
GPGPU Enabled Ray Directed Adaptive Volume Visualization
for High Density Scans

James H. Money
Idaho National Laboratory

Idaho Falls, Idaho
james.money@inl.gov

Marko Sterbentz
University of Southern California

Los Angeles, California
sterbent@usc.edu

Nathan Morrical
University of Utah
Salt Lake City, Utah
bitinat2@isu.edu

Thomas Szewczyk
Idaho National Laboratory

Idaho Falls, Idaho
thomas.szewczyk@inl.gov

Landon Woolley
Brigham Young University - Idaho

Rexburg, Idaho
woolleylandon@gmail.com

Figure 1: Unity 3D based adaptive open source volume visualizer using the Gray Rot dataset rendered at increasing levels of
detail using the hierarchical Z-Order data format.

ABSTRACT
This paper presents an open source implementation of a volume
visualizer capable of rendering large scale simulated and tomo-
graphic volume datasets on everyday commodity hardware. The
ability to visualize this data enables a wide range of analysis in
many scientific disciplines, such as medicine, biology, engineering,
and physics. The implementation presented takes advantage of a
hierarchical space filling curve to efficiently query only a subset of
the data required for accurate visualization. A major advantage of
this implementation is that it is open source, and works on a wide
range of visualization devices by using the Unity game engine, a
cross platform engine capable of targeting over 25 platforms [24].
This work’s unique contribution is utilizing a space filling curve
for multiple bricks in the volume to permit adaptive streaming at
different resolutions.

CCS CONCEPTS
• Human-centered computing → Visualization toolkits; Sci-
entific visualization; Information visualization; •Computingmethod-
ologies → Parallel algorithms; Ray tracing;

KEYWORDS
exascale data, volume rendering, hierarchical rendering, scientific
visualization, parallel computing, ray tracing

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07. . . $15.00
https://doi.org/10.1145/3219104.3219105

ACM Reference Format:
James H. Money, Marko Sterbentz, Nathan Morrical, Thomas Szewczyk,
and Landon Woolley. 2018. GPGPU Enabled Ray Directed Adaptive Volume
Visualization for High Density Scans. In PEARC ’18: Practice and Experience
in Advanced Research Computing, July 22–26, 2018, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3219104.3219105

1 INTRODUCTION
Interacting with large simulated and tomographic volume datasets
can be difficult, and often stands in the way of a volume visualizer’s
[11] adoption. Doctors and scientists often resort to looking at volu-
metric data slice by slice. While this is a proven method for volume
analysis, information about a third dimension is inherently lost dur-
ing visualization. Presenting volumetric data in a three dimensional
fashion is much more natural, and can lead to additional discoveries
through a more informal and engaging visualization experience.
However, difficulties arise when volumetric data becomes too pro-
hibitively large to process in core, and poorly coalesced volumetric
sampling per pixel can quickly hinder render performance.

As the resolution and size of modern scientific simulations and
experiments increases, it is crucial for the performance of a volume
visualizer to scale only on display size and not on the size of the
dataset being shown. By enforcing performance to scale only on
display size, hardware restrictions like on board GPU memory can
be circumvented. This in turn allows volume visualization to be
delivered to a broader audience, since volumes can then be visual-
ized on consumer grade visualization equipment such as laptops,
virtual reality headsets, and mobile devices.

The overarching goal of this paper is to demonstrate a repeatable
volume visualization technique based on state of the art results us-
ing commodity game engine technology for use by a wide range of
audiences including immersive environments, such as a Cave Auto-
matic Virtual Environment (CAVE) [4]. In immersive environments,

1

https://doi.org/10.1145/3219104.3219105
https://doi.org/10.1145/3219104.3219105

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA J. H. Money et al.

it is quite common to see volumes limited to 512x512x512 to permit
performance. The solution described in this paper eliminates this
issue. This paper is divided into two separate components. First,
the conversion of the raw 3D volume to a streaming based format
is developed that is optimized for rendering inside Unity 3D [24],
the commodity game engine utilized in this paper. Secondly, the
volume renderer is developed using a custom shader to perform
ray marching [20] that can quickly ingest the volume information
from the first phase.

2 RELATEDWORK
Direct volume visualization by way of ray casting is a very popular
technique for scientific visualization. One of the major challenges
with this technique is managing and rendering increasingly large
simulated and scanned datasets. Many large scale visualization sys-
tems utilize bricking and ray guided techniques [3, 5, 6, 9] in order
to reduce the amount of data required to be in GPUmemory at once
by retrieving and only operating on data that is currently visible on
screen. This bypasses the memory limitations on many devices and
allows for large scale data to be rendered on commodity hardware
in a scalable, output-sensitive manner. An extensive review of the
state of the art algorithms and techniques developed are found
in [2], including these methods above. Prior examples of scans at
lower resolutions using commodity game engines can be found in
[1]. Additionally, related work using a standard Z-order curve is
found in [25].

Since the regions of the data to be rendered are modified in real-
time by the user, I/O processing can often be a highly detrimental
bottleneck in exascale applications, with Peterka et al. [22] showing
that many applications spend upwards of 90% of their rendering
time in the I/O processing stage. Furthermore, as brick sizes get
smaller, the number of I/O calls increases, slowing down the ren-
dering [6]. Finding an optimal brick size can aid in speeding up
the rendering. In addition, data representations like hierarchical
Z-order curves preserve the spatial locality of data while also al-
lowing for hierarchical access [21] and enabling only the required
data at a specified level of detail to be retrieved.

