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The balls and bin model

* Resource load balancing is often modeled by the task of throwing
balls into bins

* Hashing, distributed storage, online load balancing, etc.

* Throw m balls into n bins: m balls
* Pick a bin uniformly at random “ >
* Insert a ball into the bin
* Repeat m times.
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The single choice paradigm

e Throw m balls into n bins:
* Pick a bin uniformly at random
* Insert a ball into the bin

OOOOOOOOOOOOOOOOO

* Repeat m times.

Number
of Balls m=n m = nlogn
Max Load logn e mlogn
(1+0(D) —+
loglogn . n o, n

Acknowledgement: Udi Wieder




The multiple choice paradigm

* Throw m balls into n bins:
* Pick d bins uniformly at random (d >= 2)
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* |Insert the ball into the less loaded bin

* Repeat m times.

£
Number independent of m
of Balls Lo m = nlogn
/
Max Load
with prob, 1 —= loglogn |apkussy) | M " loglogn (pcsvoo
i logd n log d

Acknowledgement: Udi Wieder



Hash Tables

e Constant time O(1) accesses! hash table

* A hash table is an array of some
fixed size, usually a prime number. 0

* General idea:

hash function;
h(K)

>

key space (e.g., integers, strings) TableSize —1
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Example

* key space = integers
* TableSize = 10

* h(K) =K mod 10

* Insert: 7, 18, 41, 94

OOOOOOOOOOOOOOOOO
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Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
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Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, quadratic probing, double
hashing)
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Separate Chaining

O o0 J &N D»n B~ W N — O

Insert:
10
22

107
12
42

* Separate chaining: All
keys that map to the
same hash value are
kept in a list (or
“bucket”).
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Open Addressing

O 0 1 O D K~ W N — O

Insert:
38

19

8

109

10

* Linear Probing: after
checking spot h(k), try
spot h(k)+1, if that is
full, try h(k)+2, then
h(k)+3, etc.

10



Existing hash table techniques

Separate chaining Open addressing
e Chaining with linked-list
e Chaining with binary tree

Linear probing
Coalesced chaining
Double hashing
Cuckoo hashing
Hopscotch hashing
Robin Hood hashing

2-choice hashing
d-left hashing

e Cuckoo hashing suffers from random hopping
e Linear probing/Robin Hood hashing suffer from long chains
e 2-choice/d-left hashing suffer from multiple probes

OOOOOOOOOOOOOOOOO



Desirable features 1n a hash table

« High write performance
« High read performance
o Space efficiency

OOOOOOOOOOOOOOOOO




Desirable features 1n a hash table

High write performance
High read performance
Space efficiency

High concurrency
Efficient resizability
Crash-safety (PMEM)

OOOOOOOOOOOOOOOOO




Three design objectives for hash tables

o Stability

o The position where an element is stored 1s guaranteed not to change except
during a resize

e Low associativity
o The number of locations where an element 1s allowed to be stored 1s small

e Space efficiency
o The ratio of the data size and the hash table size

OOOOOOOOOOOOOOOOO




Design objectives for hash tables

e Low write amp — high write

® Stablhty performance

o Simplified concurrency & crash
consistency

e Low associativity

Low read amp — high read performance

e Space efficiency

OOOOOOOOOOOOOOOOO



U

Current hash table space

Inherent tension between stability, low associativity, and space efficiency.
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Type Stability Low Space
associativity efficiency
Cuckoo HT Cuckoo ) ¢
Intel TBB Chaining X X
Dash Extendible X X
CLHT Chaining X X
(PMEM)
Folklore Linear probing X 7
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Iceberg HT simultaneously achieves all three design

objectives

Three levels

o Level 1 uses single hashing "

o Level 2 used two-choice hashing

o Level 3 1s chaining

Level 1 blocks contain 64 slots

Level 2 1s configured to be 10% the size of level 1

OOOOOOOOOOOOOOOOO

h, (x)

h: (x)

/\

(x)




Iceberg HT simultaneously achieves all three design
objectives

4 N

e Jtems do not move unless the . " - -
hash table is resized h )

e Associativity is low

e Large blocks in level 1 and two- — ~—~—

64 slots 8 slots

choice hashing in level 2 enables

high space efficiency

< 4
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Iceberg HT design (metadata)

o We use 8 bit fingerprint for each key 1n the metadata
« Metadata for each block in level 1 (and 2) fits inside 1 cache line

o Metadata helps to:

o locate empty slots during insertion
o filter out slots to probe during a query

o Metadata fingerprint 1s also used for synchronization
o Metadata 1s transient 1s only stored in DRAM

