
A General-Purpose Counting Filter: Making Every Bit
Count

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro
Stony Brook University
Stony Brook, NY, USA

{ppandey, bender, rob, rob.patro}@cs.stonybrook.edu

ABSTRACT
Approximate Membership Query (AMQ) data structures, such as
the Bloom filter, quotient filter, and cuckoo filter, have found nu-
merous applications in databases, storage systems, networks, com-
putational biology, and other domains. However, many applica-
tions must work around limitations in the capabilities or perfor-
mance of current AMQs, making these applications more complex
and less performant. For example, many current AMQs cannot
delete or count the number of occurrences of each input item, take
up large amounts of space, are slow, cannot be resized or merged,
or have poor locality of reference and hence perform poorly when
stored on SSD or disk.

This paper proposes a new general-purpose AMQ, the counting
quotient filter (CQF). The CQF supports approximate membership
testing and counting the occurrences of items in a data set. This
general-purpose AMQ is small and fast, has good locality of refer-
ence, scales out of RAM to SSD, and supports deletions, counting
(even on skewed data sets), resizing, merging, and highly concur-
rent access. The paper reports on the structure’s performance on
both manufactured and application-generated data sets.

In our experiments, the CQF performs in-memory inserts and
queries up to an order-of-magnitude faster than the original quo-
tient filter, several times faster than a Bloom filter, and similarly to
the cuckoo filter, even though none of these other data structures
support counting. On SSD, the CQF outperforms all structures by
a factor of at least 2 because the CQF has good data locality.

The CQF achieves these performance gains by restructuring the
metadata bits of the quotient filter to obtain fast lookups at high load
factors (i.e., even when the data structure is almost full). As a result,
the CQF offers good lookup performance even up to a load factor
of 95%. Counting is essentially free in the CQF in the sense that
the structure is comparable or more space efficient even than non-
counting data structures (e.g., Bloom, quotient, and cuckoo filters).

The paper also shows how to speed up CQF operations by using
new x86 bit-manipulation instructions introduced in Intel’s Haswell
line of processors. The restructured metadata transforms many
quotient filter metadata operations into rank-and-select bit-vector
operations. Thus, our efficient implementations of rank and select
may be useful for other rank-and-select-based data structures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, Illinois, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035963

1. INTRODUCTION
Approximate Membership Query (AMQ) data structures main-

tain a probabilistic representation of a set or multiset, saving space
by allowing queries occasionally to return a false-positive. Exam-
ples of AMQ data structures include Bloom filters [7], quotient fil-
ters [5], cuckoo filters [17], and frequency-estimation data struc-
tures [12]. AMQs have become one of the primary go-to data struc-
tures in systems builders’ toolboxes [9].

AMQs are often the computational workhorse in applications,
but today’s AMQs are held back by the limited number of opera-
tions they support, as well as by their performance. Many systems
based on AMQs (usually Bloom filters) use designs that are slower,
less space efficient, and significantly more complicated than neces-
sary in order to work around the limited functionality provided by
today’s AMQ data structures.

For example, many Bloom-filter-based applications work around
the Bloom filter’s inability to delete items by organizing their pro-
cesses into epochs; then they throw away all Bloom filters at the
end of each epoch. Storage systems, especially log-structured
merge (LSM) tree [25] based systems [4,32] and deduplication sys-
tems [14, 15, 34], use AMQs to avoid expensive queries for items
that are not present. These storage systems are generally forced
to keep the AMQ in RAM (instead of on SSD) to get reasonable
performance, which limit their scalability. Many tools that process
DNA sequences use Bloom filters to detect erroneous data (erro-
neous subsequences in the data set) but work around the Bloom fil-
ter’s inability to count by using a conventional hash table to count
the number of occurrences of each subsequence [24, 29]. More-
over, these tools use a cardinality-estimation algorithm to approx-
imate the number of distinct subsequences a priori to workaround
the Bloom filter’s inability to dynamically resize [20].

As these examples show, four important shortcomings of Bloom
filters (indeed, most production AMQs) are (1) the inability to
delete items, (2) poor scaling out of RAM, (3) the inability to re-
size dynamically, and (4) the inability to count the number of times
each input item occurs, let alone support skewed input distribu-
tions (which are so common in DNA sequencing and other appli-
cations [24, 33]).

Many Bloom filter variants in the literature [30] try to overcome
the drawbacks of the traditional Bloom filter. The counting Bloom
filter [18] can count and delete items, but does not support skewed
distributions and uses much more space than a regular Bloom fil-
ter (see Section 4). The spectral Bloom filter [11] solves the space
problems of the counting Bloom filter, but at a high computational
cost. The buffered Bloom filter [10] and forest-structured Bloom
filter [23] use in-RAM buffering to scale out on flash, but still re-
quire several random reads for each query. The scalable Bloom
filter [3] solves the problem of resizing the data structure by main-
taining a series of Bloom filters, but queries become slower because
each Bloom filter must be tested for the presence of the item. See

775

http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#reusable

Section 2 for a thorough discussion of Bloom filter variants and
other AMQs.

Counting, in particular, has also become important to AMQ
structures, primarily as a tool for supporting deletion. The counting
Bloom filter [18] was originally introduced to add support for dele-
tion to the Bloom filter, albeit at a high space cost. More recently,
the cuckoo [17] and quotient filters [5] support deletion by allow-
ing each item to be duplicated a small number of times. However,
many real data sets have a Zipfian distribution [13] and therefore
contain many duplicates, so even these data structures can have
poor performance or fail entirely on real data sets.

Full-featured high-performance AMQs. More generally, as
AMQs have become more widely used, applications have placed
more performance and feature demands on them. Applications
would benefit from a general purpose AMQ that is small and fast,
has good locality of reference (so it can scale out of RAM to SSD),
and supports deletions, counting (even on skewed data sets), resiz-
ing, merging, and highly concurrent access. This paper proposes a
new AMQ data structure that that has all these benefits. The paper
reports on the structure’s performance on both manufactured and
application-generated data sets.

Results
This paper formalizes the notion of a counting filter, an AMQ data
structure that counts the number of occurrences of each input item,
and describes the counting quotient filter (CQF), a space-efficient,
scalable, and fast counting filter that offers good performance on
arbitrary input distributions, including highly skewed distributions.

We compare the CQF to the fastest and most popular count-
ing data structure, the counting Bloom filter (CBF) [17], and to
three (noncounting) approximate membership data structures, the
Bloom [7], quotient [5], and cuckoo [17] filters. We perform com-
parisons in RAM and on disk, and using data sets generated uni-
formly at random and according to a Zipfian distribution. Our eval-
uation results are summarized in Table 1.

The CQF does counting for “free.” In other words, the CQF
is almost always faster and smaller than other AMQs, even though
most AMQs can only indicate whether an item is present, not the
number of times the item has been seen. In particular, the CQF is al-
ways smaller than the cuckoo filter, the quotient filter, and a count-
min-sketch configured to match the CQF’s error rate. The CQF is
smaller than the Bloom filter, counting Bloom filter, and spectral
Bloom filter for most practical configurations. The CQF is faster
than every other AMQ and counting data structure we evaluated,
except the cuckoo filter, which has comparable RAM performance.

The CQF handles skewed inputs efficiently. The CQF is actu-
ally smaller and faster on skewed inputs than on uniformly random
inputs. On Zipfian inputs, the CQF is about an order-of-magnitude
faster than the counting Bloom filter. We have also benchmarked
the CQF on real-world data sets, and gotten similar performance.

The CQF scales well out of RAM. When stored on SSD, each
insert or query in a CQF requires O(1) I/Os, so that operations on
an SSD-resident CQF are up to an order of magnitude faster than
with other data structures.

The CQF supports deletes, merges, and resizing. These fea-
tures make it easier to design applications around the CQF than
other counting data structures and AMQs.

Contributions
The CQF uses three techniques to deliver good performance with
small space:

• The CQF embeds variable-sized counters into the quotient filter
in a cache-efficient way. Our embedding ensures that the CQF
never takes more space than the quotient filter. Resizability and

variable-sized counters enable the CQF to use substantially less
space for Zipfian and other skewed input distributions.

• The CQF restructures the quotient filter’s metadata scheme to
speed up lookups when the data structure is nearly full. This
enables the CQF to save space by supporting higher load factors
than the QF. The original quotient filter performs poorly above
75% occupancy, but the CQF provides good lookup performance
up to 95% occupancy. The metadata scheme also saves space by
reducing the number of metadata bits per item.

• The CQF can take advantage of new x86 bit-manipulation in-
structions introduced in Intel’s Haswell line of processors to
speed up quotient-filter-metadata operations. Our metadata
scheme transforms many quotient-filter-metadata operations into
rank-and-select bit-vector operations. Thus, our efficient imple-
mentations of rank and select may be useful for other rank-and-
select-based data structures. Other counting filters, such as the
counting Bloom filter and cuckoo filter, do not have metadata
and hence cannot benefit from these optimizations.

