

local data organization

local search algorithm

modification policy

range partitioning

search tree

hashing

hashing

in-place

range

tree

Workload?

mixed workload, without short range queries

global searching (algorithm or index)

Acknowledgement: Prof. Manos Athanassoulis, BU



static hashing

global data organization

local data organization

local search algorithm

modification policy

hash partitioning

direct addressing (hashing)

logging

scan

in-place

Workload?

point queries and modifications

global searching (algorithm or index)

Acknowledgement: Prof. Manos Athanassoulis, BU



scans with zonemaps

global data organization

local data organization

local search algorithm

modification policy

none / logging

scan (with filters)

n/a

n/a

in-place

Workload?

long range queries and modifications

global searching (algorithm or index)

Acknowledgement: Prof. Manos Athanassoulis, BU