« We rebuild the metadata during recovery

Insert, query, and delete operations take 2 cache line access for most items

OOOOOOOOOOOOOOOOO




Iceberg HT features

High performance and space efficiency
Non-blocking and in-place resizing
Lock-free operations

Fenceless crash safety

OOOOOOOOOOOOOOOOO




Iceberg HT performance (DRAM)
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Figure 6: Throughput for insertions, deletions, and queries (positive and negative) using 16 threads for DRAM hash tables. The

throughput is computed by inserting 0.95N keys-value pairs where N is the initial capacity of the hash table. (Throughput is
Million ops/second)
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Iceberg HT performance (DRAM)
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Figure 7: Insertion throughput and space efficiency per-
formance of hash tables in DRAM. (Throughput is Million
ops/second)



Iceberg HT performance (DRAM)

DRAM
Insertions Positive Queries
Percentile | ICEBERGHT libcuckoo TBB | IcCEBERGHT libcuckoo TBB
50 299 ns 264ns 819ns 286 ns 198ns  494ns
95 624 ns 2.02pus  1.59ps 629 ns 429ns  955ns
o 1.21 s 599us 2.24ps 994 ns 562ns 1.22ps
99.9 32.1ps 19.8us  6.52 s 1.60 pus 836ns 1.57us
99.99 41.7 ps 219us  9.27 ps 2.92 us 218 us  4.97,us
max 8.62ms 2.05s 734ms 8.54 ms 1.01s 42.8ps

Table 4: Percentile latencies in ICEBERGHT, libcuckoo and
TBB on DRAM for YCSB workload A run.
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Dictionary data structure

A dictionary maintains a set S from universe U.

membership(a): v
membership()): X

membership(c): 4
membership(d): X

A dictionary supports membership queries on S.

OOOOOOOOOOOOOOOOO




Filter data structure

A filter 1s an approximate dictionary.

membership(a): v
membership()): X

membership(c): 4

false
membership(d): P positive

A filter supports approximate membership queries on S.

OOOOOOOOOOOOOOOOO
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A filter guarantees a false-positive rate ¢

if g € S, return

if g € S, return <

+ with probability 1 true positive

(3¢ with probability >[11 -&  true negative

_ / with probability <¢ false positive

one-sided
errors




False-positive rate enables filters to be compact

space > mnlog(1/e) space = (}(nlog|U|)

q

&

Filter Dictionary
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False-positive rate enables filters to be compact

space > mnlog(1/e) space = (}(nlog|U|)
=8 4
Large

q

&

Filter Dictionary

For most practical purposes:
€ = 2%, a Bloom filter requires = 8 bits/item



Classic filter: The Bloom filter [Bloom *70]

Bloom filter: a bit array + k£ hash functions (here £=2)

m

O 1,0, 1[0 1]O0

(@) =] true
ol =3 negative X

hl(C) =35

hy(c) =3 II
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Classic filter: The Bloom filter [Bloom “70]

Bloom filter: a bit array + k£ hash functions (here £=2)

0 0
hy(b) =2
h;(b) - netgl:llt(ieve X

OOOOOOOOOOOOOOOOO




Classic filter: The Bloom filter [Bloom *70]

Bloom filter: a bit array + k£ hash functions (here £=2)

m

O 1 0 10 1|60

hi(d) =1

False
ol =3 positive ‘/

OOOOOOOOOOOOOOOOO




Bloom filters are ubiquitous (> 4300 citations)

Streaming applications Networking

Mysal , | ORACLE , « SOl server

Computational biolo Storage systems
p gy | ) & )\ ) ge sy

cnccuccrcnccnccucg\ ( >\
| Q ) 1 . ‘1‘ 5

.‘ "

commetal “5\\\\\\ M J !
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Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits) |~ 1.44 nlog(1/€)|~ n log(1/e) + Q(n)

CPU cost Q(1/€) O(1)

Data locality | §2(1/€) probes O(1) probes

OOOOOOOOOOOOOOOOO




Applications often work around Bloom filter

limitations
Limitations Workarounds
No deletes Rebuild
No resizes Guess N, and rebuild 1f wrong
No filter merging or enumeration 777
No values associated with keys Combine with another data structure

Bloom filter limitations increase system complexity, waste
space, and slow down application performance

OOOOOOOOOOOOOOOOO



uotienting 1s an alternative to Bloom filters
[Knuth. Searching and Sorting Vol. 3, ‘97]

e Store fingerprints compactly in a hash table.
o Take a fingerprint /(x) for each element x.