2. AMQ AND COUNTING STRUCTURES

2.1 AMQ data structures
Approximate Membership Query (AMQ) data structures provide

a compact, lossy representation of a set or multiset. AMQs support
INSERT(x) and QUERY(x) operations, and may support other op-
erations, such as delete. Each AMQ is configured with an allowed
false-positive rate, δ. A query for x is guaranteed to return true if
x has ever been inserted, but the AMQ may also return true with
probability δ even if x has never been inserted. Allowing false-
positives enables the AMQ to save space.

For example, the classic AMQ, the Bloom filter [7], uses about
− log2 δ

ln 2
≈ −1.44 log2 δ bits per element. For common values of

δ, e.g., in the range of 1/50 to 1/1000, the Bloom filter uses about
one to two bytes per element.

The Bloom filter is common in database, storage, and network
applications. It is typically used to avoid expensive searches on
disk or queries to remote hosts for nonexistent items [9].

The Bloom filter maintains a bit vector A of length m. Every
time an item x is inserted, the Bloom filter sets A[hi(x)] = 1 for
i = 1, . . . , k, where k is a configurable parameter, and h1, . . . , hk
are hash functions. A query for x checks whether A[hi(x)] = 1
for all i = 1, . . . , k. Assuming the Bloom filter holds at most n
distinct items, the optimal choice for k is m

n
ln 2, which yields a

false-positive rate of 2−
m
n

ln 2. A Bloom filter cannot be resized—
it is constructed for a specific false-positive rate δ and set size n.

The Bloom filter has inspired numerous variants [3, 8, 10, 14, 18,
23,27,28]. The counting Bloom filter (CBF) [18] replaces each bit
in the Bloom filter with a c-bit saturating counter. This enables the
CBF to support deletes, but increases the space by a factor of c. The
scalable Bloom filter [3] uses multiple Bloom filters to maintain the
target false-positive rate δ even when n is unknown.

The quotient filter [5] does not follow the general Bloom-filter
design. It supports insertion, deletion, lookups, resizing, and merg-
ing. The quotient filter hashes items to a p-bit fingerprint and uses
the upper bits of the fingerprint to select a slot in a table, where it
stores the lower bits of the fingerprint. It resolves collisions using a
variant of linear probing that maintains three metadata bits per slot.
During an insertion, elements are shifted around, similar to inser-
tion sort with gaps [6], so that elements are always stored in order
of increasing hash value.

The quotient filter uses slightly more space than a Bloom fil-
ter, but much less than a counting Bloom filter, and delivers speed
comparable to a Bloom filter. The quotient filter is also much more

776

Data Structure QF RSQF CQF CF BF
Uniform random inserts per sec 11.12 12.06 11.19 14.25 2.84
Uniform successful lookups per sec 3.39 17.13 11.16 18.87 2.55
Uniform random lookups per sec 5.71 25.09 25.93 18.84 11.56
Bits per element 12.631 11.71 11.71 12.631 12.984

(a) In-memory uniform-random performance (in millions of operations per second).

Data Structure CQF CBF
Zipfian random inserts per sec 13.43 0.27
Zipfian successful lookups per sec 19.77 2.15
Uniform random lookups per sec 43.68 1.93
Bits per element 11.71 337.584

(b) In-memory Zipfian performance (in millions
of operations per second).

Data Structure RSQF CQF CF
Uniform random inserts per sec 69.05 68.30 42.20
Uniform successful lookups per sec 35.42 34.49 12.26
Uniform random lookups per sec 31.32 29.87 11.09
Bits per element 11.71 11.71 12.631

(c) On-SSD uniform-random performance (in thousands of opera-
tions per second).

Table 1: Summary of evaluation results. All the data structures are configured for 1/512 false-positive rate. We compare the quotient filter
(QF) [5], rank-and-select quotient filter (RSQF), counting quotient filter (CQF), cuckoo filter (CF) [17], Bloom filter (BF) [26], and counting
Bloom filter (CBF) [31].

cache-friendly than the Bloom filter, and so offers much better per-
formance when stored on SSD. One downside of the quotient filter
is that the linear probing becomes expensive as the data structure
becomes full—performance drops sharply after 60% occupancy.
Geil has accelerated the QF by porting it to GPUs [19].

The cuckoo filter [17] is built on the idea of cuckoo hashing.
Similar to a quotient filter, the cuckoo filter hashes each item to a
p-bit fingerprint, which is divided into two parts, a slot index i and
a value f to be stored in the slot. If slot i (called the primary slot)
is full then the cuckoo filter attempts to store f in slot i ⊕ h(f)
(the secondary slot), where h is a hash function. If both slots are
full, then the cuckoo filter kicks another item out of one of the
two slots, moving it to its alternate location. This may cause a
cascading sequence of kicks until the data structure converges on
a new stable state. The cuckoo filter supports fast lookups, since
only two locations must be examined. Inserts become slower as the
structure becomes fuller, and in fact inserts may fail if the number
of kicks during a single insert exceeds a specified threshold (500
in the author’s reference implementation). Lookups in the cuckoo
filter are less cache-friendly than in the quotient filter, since two
random locations may need to be inspected. Inserts in the cuckoo
filter can have very poor cache performance as the number of kicks
grows, since each kick is essentially a random memory access.

2.2 Counting data structures
Counting data structures fall into two classes: counting filters

and frequency estimators.
They support INSERT, QUERY, and DELETE operations, except

a query for an item x returns the number of times that x has been
inserted. A counting filter may have an error rate δ. Queries return
true counts with probability at least 1−δ. Whenever a query returns
an incorrect count, it must always be greater than the true count.

The counting Bloom filter is an early example of a counting
filter. The counting Bloom filter was originally described as us-
ing fixed-sized counters, which means that counters could saturate.
This could cause the counting Bloom filter to undercount. Once
a counter saturated, it could never be decremented by any future
delete, and so after many deletes, a counting Bloom filter may no
longer meet its error limit of δ. Both these issues can be fixed by
rebuilding the entire data structure with larger counters whenever
one of the counters saturates.

The d-left Bloom filter [8] offers the same functionality as a
counting Bloom filter and uses less space, generally saving a factor
of two or more. It uses d-left hashing and gives better data local-
ity. However, it is not resizable and the false-positive rate depends
upon the block size used in building the data structure.

The spectral Bloom filter [11] is another variant of the count-
ing Bloom filter that is designed to support skewed input distribu-
tions space-efficiently. The spectral Bloom filter saves space by
using variable-sized counters. It offers significant space savings,
compared to a plain counting Bloom filter, for skewed input dis-
tributions. However, like other Bloom filter variants, the spectral
Bloom filter has poor cache-locality and cannot be resized.

The quotient filter also has limited support for counting, since
supports inserting the same fingerprint multiple times. However,
inserting the same item more than a handful of times can cause
linear probing to become a bottleneck, degrading performance.

The cuckoo filter can also support a small number of duplicates
of some items. In the authors’ reference implementation, each slot
can actually hold 4 values, so the system can support up to 8 du-
plicates, although its not clear how this will impact the probability
of failure during inserts of other items. One could add counting to
the cuckoo filter by associating a counter with each fingerprint, but
this would increase the space usage.

Frequency-estimation data structures offer weaker guarantees
on the accuracy of counts, but can use substantially less space.
Frequency-estimation data structures have two parameters that con-
trol the error in their counts: an accuracy parameter ε and a confi-
dence parameter δ. The count returned by a frequency-estimation
data structure is always greater than the true count. After M in-
sertions, the probability that a query returns a count that is more
than εM larger than the true count is at most δ. For infrequently
occurring items, the error term εM may dominate the actual num-
ber of times the item has occurred, so frequency-estimation data
structures are most useful for finding the most frequent items.

The count-min sketch (CMS) [12] data structure is the most
widely known frequency estimator. It maintains a d × w array A
of uniform-sized counters, where d = − ln δ and w = e/ε. To
insert an item x, the CMS increments A[i, hi(x)] for i = 1, . . . , d.
For a query, it returns miniA[i, hi(x)]. Deletions can be supported
by decrementing the counters. As with a counting Bloom filter, the
CMS can support arbitrarily large counts by rebuilding the structure
whenever one of the counters saturates.

Note that we can use a CMS to build a counting filter by setting
ε = 1/n, where n is an upper bound on the number of insertions to
be performed on the sketch. However, as we will see in Section 4.1,
this will be less space efficient than the counting quotient filter.

3. A RANK-AND-SELECT-BASED QUO-
TIENT FILTER

In this section we explain how to improve upon a quotient filter’s

777

metadata representation and algorithms. We explain how to embed
variable-sized counters into a quotient filter in Section 4.

