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The balls and bin model

• Resource load balancing is often modeled by the task of throwing 
balls into bins
• Hashing, distributed storage, online load balancing, etc.

• Throw m balls into n bins:
• Pick a bin uniformly at random
• Insert a ball into the bin
• Repeat m times.

m balls

n bins



The single choice paradigm

• Throw m balls into n bins:
• Pick a bin uniformly at random
• Insert a ball into the bin
• Repeat m times.

Acknowledgement: Udi Wieder



The multiple choice paradigm

• Throw m balls into n bins:
• Pick d bins uniformly at random (d >= 2)
• Insert the ball into the less loaded bin
• Repeat m times.

Acknowledgement: Udi Wieder
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Hash Tables
• Constant time O(1) accesses!
• A hash table is an array of some 

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1 

hash function:
h(K)

hash table



6

Example
• key space = integers
• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94
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Hash Functions
1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
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Collision Resolution

Collision: when two keys map to the same location in the hash table.  

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double 

hashing)
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Separate Chaining

• Separate chaining: All 
keys that map to the 
same hash value are 
kept in a list (or 
“bucket”).
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Insert:
10
22
107
12
42
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Open Addressing

0
1
2
3
4
5
6
7
8
9

Insert:
38
19
8
109
10

• Linear Probing: after 
checking spot h(k), try 
spot h(k)+1, if that is 
full, try h(k)+2, then 
h(k)+3, etc.



Existing hash table techniques

Separate chaining
● Chaining with linked-list
● Chaining with binary tree

Open addressing
● Linear probing
● Coalesced chaining
● Double hashing
● Cuckoo hashing
● Hopscotch hashing
● Robin Hood hashing
● 2-choice hashing
● d-left hashing

● Cuckoo hashing suffers from random hopping
● Linear probing/Robin Hood hashing suffer from long chains
● 2-choice/d-left hashing suffer from multiple probes



Desirable features in a hash table
● High write performance
● High read performance
● Space efficiency



Desirable features in a hash table
● High write performance
● High read performance
● Space efficiency
● High concurrency
● Efficient resizability
● Crash-safety (PMEM)



Three design objectives for hash tables

● Stability
○ The position where an element is stored is guaranteed not to change except 

during a resize 
● Low associativity

○ The number of locations where an element is allowed to be stored is small
● Space efficiency

○ The ratio of the data size and the hash table size



Design objectives for hash tables

● Stability                

● Low associativity

● Space efficiency

● Low write amp → high write 
performance

● Simplified concurrency & crash 
consistency 

Low read amp → high read performance



Current hash table space
Type Stability Low 

associativity
Space 

efficiency

Cuckoo HT Cuckoo ❌ ✅ ✅

Intel TBB Chaining ✅ ❌ ❌

Dash Extendible ❌ ✅ ❌

CLHT 
(PMEM)

Chaining ✅ ❌ ❌

Folklore Linear probing ❌ ⁇ ✅

Inherent tension between stability, low associativity, and space efficiency.



Three levels
● Level 1 uses single hashing
● Level 2 used two-choice hashing
● Level 3 is chaining

Level 1 blocks contain 64 slots 
Level 2 is configured to be 10% the size of level 1

Iceberg HT simultaneously achieves all three design 
objectives



Iceberg HT simultaneously achieves all three design 
objectives

● Items do not move unless the 

hash table is resized

● Associativity is low

● Large blocks in level 1 and two-

choice hashing in level 2 enables 

high space efficiency



Iceberg HT design (metadata)
● We use 8 bit fingerprint for each key in the metadata
● Metadata for each block in level 1 (and 2) fits inside 1 cache line
● Metadata helps to:

○ locate empty slots during insertion 
○ filter out slots to probe during a query

● Metadata fingerprint is also used for synchronization
● Metadata is transient is only stored in DRAM 
● We rebuild the metadata during recovery

Insert, query, and delete operations take 2 cache line access for most items



Iceberg HT features
● High performance and space efficiency
● Non-blocking and in-place resizing
● Lock-free operations
● Fenceless crash safety