GEED — 3

log |U]| p

e Only source of false positives:
o Two distinct elements x and y, where /(x) = A(y)
o If x 1s stored and y 1sn’t, query(y) gives a false positives

Pr[x and vy collide] = 2%,

OOOOOOOOOOOOOOOOO
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Storing fingerprints compactly

Bucket index

1
=) CEIE) —1ac
J4 q r

b(x)

* b(x) = location in the hash table
* f(x) = tag stored in the hash table

29

A U hAhaA W NN = O

OOOOOOOOOOOOOOOOO
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Storing fingerprints compactly

Bucket index

1
=) CEIE) —1ac
J4 q r

b —
b
0 1 * b(x) = location in the hash table

2 * f(x) = tag stored in the hash table
3 2 Collisions 1n the hash table?
4

) | .
6
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Storing fingerprints compactly

Bucket index

1
=) CEIE) —1ac
J4 q r

b(x) —
b
0 1  b(x) = location in the hash table
2 * f(x) = tag stored in the hash table
q
3 2 Collisions in the hash table?
4 e Linear probing
e Robin Hood hashing

0 | -

6




Storing fingerprints compactly

Bucket index

1
=) CEIE) —1ac
J4 q r

b(x)

b
»)  b(x) = location in the hash table

* f(x) = tag stored in the hash table

27 Collisions in the hash table?

e Linear probing
e Robin Hood hashing

" #y) belongs to
slots 4 or 5?

ccccccccccccccccc 43

UUUUUUUUUUUUUUUU

ty)

A U hAhaA W NN = O




Resolving collisions in the QF [Pandey etal. SIGMOD “17]

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

tx) | 1)

e The metadata bits group tags by their home
bucket

OOOOOOOOOOOOOOOOO
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Resolving collisions in the QF [Pandey etal. SIGMOD *17]

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

insert v

tx) | 1)

e The metadata bits group tags by their home
bucket

OOOOOOOOOOOOOOOOO
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Resolving collisions in the QF [Pandey etal. SIGMOD “17]

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

insert v

tx) | 1)

e The metadata bits group tags by their home
bucket

The metadata bits enable us to identify the slots holding
the contents of each bucket.

OOOOOOOOOOOOOOOOO
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Quotient filters use less space than Bloom filters
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits) | ~n log(1/e) +2.125n | =~ 1.44 nlog(1/€) |~ n log(1/e) + Q(n)

CPU cost O(1) expected Q(1/e) O(1)

Data locality 1 probe + scan Q(1/€) probes O(1) probes

The quotient filter has theoretical advantages over the
Bloom filter

OOOOOOOOOOOOOOOOO




Types of filters

e Bloom filters [Bloom “70]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et
. al. ‘12, Einziger et al. ‘15, Pandey et al. ‘17]
e (Quotient filters
‘18]

o CUCkOO / M()rt()n ﬁlters [Fan et al. ‘14, Breslow & Jayasena

e Others
o Mostly based on perfect hashing and/or linear algebra
o Mostly static

o e.g., Xor filters [Graf & Lemire “20]
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Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

© —=X—— Quotient filter
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Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

L —=X—— Quotient filter
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Why quotient filters slow down

Quotient filters use Robin-Hood
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of
runs.

To insert item x:
1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

h(x)

log(1/¢) bits/slot

b

v

_fsfa

n slots

\
\
\
\
\
\
\
\
\
\

s
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Quotient filter performance [Pandey etal. "17]

Optimal Quotient filter
Space (bits) |~ n log(1/e) + Q(n)| ~n log(1/e)+2.125n
CPU cost O(]-) O(1) expected

Data locality

O(1) probes

1 probe + scan
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Why cuckoo filters slow down

log(2s/¢) bits/slot — ¢

X
To 1nsert 1item x:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

h(x)

s = O(1) slots/block (e.g., s=4 )