The rank-and-select-based quotient filter (RSQF) improves the
quotient filter’s metadata scheme in three ways:

• It uses 2.125 metadata bits per slot, compared to the 3 metadata
bits per slot used by the quotient filter.
• It supports faster lookups at higher load factors than the quotient

filter. The quotient filter authors recommend filling the quotient
filter to only 75% capacity due to poor performance above that
limit. The RSQF performs well up to 95% capacity.
• The RSQF’s metadata structure transforms most quotient filter

metadata operations into bit vector rank and select operations.
We show how to optimize these operations using new x86 bit-
manipulation instructions.

The space savings from these optimizations make the RSQF
more space efficient than the Bloom filter for false-positive rates
less than 1/64 and more space efficient than the cuckoo filter for
all false-positive rates. In contrast, the original quotient filter is less
space efficient than the cuckoo filter for all false-positive rates and
the Bloom filter for false-positive rates larger than to 2−36.

The performance optimizations make the RSQF several times
faster than a Bloom filter and competitive with the cuckoo filter.
The original quotient filter was comparable to a Bloom filter in
speed and slower than the cuckoo filter.

3.1 Rank-and-select-based metadata scheme
We first describe a simple rank-and-select-based quotient filter

that requires only 2 bits of metadata per slot, but is not cache
friendly and has O(n) lookups and inserts. We then describe how
to solve these problems by organizing the metadata into blocks of
64 slots and adding an extra 8 bits of metadata to each block (in-
creasing the overall metadata to 2.125 bits per slot).

The rank-and-select-based quotient filter (RSQF) implements an
approximate-membership-query data structure by storing a com-
pact lossless representation of the multiset h(S), where h : U →
{0, . . . , 2p−1} is a hash function and S is a multiset of items drawn
from a universe U . As in the original quotient filter, the RSQF sets
p = log2

n
δ

to get a false-positive rate δ while handling up to n in-
sertions (see the original quotient filter paper for the analysis [5]).

The rank-and-select-based quotient filter divides h(x) into its
first q bits, which we call the quotient h0(x), and its remaining
r bits, which we call the remainder h1(x). The rank-and-select-
based quotient filter maintains an array Q of 2q r-bit slots, each
of which can hold a single remainder. When an element x is in-
serted, the quotient filter attempts to store the remainder h1(x) in
the home slot Q[h0(x)]. If that slot is already in use, then the rank-
and-select-based quotient filter uses a variant of linear probing, de-
scribed below, to find an unused slot and stores h1(x) there.

Throughout this paper, we say that slot i in a quotient filter
is occupied if the quotient filter contains an element x such that
h0(x) = i. We say that a slot is in use if there is a remainder stored
in the slot. Otherwise the slot is unused. Because of the quotient
filter’s linear-probing scheme, a slot may be in use even if it is not
occupied. However, since the quotient filter always tries to put re-
mainders in their home slots (which are necessarily occupied) and
only shifts a reminder when it is pushed out by another remainder,
occupied slots are always in use.

The RSQF also maintains two metadata bit vectors that enable
the quotient filter to determine which slots are currently in use and
to determine the home slot of every remainder stored in the filter.
Together, these two properties enable the RSQF to enumerate all
the hash values that have been inserted into the filter.

The quotient filter makes this possible by maintaining a small
amount of metadata and a few invariants:

occupieds 0

h1(b)

runends

2q

h1(a) h1(c)h1(d) h1(f)

0
0
00

1 0
0

1
1

0
1

0
0

1
1

h1(e)remainders

0 41 2 3 5 6 7

Figure 1: A simple rank-and-select-based quotient filter. The colors
are used to group slots that belong to the same run, along with the
runends bit that marks the end of that run and the occupieds bit that
indicates the home slot for remainders in that run.

i j

occupieds

runends

Oi

1

1

1

1

d = RANK(occupieds[i+ 1, . . . , j], j − i− 1)

t = SELECT(runends[i+Oi + 1, . . . , 2q − 1], d)

Oj = i+Oi + t− j

1

2

3

Figure 2: Procedure for computing offset Oj given Oi.

• The quotient filter maintains an occupieds bit vector of length
2q . The RSQF Q sets Q.occupieds[b] to 1 if and only if there is
an element x ∈ S such that h0(x) = b.
• For all x, y ∈ S, if h0(x) < h0(y), then h1(x) is stored in an

earlier slot than h1(y).
• If h1(x) is stored in slot s, then h0(x) ≤ s and there are no

unused slots between slot h0(x) and slot s, inclusive.

These invariants imply that remainders of elements with the same
quotient are stored in consecutive slots. We call such a sequence of
slots a run. After each insert, the quotient filter shifts elements as
necessary to maintain the invariants.

We now describe the second piece of metadata in a rank-and-
select-based quotient filter.

• The quotient filter maintains a runends bit vector of length 2q .
The RSQFQ setsQ.runends[b] to 1 if and only if slot b contains
the last remainder in a run.

As shown in the Figure 1, the bits set in the occupieds vector and
the runends vector are in a one-to-one correspondence. There is one
run for each slot b such that there exists an x such that h0(x) = b,
and each such run has an end. Runs are stored in the order of the
home slots to which they correspond.

This correspondence enables us to reduce many quotient-filter-
metadata operations to bit vector rank and select operations. Given
a bit vector B, RANK(B, i) returns the number of 1s in B up to
position i, i.e., RANK(B, i) =

∑i
j=0B[j]. Select is essentially the

inverse of rank. SELECT(B, i) returns the index of the ith 1 in B.
These operations enable us to find the run corresponding to any

quotient h0(x); see Algorithm 1. If Q.occupieds[h0(x)] = 0, then
no such run exists. Otherwise, we first use RANK to count the num-
ber t of slots b ≤ h0(x) that have their occupieds bit set. This is
the number of runs corresponding to slots up to and including slot
h0(x). We then use SELECT to find the position of the tth runend
bit, which tells us where the run of remainders with quotient h0(x)
ends. We walk backwards through the remainders in that run. Since
elements are always shifted to the right, we can stop walking back-
wards if we ever pass slot h0(x) or if we reach another slot that is
marked as the end of a run.

778

Algorithm 1 Algorithm for determining whether x may have been
inserted into a simple rank-and-select-based quotient filter.
1: function MAY_CONTAIN(Q, x)
2: b← h0(x)
3: if Q.occupieds[b] = 0 then
4: return 0
5: t← RANK(Q.occupieds, b)
6: `← SELECT(Q.runends, t)
7: v ← h1(x)
8: repeat
9: if Q.remainders[`] = v then

10: return 1
11: `← `− 1
12: until ` < b or Q.runends[`] = 1
13: return false

Algorithm 2 shows the procedure for inserting an item x. The
algorithm uses rank and select to find the end of the run corre-
sponding to quotient h0(x). If slot h0(x) is not in use, then the
result of the rank-and-select operation is an index less than h0(x),
in which case the algorithm stores h1(x) in slot h0(x). Otherwise
the algorithm shifts remainders (and runends bits) to the right to
make room for the new item, inserts it, and updates the metadata.

As with the original quotient filter, the false-positive rate of the
RSQF is at most 2−r . The RSQF also supports enumerating all the
hashes currently in the filter, and hence can be resized by building
a new table with 2q

′
slots, each with a remainder of size p−q′ bits,

and then inserting all the hashes from the old filter into the new one.
RSQFs can be merged in a similar way.

This simple quotient filter design demonstrates the architecture
of the RSQF and requires only two metadata bits per slot, but has
two problems. First, rank and select on bit vectors of size n requires
O(n) time in the worst case. We would like to perform lookups
without having to scan the entire data structure. Second, this design
is not cache friendly. Each lookup requires accessing the occupieds
bit vector, the runends bit vector, and the array of remainders. We
prefer to reorganize the data so that most operations access only a
small number of nearby memory locations.

Offsets. To compute the position of a runend without scanning
the entire occupieds and runends bit vectors, the RSQF maintains
an offsets array. The offset Oi of slot i is

Oi = SELECT(Q.runends, RANK(Q.occupieds, i))− i
or 0 if this value is negative, which occurs whenever slot i is un-
used. Intuitively,Oi is the distance from slot i to the slot containing
the runend corresponding to slot i. Thus, if we know Oi, we can
immediately jump to the location of the run corresponding to slot
i, and from there we can perform a search, insert, delete, etc.

To save space, the RSQF stores Oi for only every 64th slot, and
computes Oj for other slots using the algorithm from Figure 2. To
compute Oj from Oi, the RSQF uses RANK to count the number d
of occupied slots between slots i and j, and then uses SELECT to
find the dth runend after the end of the run corresponding to slot i.

Maintaining the array of offsets is inexpensive. Whenever the
RSQF shifts elements left or right (as part of a delete or insert), it
updates the stored Oi values. Only Oi values in the range of slots
that were involved in the shift need to be updated.