Iceberg HT performance (DRAM)



Iceberg HT performance (DRAM)



Iceberg HT performance (DRAM)



Dictionary data structure

a
c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):

S



Filter data structure

a
c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):
false 
positive

S



A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

with probability ﹥�1 - ε
if q ∉ S, return 

with probability  ≤ ε false positive

true negative

true positive

one-sided 
errors



False-positive rate enables filters to be compact

DictionaryFilter



False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 
ε = 2%, a Bloom filter requires ≈ 8 bits/item



Classic filter: The Bloom filter [Bloom ‘70]

0 1 0 1 0 1 0
m

a
c b

d

S

h1(a) = 1
h2(a) = 3

h1(c) = 5
h2(c) = 3

true 
negative

Bloom filter: a bit array + k hash functions (here k=2)



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(b) = 2
h2(b) = 5

true 
negative



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(d) = 1
h2(d) = 3

False 
positive



Bloom filters are ubiquitous (> 4300 citations)

Storage systems

NetworkingStreaming applications

Computational biology

Databases



Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality



Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter 
limitations

Bloom filter limitations increase system complexity, waste 
space, and slow down application performance



● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

h(x)x

Quotienting is an alternative to Bloom filters 
[Knuth. Searching and Sorting Vol. 3, ‘97]

p



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q r
b(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

p



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0
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3
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6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

t(y) belongs to 
slots 4 or 5?

43



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

Resolving collisions in the QF [Pandey et al. SIGMOD ‘17]

1 1

t(u) t(v) t(w) t(x) t(y)



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF [Pandey et al. SIGMOD ‘17]



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

The metadata bits enable us to identify the slots holding 
the contents of each bucket.

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the QF [Pandey et al. SIGMOD ‘17]



Quotient filters use less space than Bloom filters 
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the 
Bloom filter



Types of filters

● Bloom filters [Bloom ‘70]

● Quotient filters 

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et 
al. ‘12, Einziger et al. ‘15, Pandey et al. ‘17] State of the art in 

practical dynamic 
filters.



16X 
drop4X 

drop

Performance suffers due to high-overhead of collision resolution

Current filters have a problem..

Applications must choose between space and speed.



Performance suffers due to high-overhead of collision resolution

Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance 
only matters 
at high load 

factors



Why quotient filters slow down

Quotient filters use Robin-Hood 
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of 
runs.

To insert item x:
1. Find its run.
2. Shift other items down by 1 slot.
3. Store f(x).

f1 f2 f3 f4 f5 f6

x
h(x) log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts 
have to do more shifting.



Quotient filter performance [Pandey et al. ‘17]

Optimal Quotient filter

Space (bits)

CPU cost

Data locality



Why cuckoo filters slow down

s = O(1) slots/block (e.g., s=4 )

n/sx
h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down

f13 f14 f15
f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down

f13 f14 f15
f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8



Why cuckoo filters slow down

f13 f14 f15
f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8

Kick f12

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Why cuckoo filters slow down

f13 f14 f15 f12
f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

As the CF fills, inserts 
have to do more kicking.

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Cuckoo filter performance [Fan et al. ‘14]

Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality



Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data



Vector quotient filter design

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload.

But we still need 
it to support 

deletes.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload.

But we still need 
it to support 

deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.

Vector quotient filter design



s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with false-

positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload.

But we still need 
it to support 

deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.

No kicking ⇒
easier concurrency

Vector quotient filter design



A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 0010100

11 f1 f2 f3 f4 f5
n slots

shift

00010100
11 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Implemented using 
PSHUFB or

VCMPB



Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 0010100

11 f1 f2 f3 f4 f5
n slots

shift

00010100
11 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Operations take constant time in a vector model of 
computation for vectors of size ⍵(log log n) [Bellloch ‘90]. 

Example, using AVX-512 instructions. 

Implemented using 
PSHUFB or

VCMPB

A vectorizable mini quotient filter



Vector quotient filter (VQF) performance

Optimal VQF

Space (bits)

CPU cost

Data locality



Evaluation: insertion



Evaluation: lookups



Evaluation: concurrency