A




OOOOOOOOOOOOOOOOO

Why cuckoo filters slow down

X
To 1nsert 1item x:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

h(x)

Jis | fa | Sis

h | L | ] S
fs | Jo | S| s
So | S | fu | fi2
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Why cuckoo filters slow down

X
To 1nsert 1item x:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

h(x)

Jis | fa | Sis

h | L | ] S
fs | Jo | S| s
So | S | fu | fi2

‘>Kick fs




Why cuckoo filters slow down

Jis | fa | Sis
h | L | ] S

X

To 1nsert item x:
1. Compute /,(x) and /,(x). hy(x) fo l fi | fr | foo
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

So | S | fu | fi2

Note: /1)(x) and /,(x) need to be
dependent to support kicking.

OOOOOOOOOOOOOOOOO




Why cuckoo filters slow down

Sfis | fa | Sis | S
h|h | 6 f

X

To insert 1tem x:
1. Compute /,(x) and /,(x). hi(x) AR AR A
2. Insert f(x) into emptier block.
3. Kick an item if needed.

fo | S | Ju | Js

Note: /1)(x) and /,(x) need to be
dependent to support kicking.

OOOOOOOOOOOOOOOOO
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Cuckoo filter performance [Fanetal “14]

Optimal Cuckoo filter
Space (blts) ~n log(l/e) + Q(n)| ~n log(1/€) + 3n
CPU cost O(1) up to 500

Data locality

O(1) probes

random probes




Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

OOOOOOOOOOOOOOOOO




Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

P »
< Ll

Each block is a small

quotient filter with false- ‘

positive rate €/2 and
capacity s.

A
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

P »

Each block is a small

quotient filter with false- ‘

positive rate €/2 and
capacity s.

A

To insert item Xx:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.

3 Kickanitemifneeded:
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

Each block is a small

quotient filter with false- ‘
positive rate €/2 and
k)~

capacity s.
X

To insert item Xx:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.

3 Kickanitemifneeded:
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

Each block is a small

quotient filter with false- ‘
positive rate €/2 and
k)~

capacity s.
X

To insert item x:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.

3 Kickanitemifneeded:
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

Each block 1s a small

quotient filter with false- ‘

positive rate €/2 and
capacity s.

X

To insert item x:

1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.

3 Kickanitemifneeded:
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

Each block 1s a small
quotient filter with false-
positive rate €/2 and
capacity s.

To insert item x:
1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.
3—IekanttentrHnceded:
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Vector quotient filter design

s = w(log log n) slots/block (e.g., s=64 )

Each block 1s a small

quotient filter with false- ‘

positive rate €/2 and
capacity s.

ho(x)

x/
o

To insert item x:
1. Compute /,(x) and /,(x).
2. Insert f(x) into emptier block.
3—IekanttentrHnceded:
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A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket

n slc‘x\ts

Insert x, where f(x)=0. ‘
P

N
11 Ja | S5
maximized wnen o=s/1nc. i
using PDEP VCMPB
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A vectorizable min1 quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are
s}orpﬂ tnoether

3

fr——

\
Operations take constant time in a vector model of
computation for vectors of size w(log log n) [Bellloch “90]
Example, using AVX-512 instructions.
J

Insert x, where f(x)=0.

\ \
\ \
\ \
\ \
\ \
\ \
\
\
\
\
\

A
0001011
1

Space efficiency is
maximized when b=s/In2.

L fs | fs
% Implemented using
Irr;ﬂer;%%e; PSHUFB or
using VCMPB




Vector quotient filter (VQF) performance

Optimal VQF

Space (bits) |~ n log(1/e) + Q(n) | ~n log(1/e) +2.91n

CPU cost O(1) O(1)

Data locality |  O(1) probes 2 probes

OOOOOOOOOOOOOOOOO




Evaluation: insertion

——— Vector quotient filter (no sc)
—m——— Vector Quotient filter (insert sc)
—=—— Quotient filter

Cuckoo filter
——— Morton filter

w
o
|

t

Throughput (Millions/sec)

Load factor
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Evaluation: lookups

Throughput (Million/sec)

35

30

10+

—*—— Vector quotient filter (no sc)
—&—— \ector Quotient filter (insert sc)
—=%—— Quotient filter

Cuckoo filter

—»—— Morton filter
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Evaluation: concurrency

60

Throughput (Million/sec)

10—

Num Threads
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