ComputingOj from the nearest storedOi is efficient because the
algorithm needs to examine only the occupieds bit vector between
indices i and j and the runends bit vector between indices i + Oi
and j + Oj . Since the new quotient filter stores Oi for every 64th
slot, the algorithm never needs to look at more than 64 bits of the
occupieds bit vector. And only needs to look at O(q) bits in the
runends bit vector based on the following theorem.

Algorithm 2 Algorithm for inserting x into a rank and select quo-
tient filter.
1: function FIND_FIRST_UNUSED_SLOT(Q, x)
2: r ← RANK(Q.occupieds, x)
3: s← SELECT(Q.runends, r)
4: while x ≤ s do
5: x← s+ 1
6: r ← RANK(Q.occupieds, x)
7: s← SELECT(Q.runends, s)
8: return x

9: function INSERT(Q, x)
10: r ← RANK(Q.occupieds, h0(x))
11: s← SELECT(Q.runends, r)
12: if h0(x) > s then
13: Q.remainders[h0(x)]← h1(x)
14: Q.runends[h0(x)]← 1
15: else
16: s← s+ 1
17: n← FIND_FIRST_UNUSED_SLOT(Q, s)
18: while n > s do
19: Q.remainders[n]← Q.remainders[n− 1]
20: Q.runends[n]← Q.runends[n− 1]
21: n← n− 1
22: Q.remainders[s]← h1(x)
23: if Q.occupieds[h0(x)] = 1 then
24: Q.runends[s− 1]← 0

25: Q.runends[s]← 1

26: Q.occupieds[h0(x)]← 1
27: return

8 64 64 64r

runendsoccupiedsoffset remainders

Figure 3: Layout of a rank-and-select-based-quotient-filter block.
The size of each field is specified in bits.

THEOREM 1. The length of the longest contiguous sequence of
in-use slots in a quotient filter with 2q slots and load factor α is
O(ln 2q

α−lnα−1
) with high probability.

The theorem (from the original QF paper [5]) bounds the worst
case. On average, the RSQF only needs to examine j − i < 64
bits of the runends bit vector because the average number of items
associated with a slot is less than 1.

This theorem also shows that the offsets are never more than
O(q), so we can store entries in the offsets array using small inte-
gers. Our prototype implementation stores offsets as 8-bit unsigned
ints. Since it stores one offset for every 64 slots, this increases the
metadata overhead to a total of 2.125 bits per slot.

Blocking the RSQF. To make the RSQF cache efficient, we
break the occupieds, runends, offsets, and remainders vectors into
blocks of 64 entries, which we store together, as shown in Fig-
ure 3. We use blocks of 64 entries so these rank and select oper-
ations can be transformed into efficient machine-word operations
as described in the Section 3.2. Each block holds one offset, 64
consecutive bits from each bit vector and the corresponding 64 re-
mainders. An operation on slot i loads the corresponding block,
consults the offset field, performs a rank computation on the oc-
cupieds bits in the block, and then performs a select operation on
the runends bits in the block. If the offset is large enough, the se-
lect operation may extend into subsequent blocks, but in all cases
the accesses are sequential. The remainders corresponding to slot

779

i can then be found by tracing backwards from where the select
computation completed.

For a false-positive rate of 2−r , each block will have size of
64(r + 2) + 8 bits. Thus a block is much smaller than a disk
block for typical values of r, so quotient filter operations on an
SSD require accessing only a small number of consecutive blocks,
and usually just one block.

3.2 Fast x86 rank and select
The blocked RSQF needs to perform a RANK operation on a 64-

bit portion of the occupieds bitvector and a SELECT operation on
a small piece of the runends vector. We now describe how to im-
plement these operations efficiently on 64-bit vectors using the x86
instruction set.

To implement SELECT, we use the PDEP and TZCNT instructions
added to the x86 instruction set with the Haswell line of processors.
PDEP deposits bits from one operand in locations specified by the
bits of the other operand. If x = PDEP(v,m), then the ith bit of x
is given by

xi =

{
vj if mi is the jth 1 in m,
0 otherwise.

TZCNT returns the number of trailing zeros in its argument. Thus,
we can implement select on 64-bit vectors as

SELECT(v, i) = TZCNT(PDEP(2i, v))

POPCOUNT returns the number of bits set in its argument. We
implement RANK(v, i) on 64-bit vectors using the widely-known
mask-and-popcount method [21]:

RANK(v, i) = POPCOUNT(v & (2i − 1))

We evaluate the performance impact of these optimizations in
Section 6.

3.3 Lookup performance
We now explain why the RSQF offers better lookup performance

than the original QF at high load factors.
Lookups in any quotient filter involve two steps: finding the start

of the target run, and scanning through the run to look for the
queried value. In both the original QF and the RSQF, runs have
size O(1) on average and O(logn/ log logn) with high probabil-
ity, and the RSQF does nothing to accelerate the process of scan-
ning through the run.

The RSQF does accelerate the process of finding the start of the
run. The original QF finds the target run by walking through the
slots in the target cluster, one-by-one. Both the average and worst-
case cluster sizes grow as the load factor increases, so processing
each slot’s metadata bits one at a time can become expensive. The
RSQF, however, processes these metadata bits 64 at a time by using
our efficient rank-and-select operations.

At high load factors, this can yield tremendous speedups, since
it converts 64 bit-operations into single word-operations. At low
load factors, the speedup is not so great, since the QF and RSQF
are both doing essentially O(1) operations, albeit the QF is doing
bit operations and the RSQF is doing word operations.

Section 6 presents experimental results showing the performance
impact of this redesign.

3.4 Space analysis
Table 2 gives the space used by several AMQs. Our rank-and-

select-based quotient filter uses fewer metadata bits than the orig-
inal quotient filter, and is faster for higher load factors (see Sec-
tion 6). The RSQF is more space efficient than the original quotient
filter, the cuckoo filter, and, for false-positive rates less than 1/64,

Filter Bits per element

Bloom filter log2 1/δ

ln 2

Cuckoo filter 3+log2 1/δ

α

Original QF 3+log2 1/δ

α

RSQF 2.125+log2 1/δ

α

Table 2: Space usage of several AMQs. Here, δ is the false-positive
rate and α is the load factor. The original quotient filter was less
space efficient than the cuckoo filter because it only supports α up
to 0.75, whereas the cuckoo filter supports α up to 0.95. The RSQF
is more efficient than the cuckoo filter because it has less overhead
and supports load factors up to 0.95.

5 10 15 20 25

0

5

10

15

20

Number of bits per element
−
l o
g 2

(F
a
ls
eP
os
it
v
eR
a
te

)

RSQF
QF
BF
CF

Figure 4: Number of bits per element for the RSQF, QF, BF, and
CF. The RSQF requires less space than the CF amd less space than
the BF for any false-positive rate less than 1/64. (Higher is better)

the Bloom filter. Even for large false-positive rates, the RSQF never
uses more than 1.55 more bits per element than a Bloom filter.

Figure 4 shows the false-positive rate of these data structures as a
function of the space usage, assuming that each data structure uses
the recommended load factor, i.e., 100% for the BF, 95% for the
RSQF and CF, and 75% for the QF. In order to fairly compare the
space requirements of data structures with different recommended
load factors, we normalize all the data structures’ space require-
ments to bits per element.

3.5 Enumeration, resizing, and merging
Since quotient filters represent a multi-set S by losslessly rep-

resenting the set h(S), it supports enumerating h(S). Everything
in this section applies to the original quotient filter, our rank-and-
select-based quotient filter, and, with minor modifications, to the
counting quotient filter.

The time to enumerate h(S) is proportional to 2q , the number of
slots in the QF. If the QF is a constant-fraction full, enumerating
h(S) requires O(n) time, where n is the total number of items in
the multi-set S. The enumeration algorithm performs a linear scan
of the slots in the QF, and hence is I/O efficient for a QF or RSQF
stored on disk or SSD.

The QF’s enumeration ability makes it possible to resize a filter,
similar to resizing any hash table. Given a QF with 2q slots and
r-bit remainders and containing n hashes, we can construct a new,
empty filter with 2q

′
≥ n slots and q + r − q′-bit remainders. We

then enumerate the hashes in the original QF and insert them into
the new QF. As with a hash table, the time required to resize the QF
is proportional to the size of the old filter plus the size of the new

780

filter. Hence, as with a standard hash table, doubling a QF every
time it becomes full will have O(1) overhead to each insert.

Enumerability also enables us to merge filters. Given two filters
representing h(S1) and h(S2), we can merge them by constructing
a new filter large enough to hold h(S1 ∪ S2) and then enumerating
the hashes in each input filter and inserting them into the new filter.
The total cost of performing the merge is proportional to the size
of the output filter, i.e., if the input filters have n1 and n2 elements,
the time to merge them is O(n1 + n2).

Merging is particularly efficient for two reasons. First, items can
be inserted into the output filter in order of increasing hash value,
so inserts will never have to shift any other items around. Second,
merging requires only linear scans of the input and output filters,
and hence is I/O-efficient when the filters are stored on disk.

4. COUNTING QUOTIENT FILTER
We now describe how to add counters to the RSQF to create

the CQF. Our counter-embedding scheme maintains the data local-
ity of the RSQF, supports variable-sized counters, and ensures that
the CQF takes no more space than an RSQF of the same multiset.
Thanks to the variable-size counters, the structure is space efficient
even for highly skewed distributions, where some elements are ob-
served frequently and others rarely.

Encoding counters. The RSQF counts elements in unary i.e.,
if a given remainder occurs k times in a run, then the RSQF just
stores k copies of this remainder.

The CQF saves space by repurposing some of the slots to store
counters instead of remainders. In the CQF, if a particular element
occurs more than once, then the slots immediately following that
element’s remainder hold an encoding of the number of times that
element occurs.

To make this scheme work, however, we need some way to de-
termine whether a slot holds a remainder or part of a counter. The
CQF distinguishes counters from remainders as follows. Within a
run, the CQF stores the remainders in increasing order. Any time
the value stored in a slot deviates from this strictly increasing pat-
tern, that slot must hold part of an encoded counter. Thus, a de-
viation from the strictly increasing pattern acts as an “escape se-
quence” indicating that the CQF is using the next few slots to store
an encoded counter rather than remainders.

Once the CQF decoder has recognized that a slot holds part of the
counter for some remainder x, it needs to determine how many slots
are used by that counter. We again use a form of escape sequence:
The counter for remainder x is encoded so that no slot holding part
of the counter will hold the value x. Thus, the end of the counter is
marked by another copy of x.

This scheme also requires that we encode a counter value C into
a sequence of slots so that the first slot following the first occur-
rence of x holds a value less than x. Thus, we simply encode C as
described below, and then prepend a 0 to its encoding if it would
otherwise violate this requirement.

There remains one wrinkle. For the remainder 0, it is not possible
to encode its counter so that the first slot holding the counter has a
value less than 0. Instead, we mark a counter for remainder 0 with
a special “terminator”—two slots containing consecutive 0s. If a
run contains two consecutive 0s, then everything between the first
slot and the two consecutive 0s is an encoding for the number of 0
remainders in the run. Otherwise, the number of 0 remainders is
recorded through repetition, as in the RSQF.

This last rule means that we cannot have two consecutive 0s any-
where else in the run, including in the encoding of any counters. To
ensure this, we never use 0 in the encoding for other counters.

Thus, the counter C for remainder x > 0 is encoded as a se-
quence of r-bit values, but we cannot use the values 0 or x in the

Count Encoding Rules
C = 1 x none
C = 2 x, x none

C > 2 x, c`−1, . . . , c0, x x > 0
c`−1 < x
∀i ci 6= x
∀i < `− 1 ci 6= 0

C = 3 0, 0, 0 x = 0
C > 3 0, c`−1, . . . , c0, 0, 0 x = 0

∀i ci 6= 0

Table 3: Encodings for C occurrences of remainder x in the CQF.

0 5 · 106 1 · 107 1.5 · 107

101

103

105

107

109

n = M = 16000000 δ = 2−9

Number of distinct items in the multiset (k)
Si

ze
of

th
e

da
ta

st
ru

ct
ur

e
in

bi
ts

CQF (worst case)
CQF (best case)

CBF (worst case)
CBF (best case)
SBF (worst case)
SBF (best case)

Figure 5: Space comparison of CQF, SBF, and CBF as a function of
the number of distinct items. All data structures are built to support
up to n = 1.6×107 insertions with a false-positive rate of δ = 2−9.

encoding for C. Since we know C ≥ 3 we achieve this by encod-
ing C − 3 as c`−1, . . . , c0 in base 2r − 2, where the symbols are
1, 2, . . . , x − 1, x + 1, . . . , 2r − 1, and prepend a 0 if c`−1 ≥ x.
Note that this requires r ≥ 2 in order to have the base of the en-
coding be greater than 1, but this is not a serious constraint, since
most applications require r > 2 in order to achieve their target false
positive rate, anyway.

The counter C for remainder x = 0 is encoded as using base
2r−1, since only 0 is disallowed in the counter encoding. Further-
more, since we know C ≥ 4, we encode C − 4.

Table 3 summarizes the counter encoding used by the CQF.
As an example, a run consisting of

5 copies of 0, 7 copies of 3, and 9 copies of 8

would be encoded as (0, 2, 0, 0 , 3, 0, 6, 3 , 8, 7, 8).

4.1 CQF Space Analysis
For data sets with no or few repeated items, the CQF uses es-

sentially the same space as a RSQF, but never more. When the in-
put distribution is skewed, then the CQF can use substantially less
space than a RSQF because the CQF encodes the duplicate items
much more efficiently.

The exact size of the CQF after M inserts depends on the dis-
tribution of the inserted items, but we can give an upper bound as
follows. In the following, n is the total number of items to be in-
serted, k is the total number of distinct items to be inserted, and M
is the number of item inserted so far.

When the data structure has r-bit slots, the encoding of an item
that occurs C times consumes at most three slots plus

⌈
log2 C

r−1

⌉
≤

781

log2 C

r−1
+ 1 slots for its counter. Thus, the total number of bits used

to encode a remainder and its count is at most 4r + r
r−1

log2 C ≤
4r + 2 log2 C, since r ≥ 2. After inserting k < n distinct items,
there are at least k occupied slots, so r is at most p− log2 k. Since
p = log2 n/δ, this means that r ≤ log2

n
δ
− log2 k = log2

n
kδ

.
The total size of all the counters is maximized when all the distinct
items occur an equal number of times, i.e., when C = M/k for
each item. Putting this together, we get the following space bound:

THEOREM 2. Let Q be a CQF with capacity n and false-
positive rate δ. Suppose we initially build Q with s = 1 slot and
resize to double s whenever the number of used slots exceeds 0.95s.
Then, after performing M inserts consisting of k distinct items, the
size of the CQF will be O(k log nM

δk2
) bits. The worst case occurs

when each item occurs an equal number of times.

To understand this bound, consider the extremal cases when k =
1 and k = M . When k = 1, the CQF contains M instances of a
single item. The space bound reduces toO(log nM

δ
) = O(log n

δ
+

logM) bits. This is exactly the size of a single hash value plus
the size of a counter holding the value M . At the other extreme,
when k = M , the space bound simplifies to O(M log n

δM
) =

O(M(log n
δ
− logM)), i.e., the CQF hasO(M) slots, each of size

log n
δ
− logM , which is exactly the space bound for the RSQF.

Figure 5 gives bounds, as a function of the number k of distinct
items, on the space usage of the counting quotient filter, counting
Bloom filter, and spectral Bloom filter, for n = M = 1.6 × 107

and δ = 2−9. As the graph shows, the worst-case space usage for
the CQF is better than the best-case space usage of the other data
structures for almost all values of k. Although it is difficult to see in
the graph, the spectral Bloom filter uses slightly less space than the
CQF when k is close to M . The counting Bloom filter’s space us-
age is worst, since it stores the most counters and all counters have
the same size—large enough to hold the count of the most frequent
element in the data set. This is also why the counting Bloom fil-
ter’s space usage improves slightly as the number of distinct items
increases, and hence the count of the most frequent item decreases.
The spectral Bloom filter (SBF) uses space proportional to a plain
Bloom filter plus optimally-sized counters for all the elements. As
a result, its space usage is largely determined by the Bloom filter
and hence is independent of the input distribution. The CQF space
usage is best when the input contains many repeated items, since
the CQF can be resized to be just large enough to hold those items.
Even in its worst case, its space usage is competitive with the best-
case space usage of the other counting filters.

Comparison to count-min sketch. Given a maximum false-
positive rate δ and an upper bound n on the number of items to
be inserted, we can build a CMS-based counting filter by setting
the CMS’s parameter ε = 1/n. After performing M ≤ n inserts,
consisting of k ≤M distinct items, at least one counter must have
value at least M/k. Since CMS uses uniform-sized counters, each
counter must be at least 1 + log M

k
bits. Thus the total space used

by the CMS must be at least Ω((1 + log M
k

)n ln 1
δ
) bits. One can

use the geometric-arithmetic mean inequality to show that this is
asymptotically never better than (and often worse than) the CQF
space usage for all values of δ, k, M , and n.

4.2 Configuring the CQF
When constructing a Bloom filter, the user needs to preset the

size of the array, and this size cannot change. In contrast, for a
CQF, the only parameter that needs to be preset is the number of
bits p output by the hash function h. The CQF can be dynamically
resized, and resizing has no affect on the false-positive rate.

As Section 3.1 explains, the user derives p from from the error
rate δ and the maximum possible number n of items; then the user
sets p = dlog2(n/δ)e.

One of the major advantages of the CQF is that its space usage is
robust to errors in estimating n. This is important because, in many
applications, the user knows δ but not n. Since underestimating n
can lead to a higher-than-acceptable false-positive rate, users often
use a conservatively high estimate.

The space cost of overestimating n is much lower in the CQF
than in the Bloom filter. In the Bloom filter, the space usage is linear
in n. Thus, if the user overestimates n by, say, a factor of 2, then the
Bloom filter will consume twice as much space as necessary. In the
CQF, on the other hand, overestimating n by a factor of 2 causes
the user to select a value of p, and hence the remainder size r,
that is merely one bit larger than necessary. Since r ≈ log2(1/δ),
the relative cost of one extra remainder bit in each slot is small.
For example, in typical applications requiring an approximately 1%
false-positive rate, r ≈ 7, so each slot contains at least 9 bits, and
hence overestimating n by a factor of 2 increases the space usage
of the CQF by at most 11%.

5. MULTI-THREADED QUOTIENT FIL-
TERS

To implement a thread-safe counting quotient filter, we divide
the CQF into regions of 4096 contiguous slots. The thread per-
forming the insert operation locks two consecutive regions, the re-
gion in which the item hashes and the next one, before modifying
the data structure. As explained in Section 3.1, existing remainders
are shifted during an insert operation in order to put the incoming
remainder in its home slot. Taking locks on two consecutive re-
gions in the CQF avoids the corruption of the data structure in-case
shifting overflows to the next region.

The above locking scheme scales well for data sets that are not
very skewed. However, when a data set has a lot of repetitions, the
above scheme can cause lock contention among insertion threads.

To avoid lock contention among insertion threads, each insertion
thread maintains a small local counting quotient filter. During an
insert operation, an insertion thread first tries to acquire a lock on
the region where the item hashes in the main CQF. If it gets the lock
in the first attempt, it inserts the item in the main CQF. Otherwise,
it inserts the item in its local CQF. Once the local CQF fills up, the
insertion thread dumps the local CQF into the main CQF. While
dumping the local CQF, the insertion thread spins if it does not get
the lock in the first attempt. This scheme amortizes the overhead of
acquiring a lock and reduces the contention among multiple inser-
tion threads.

The above locking scheme is appropriate when queries can tol-
erate slightly stale data, since some inserts may be delayed while
they sit in their thread’s local CQF. For example, the above scheme
works for applications that have an insert phase followed by a query
phase, which is common in computational biology and LSM-tree
uses of AMQs.

6. EVALUATION
In this section we evaluate our implementations of the count-

ing quotient filter (CQF) and the rank-and-select quotient filter
(RSQF). The counting quotient filter is our main AMQ data struc-
ture that supports counting and the rank-and-select quotient filter is
our other AMQ data structure, which strips out the counting ability
in favor of slightly faster query performance.

We compare the counting quotient filter and rank-and-select quo-
tient filter against four other AMQs: a state-of-the-art Bloom fil-
ter [26], Bender et al.’s quotient filter [5], Fan et al.’s cuckoo fil-
ter [16], and Vallentin’s counting Bloom filter [31].

We evaluate each data structure on the two fundamental opera-
tions, insertions and queries. We evaluate queries both for items
that are present and for items that are not present.

782

We address the following questions about how AMQs perform
in RAM and on SSD:

1. How do the rank-and-select quotient filter (RSQF) and counting
quotient filter (CQF) compare to the Bloom filter (BF), quotient
filter (QF), and cuckoo filter (CF) when the filters are in RAM?

2. How do the RSQF and CQF compare to the CF when the filters
reside on SSD?

We do a deep dive into how performance is affected by the data
distribution, metadata organization, and low-level optimizations:

1. How does the CQF compare to the counting Bloom filter (CBF)
for handling skewed data sets?

2. How does our rank-and-select-based metadata scheme help per-
formance? (I.e., how does the RSQF compare to the QF?) We are
especially interested in evaluating filters with occupancy higher
than 60%, when the QF performance starts to degrade.

3. How much do the new x86 bit-manipulation instructions (PDEP
and TZCNT) introduced in Intel’s Haswell architecture contribute
to performance improvements?

4. How does the CQF’s insert speed scale with multiple threads?

5. How efficient is the average merge throughput when merging
multiple counting quotient filters?

We also evaluate and address the following questions about the
counting quotient filter when used with data sets from real-world
applications:

1. How does the CQF performs when used with real-world data
sets? We use data sets from k-mer counting (a sub-task of
DNA sequencing) and the firehose benchmark, which simulates
a network-event monitoring task, as our real-world applications.

6.1 Experiment Setup
We evaluate the performance of the data structures in terms of

the load factor and capacity. The capacity of the data structure is
the number of items that can be inserted without causing the data
structure’s false-positive rate to become too high (which turns out
to be the number of elements that can be inserted when there are
no duplicates). We define the load factor to be the ratio of the
number of distinct items in the data structure to the capacity of the
data structure. For most experiments, we report the performance
on all operations as a function of the data structures’ load factor,
i.e., when the data structure’s load factor is 5%, 10%, 15%, etc.

In all our experiments, the data structures were configured to
have a false-positive rate of 1/512. Experiments with other false-
positive rates gave similar results.

All the experiments (except the multi-threaded experiments)
were run on an Intel Skylake CPU (Core(TM) i5-6500 CPU @
3.20GHz with 2 cores and 6MB L3 cache) with 8 GB of RAM and
a 480GB Intel SSDSC2BW480A4 Serial ATA III 540 MB/s 2.5”
SSD. Experiments were single-threaded, unless otherwise men-
tioned. The multi-threaded experiments were run on an Intel Sky-
lake CPU (Core(TM) i7-6700HQ CPU @ 2.60GHz with 4 cores
and 6MB L3 cache) with 32 GB RAM.

Microbenchmarks. The microbenchmarks measure perfor-
mance on raw inserts and lookups and are performed as follows.
We insert random elements into an empty data structure until its
load factor is sufficiently high (e.g., 95%). We record the time re-
quired to insert every 5% of the items. After inserting each 5% of
items, we measure the lookup performance for that load factor.

We perform experiments both for uniform and skewed data sets.
We generate 64-bit hash values to be inserted or queried in the data
structure.

We configured the BF and CBF to be as small as possible while
still supporting the target false-positive rate and number of inser-
tions to be performed in the experiment. The BF and CBF used the
optimal number of hash functions for their size and the number of
insertions to be performed.

In order to isolate the performance differences between the data
structures, we don’t count the time required to generate the random
inputs to the filters.

For the on-SSD experiments, the data structures were allocated
using mmap and the amount of in-memory cache was limited to
800MBs of RAM, leading to a RAM-size-to-filter-size ratio of
roughly 1:2. Paging was handled by the OS. The point of the exper-
iments was to evaluate the IO efficiency of the quotient filter and
cuckoo filter. We omit the Bloom filter from the on-SSD experi-
ments, because Bloom filters are known to have poor cache locality
and run particularly slowly on SSDs [5].

We evaluated the performance of the counting filters on two dif-
ferent input distributions, uniformly random and Zipfian. We use
a Zipfian distribution to evaluate the CQF’s performance on real-
istic data distributions and its ability to handle large numbers of
duplicate elements efficiently. We omit the Cuckoo filters from the
Zipfian experiment, because they are not designed to handle dupli-
cate elements.

We also evaluated the merge performance of the counting quo-
tient filter. We created K (i.e., 2, 4, and 8) counting quotient filters
and filled them to 95% load factor with uniformly random data. We
then merged these counting quotient filters into a single counting
quotient filter. While merging multiple counting quotient filters,
we add the number of occupied slots in each input counting quo-
tient filter and take the next closest power of 2 as the number of
slots to create in the output counting quotient filter.

Application benchmarks. We also benchmarked the insert per-
formance of the counting quotient filter with data sets from two
real-world applications: k-mer counting [29,33] and FireHose [22].

K-mer counting is often the first step in the analysis of DNA
sequencing data. This helps to identify and weed out erroneous
data. To remove errors, one counts the number of times each k-mer
(essentially a k-gram over the alphabet A, C, T, G) occurs [29, 33].
These counts are used to filter out errors (i.e., k-mers that occur
only once) and to detect repetitions in the input DNA sequence
(i.e., k-mers that occur very frequently). Many of today’s k-mer
counters typically use a Bloom filter to remove singletons and a
conventional, space-inefficient hash table to count non-singletons.

For our experiments, we counted 28-mers, a common value
used in actual DNA sequencing tasks. We used SRA accesion
SRR072006 [1] for our benchmarks. This data set has a total of
≈ 330M 28-mers in which there are ≈ 149M distinct 28-mers.
We measured the total time taken to complete the experiment.

Firehose [22] is a suite of benchmarks simulating a network-
event monitoring workload. A Firehose benchmark setup consists
of a generator that feeds packets via a local UDP connection to a
monitor, which is being benchmarked. The monitor must detect
“anomalous” events as accurately as possible while dropping as
few packets as possible. The anomaly detection task is as follows:
each packet has an ID and value, which is either “SUSPICIOUS”
or “OK”. When the monitor sees a particular ID for the 25th time, it
must determine whether that ID occurred with value SUSPICIOUS
more than 20 times, and mark it as anomalous if so. Otherwise, it
is marked as non-anomalous.

The Firehose suite includes two generators: the power-law gen-
erator generates items with a Zipfian distribution, the active-set
generator generates items with a uniformly random distribution.
The power-law generator picks keys from a static range of 100,000
keys, following a power-law distribution. The active-set genera-
tor selects keys from a continuously evolving active-set of 128,000

783

keys. The probability of selection of each key varies with time and
roughly follows a bell-shaped curve. Therefore, in a stream, a key
appears occasionally, then appears more frequently, and then dies
off. Firehose also includes a reference implementation of a mon-
itor. The reference implementation uses conventional hash tables
for counting the occurrences of observations.

In our experiments, we inserted data from the above application
data sets into the counting quotient filter to measure the raw inser-
tion throughput of the CQF. We performed the experiment by first
dumping the data sets to files. The benchmark then read the files
and inserted the elements into the CQF. We took 50M items from
each data set. The CQF was configured to the next closest power
of 2, i.e., to ≈ 64M slots.

To evaluate how the counting quotient filter scales with multi-
ple threads we performed multi-threaded insertion experiments for
all our synthetic and application data sets. However, instead of
measuring the instantaneous insertion throughput, we measured the
overall insertion throughput with increasing numbers of threads to
show how the CQF scales with multiple threads.

6.2 In-RAM Performance
Figure 6 shows the in-memory performance of the RSQF, CQF,

CF and BF when inserting ≈ 67 million items.
The RSQF and CQF outperform the Bloom filter on all oper-

ations and are roughly comparable to the cuckoo filter. Our QF
variants are slightly slower than the cuckoo filter for inserts and
lookups of existing items. They are faster than the CF for lookups
of non-existent items at low load factors and slightly slower at high
load factors. Overall, the CQF has lower throughput than the RSQF
because of the extra overhead of counter encodings.

6.3 On-SSD Performance
Figure 7 shows the insertion and lookup throughputs of the

RSQF, CQF, and CF when inserting 1 billion items. For all three
data structures, the size of the on-SSD data was roughly 2× the
size of RAM.

The quotient filters significantly outperform the cuckoo filter on
all operations because of their better cache locality. The cuckoo fil-
ter insert throughput drops significantly as the data structure starts
to fill up. This is because the cuckoo filter performs more kicks
as the data structure becomes full, and each kick requires a ran-
dom I/O. The cuckoo filter lookup throughput is roughly half the
throughput of the quotient filters because the quotient filters need
to look at only one location on disk, whereas the cuckoo filter needs
to check two locations.

6.4 Performance with skewed data sets
Figure 8 shows the performance of the counting quotient filter

and counting Bloom filter on a data set with a Zipfian distribution
with Zipfian coefficient 1.5 and universe size of 201 million ele-
ments. We don’t evaluate the cuckoo filter in this setting because it
fails after≈ 200 insertions. This is because the cuckoo filter cannot
handle more than 8 duplicates of any item, but Zipfian distributed
data contains many duplicates of the most common items.

The counting quotient filter is 6 to 10× faster than the counting
Bloom filter for all operations and, as shown in Table 1, uses 30
times less space.

As explained in Section 4, the counting quotient filter encodes
the counters in the slots instead of storing a separate copy for each
occurrence of an item. Figure 9c shows the percentage of slots in
use in the counting quotient filter during the experiment. Combined
with Figure 8, this shows that even when the counting quotient filter
is nearly full, i.e., most of its slots are in use, it still offers good
performance on skewed data.

Data set Num distinct items Max frequency
uniform-random 49927180 3

zipfian 10186999 2559775

K-mer 34732290 144203

Firehose (active-set) 17438241 24965994

Firehose (power-law) 85499 16663304

Table 4: Characteristics of data sets used for multi-threaded exper-
iments. The total number of items in all of the data sets is 50M.

Number of CQFs (K) Average merge throughput
2 12.398565

4 12.058525

8 11.359184

Table 5: CQF K-way merge performance. All the CQFs to be
merged are created with 16M slots and filled up to 95% load factor.
The insert throughput is in millions of items merged per second.

6.5 Applications
K-mer counting. Figure 9a shows the instantaneous insert

throughput of the counting quotient filter. The throughput is sim-
ilar to that in the Zipfian experiments, showing that the counting
quotient filter performs well with real-world data sets.

FireHose. We benchmarked the instantaneous insertion through-
put of the counting quotient filter for the data sets generated by the
Firehose generators. In Figure 9a we show the insertion perfor-
mance of the counting quotient filter for data from the active-set and
power-law generators. Due to huge repetitions in the data set from
the power-law generator, the insertion throughput is constantly very
high. For the active-set data set, the insertion throughput is similar
to our experiments with uniformly random data.

6.6 Concurrency
Figure 9b shows the average insert throughput of the counting

quotient filter with increasing numbers of threads for various data
sets. The average insert throughput is linearly increasing with in-
creasing number of threads for all data sets. Table 4 shows the
prevalence of repetitions in these data sets. The data sets from
Firehose (both active-set and power-law) have many repetitions.
The counting quotient filter scales linearly with multiple threads
even for these data sets. The multi-threading scheme as explained
in Section 5 not only reduces the lock contention among multiple
insertion threads, but also amortizes the cost of acquiring a lock.

6.7 Mergeability
Table 5 shows the average merge throughput during a K-way

merge of counting quotient filters with increasing K. The average
merge throughput is always greater than the average insert through-
put. This is because, during a merge, we insert hashes into the
output counting quotient filter in increasing order, thereby avoiding
any shifting of remainders. Although the average merge throughput
is greater than the average insert throughput, the merge throughput
decreases slightly as we increase K. This is because, with bigger K,
we spend more time finding the smallest hash in each iteration. For
very large values of K, one could use a min-heap to determine the
smallest hash quickly during each iteration.

6.8 Impact of optimizations
Figure 10 shows the performance of two RSQF implementations;

one using the fast x86 rank and select implementations described
in Section 3 and one using C implementations. The optimizations

784

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

In
se

rt
io

ns
pe

rS
ec

on
d

RSQF
CQF
CF
BF

(a) Inserts.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

L
oo

ku
ps

pe
rS

ec
on

d

RSQF
CQF
CF
BF

(b) Successful lookups.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

Fa
ls

e
L

oo
ku

ps
pe

rS
ec

on
d RSQF

CQF
CF
BF

(c) Uniformly random lookups.

Figure 6: In-memory performance of the QF, CQF, CF, and BF on uniformly random items. The first graph shows the insert performance
against changing load factor. The second graph shows the lookup performance for existing items. The third graph shows the lookup
performance for uniformly random items. (Higher is better.)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Load Factor

T
ho

us
an

d
In

se
rt

io
ns

pe
rS

ec
on

d

RSQF
CQF
CF

(a) Inserts on SSD.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Load Factor

T
ho

us
an

d
L

oo
ku

ps
pe

rS
ec

on
d RSQF

CQF
CF

(b) Successful lookups on SSD.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Load Factor
T

ho
us

an
d

Fa
ls

e
L

oo
ku

ps
pe

rS
ec

on
d

RSQF
CQF
CF

(c) Uniformly random lookups on SSD.

Figure 7: On-SSD performance of the RSQF, CQF, and CF on uniformly random inputs. The first graph shows the insert performance against
changing load factor. The second graph shows the lookup performance for existing items. The third graph shows the lookup performance for
uniformly random items. (Higher is better.)

speed up lookups by a factor of 2-4, depending on the load factor.
The optimizations speed up inserts less than lookups because in-
serts are bottlenecked by the time required to shift elements around
(which does not involve performing rank or select operations).

Figure 10 shows the insert and lookup performance of the origi-
nal quotient filter and the RSQF. The original quotient filter lookup
throughput drops as it passes 60% load factor because it must ex-
amine an entire cluster, and the average cluster size grows quickly
as the load factor increases. RSQF lookup performance drops more
slowly because it must only examine a single run, and the average
run size is bounded by a constant for any load factor.

Note that performance for the QF and RSQF on lookups for non-
existent items drops for a different reason. Both filters first check
Q.occupieds[h0(x)] during a lookup for x. If this bit is 0 they can
immediately return false. When looking up elements that are in the
filter, this fast-path never gets taken. When looking up non-existent
items, this fast-path is frequently taken at low load factors, but less
frequently at high load factors. As a result, for both filters, lookups
of non-existent items start off very fast at low load factors and drop
to roughly the same performance as lookups for existing items as
the load factor increases, as can be seen in Figures 10b and 10c.

7. CONCLUSION
This paper shows that it is possible to build a counting data struc-

ture that offers good performance and saves space, regardless of the

input distribution. Our counting quotient filter uses less space than
other counting filters, and in many cases uses less space than non-
counting, membership-only data structures.

Our counting quotient filter also offers several features that are
important for real applications. It has good data locality, so that it
can operate efficiently on SSD. Quotient filters can be merged to
compute their union, a feature that has found wide use in parallel
computing [2]. Mergeability also means the counting quotient fil-
ter can be used to build a write-optimized counting cascade filter,
similar to the cascade filter in the original quotient filter paper.

Finally, we revealed a connection between the quotient filter’s
metadata and the RANK and SELECT operations widely used in
other compact data structures. We then described an efficient
method for implementing SELECT on 64-bit integers in the x86
instruction set. This technique may be of interest to other rank-
and-select-based data structures.

8. ACKNOWLEDGMENTS
We gratefully acknowledge support from NSF grants BBSRC-

NSF/BIO-1564917, IIS-1247726, IIS-1251137, CNS-1408695,
CCF-1439084, and CCF-1617618, and from Sandia National Lab-
oratories.

785

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

In
se

rt
io

ns
pe

rS
ec

on
d

CQF
CBF

(a) Inserts.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

L
oo

ku
ps

pe
rS

ec
on

d

CQF
CBF

(b) Successful lookups.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

Fa
ls

e
L

oo
ku

ps
pe

rS
ec

on
d CQF

CBF

(c) Uniformly random lookups.

Figure 8: In-memory performance of the CQF and CBF on data with a Zipfian distribution. We don’t include the CF in these benchmarks
because the CF fails on a Zipfian input distribution. The load factor does not go to 95% in these experiments because load factor is defined
in terms of the number of distinct items inserted in the data structure, which grows very slowly in skewed data sets. (Higher is better.)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

In
se

rt
io

ns
pe

rS
ec

on
d

Kmers
Firehose (active-set)
Firehose (power-law)

(a) CQF in-memory insert performance on appli-
cation data sets. (Higher is better.)

1 2 3 4
0

10

20

30

40

Number of threads

M
ill

io
n

In
se

rt
io

ns
pe

rS
ec

on
d

Uniform Firehose (active-set)

Zipfian Firehose (power-law)

Kmer

(b) CQF multi-threaded in-memory insert perfor-
mance. (Higher is better.)

0 10 20 30
0

20

40

60

80

Millions of distinct items

Pe
rc

en
ta

ge
of

in
us

e
sl

ot
s

(c) Percent of slots in use in a counting quotient
filter vs. the number of distinct items inserted from
a Zipfian distribution with C=1.5 and a universe of
201M. We performed a total of 201M inserts.

Figure 9: In-memory performance of the counting quotient filter with real-world data sets and with multiple threads, and percent slot usage
with skewed distribution.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

In
se

rt
io

ns
pe

rS
ec

on
d

RSQF (x86)
RSQF (C)

QF

(a) Inserts.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

L
oo

ku
ps

pe
rS

ec
on

d

RSQF (x86)
RSQF (C)

QF

(b) Successful lookups.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

Load Factor

M
ill

io
n

Fa
ls

e
L

oo
ku

ps
pe

rS
ec

on
d RSQF (x86)

RSQF (C)
QF

(c) Uniformly random lookups.

Figure 10: In-memory performance of the RSQF implemented with x86 pdep & tzcnt instructions, the RSQF with C implementations of
rank and select, and the original QF, all on uniformly random items. The first graph shows the insert performance against changing load
factor. The second graph shows the lookup performance for existing items. The third graph shows the lookup performance of uniformly
random items. (Higher is better.)

786

9. REFERENCES
[1] F. vesca genome read dataset.

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/
SRA020125/SRX030576/SRR072006.fastq.bz2. [Online;
accessed 19-February-2016].

[2] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei,
and K. Yi. Mergeable summaries. ACM Transactions on
Database Systems (TODS), 38(4):26, 2013.

[3] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison.
Scalable Bloom filters. Journal of Information Processing
Letters, 101(6):255–261, 2007.

[4] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim,
M. J. Carey, M. Dreseler, and C. Li. Storage management in
AsterixDB. Proceedings of the VLDB Endowment,
7(10):841–852, 2014.

[5] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kaner,
B. C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R. P.
Spillane, and E. Zadok. Don’t thrash: How to cache your
hash on flash. Proceedings of the VLDB Endowment, 5(11),
2012.

[6] M. A. Bender, M. Farach-Colton, and M. A. Mosteiro.
Insertion sort is O(n logn). Theory of Computing Systems,
39(3):391–397, 2006. Special Issue on FUN ’04.

[7] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese. An improved construction for counting Bloom
filters. In European Symposium on Algorithms (ESA), pages
684–695. Springer, 2006.

[9] A. Broder and M. Mitzenmacher. Network applications of
Bloom filters: A survey. Internet Mathematics,
1(4):485–509, 2004.

[10] M. Canim, G. A. Mihaila, B. Bhattacharjee, C. A. Lang, and
K. A. Ross. Buffered Bloom filters on solid state storage. In
Proceedings of the International Workshop on Accelerating
Analytics and Data Management Systems Using Modern
Processor and Storage Architectures (ADMS), pages 1–8,
2010.

[11] S. Cohen and Y. Matias. Spectral Bloom filters. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 241–252, 2003.

[12] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applications.
Journal of Algorithms, 55(1):58–75, 2005.

[13] B. Corominas-Murtra and R. V. Solé. Universality of Zipf’s
law. Physical Review E, 82(1):011102, 2010.

[14] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du.
BloomFlash: Bloom filter on flash-based storage. In
Proceedings of the 31st International Conference on
Distributed Computing Systems (ICDCS), pages 635–644,
2011.

[15] B. K. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding
up inline storage deduplication using flash memory. In
Proceedings of the USENIX Annual Technical Conference
(ATC), 2010.

[16] B. Fan. Cuckoo filter source code in C++.
https://github.com/efficient/cuckoofilter, 2014. [Online;
accessed 19-July-2014].

[17] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than Bloom.
In Proceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies,

pages 75–88, 2014.
[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary

cache: A scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking (TON),
8(3):281–293, 2000.

[19] A. Geil. Quotient filters: Approximate membership queries
on the GPU. http://on-demand.gputechconf.com/gtc/2016/
presentation/s6464-afton-geil-quoetient-filters.pdf, 2016.

[20] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar,
and K. Yelick. Parallel de Bruijn graph construction and
traversal for de novo genome assembly. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 437–448,
2014.

[21] R. González, S. Grabowski, V. Mäkinen, and G. Navarro.
Practical implementation of rank and select queries. In
Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA), pages 27–38, 2005.

[22] S. P. Karl Anderson. Firehose. http://firehose.sandia.gov/,
2013. [Online; accessed 19-Dec-2015].

[23] G. Lu, B. Debnath, and D. H. Du. A forest-structured Bloom
filter with flash memory. In Proceedings of the 27th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–6, 2011.

[24] P. Melsted and J. K. Pritchard. Efficient counting of k-mers
in DNA sequences using a Bloom filter. BMC
Bioinformatics, 12(1):1, 2011.

[25] P. O’Neil, E. Cheng, D. Gawlic, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[26] A. Partow. C++ Bloom filter library.
https://code.google.com/p/bloom/. [Online; accessed
19-July-2014].

[27] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and
space-efficient bloom filters. In International Workshop on
Experimental and Efficient Algorithms, pages 108–121,
2007.

[28] Y. Qiao, T. Li, and S. Chen. Fast Bloom filters and their
generalization. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 25(1):93–103, 2014.

[29] R. S. Roy, D. Bhattacharya, and A. Schliep. Turtle:
Identifying frequent k-mers with cache-efficient algorithms.
Bioinformatics, 30:1950–1957, 2014.

[30] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory
and practice of Bloom filters for distributed systems. IEEE
Communications Surveys & Tutorials, 14(1):131–155, 2012.

[31] M. Vallentin. Counting Bloom filter source code in C++.
https://github.com/mavam/libbf, 2014. [Online; accessed
19-July-2015].

[32] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and
J. Cong. An efficient design and implementation of
LSM-tree based key-value store on open-channel SSD. In
Proceedings of the 9th European Conference on Computer
Systems (EuroSys), pages 16:1–16:14, 2014.

[33] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T.
Brown. These are not the k-mers you are looking for:
Efficient online k-mer counting using a probabilistic data
structure. PLoS One, 9(7):e101271, 2014.

[34] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST), pages 1–14, 2008.

787