3 IMPLEMENTATION OVERVIEW
Our implementation is broken up into three sections. First, we
discuss an efficient way to decompose a given dataset into a set of
smaller, locality preserving cubes to facilitate out of core rendering.
Then, an implementation of an efficient data layout to optimize
data access on disk during visualization is covered. Finally, how
this optimized data layout can be used to query and render data in
an output-sensitive manner is discussed.

4 DATA STORAGE AND LAYOUT
To achieve scalable volume rendering, the layout and storage of a
given volumemust be efficient. Followingmany current approaches,
we perform an object space decomposition called "bricking", which
partitions the volume into more manageable sub regions. These
regions help facilitate out of core approaches, since bricks can
be loaded and rendered as required without having to stream the
volume in its entirety.

To efficiently access data on disk, we additionally optimize the
data layout of each brick. In general, reading small bits of data at ran-
domly scattered positions is inefficient compared to reading larger
chunks in a continuous layout. Therefore, the data is ordered within
each brick along a space filling curve, which helps improve coa-
lesced reads at runtime. Specifically, the HZ-order curve proposed
by Pascucci and Frank [21] is used, which allows for hierarchically
progressive reads. This HZ-order curve naturally maps to a Z-order
curve which can be adaptively modified to restrict sampling to
certain resolution levels during visualization.

4.1 Bricking
The volume is partitioned in a way that satisfies a set of constraints.
First, each brick must be a power of two cube in order to allow
HZ-ordering. Second, a maximum brick size is allowed to be speci-
fied in order to accommodate different GPU texture memory con-
straints. Finally, the minimum brick size is maximized for optimal
HZ-ordering while also minimizing padding. For convenience, these
parameters are left up to the user. A future paper will discuss vari-
ous optimization schemes for this method.

To partition the data, a 3D uniform grid is allocated, where each
voxel in the grid contains a position, a size, and a flag. The size for
each voxel is initialized as a minimum brick width, and the flag is
initialized as true, meaning that voxel should be assumed to be a
final brick. The dimensions of this grid are found by dividing the
size of the original volume along each axis by the minimum brick
width. This method employed is similar to ideas used in [6, 9].

In order to provide efficient computational time for generating
the bricks, we utilize GPGPU algorithms to speed computation. We
focus on OpenCL [8] as the language of choice, vice CUDA [19],
to enable cross-platform capability for non-nVidia cards. Original
tests on CPU only algorithms showed over a two day computation
time for larger volumes, while utilizing OpenCL allowed our com-
putational time to reduce to under one hour. We will examine this
in more detail in the results section.

For each voxel in parallel, we iteratively check to see if the cur-
rent voxel’s size is less than amaximum brick size. If the current size
is equal to or larger than the maximum brick size, that thread is ter-
minated, locking in that voxel as a final brick. Otherwise, we check
to see if any(voxelPosition >= (vs −vs%i)), where voxelPosition is
a three component position of the current voxel, and vs is a three
component vector containing the sizes of the entire volume along
each axis. The region defined in size by (vs −vs%i) is guaranteed to
be perfectly divisible by voxels twice as large as the current voxel’s
size. If the current voxel is outside that region, it is unmergable
with any neighboring voxels, so the thread is terminated, locking
that voxel in as a final brick.

If the current voxel lies within this region, we check to see if
all(voxelPosition%i == 0), meaning that the current voxel lies on
the corner of a soon to be merged voxel. If this is not the case,
voxel . f laд is marked as false, meaning the current voxel has been
merged and should be removed. Otherwise, the voxel’s width in
each axis, as well as i, is increased by a power of two, and then the
loop iterates.

Finally, we perform a parallel stream compaction to keep only
the uniform grid voxels whose flag is set to true. Pseudocode for

2

GPGPU Enabled Adaptive Volume Visualization PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

Figure 2: The HZ Generator tool with the bricking scheme
for Gray Rot shown on the right.

this algorithm can be seen in Algorithm 1. A visualization of this
algorithm can be seen in Figure 2.

Algorithm 1: PartitionVolume
1 for each voxel in the uniform grid do in parallel
2 int3 voxelPosition = get_global_id();
3 int3 vs = get_entire_volume_size();
4 voxel.size = minBrickSize;
5 voxel.delete = false;
6 for (int i = 2; voxel.size < maxBrickSize; i «= 1) do
7 if (any(voxelPosition >= (vs - vs % i))) then
8 break;
9 end

10 voxel.size «= 1;
11 if (any(voxelPosition%i !=0)) then
12 voxel.delete = true;
13 end
14 end
15 end

4.2 Curving
Many large scale scientific simulations and experiments produce
massive volumes of data in a row major fashion. When sampling
these volumes during rendering, row major layouts tend to produce
a large number of seek and read operations, which is detrimental
to coalesced memory reads.

This scattered sampling can be reduced by ordering voxels along
a space filling curve, which preserves spatial locality. When decid-
ing on a curve, concern must be taken into how well a mapping
preserves locality, as well as how easy it is to both encode and
decode keys.

One such curve which allows constant time key encoding and
decoding while preserving spatial locality is the Z-order curve pro-
posed by Morton [18]. Computing the Z-order index given quan-
tized Cartesian coordinates is as simple as interleaving the bits,
as shown in Algorithm 2. For more details on how this algorithm
works, please refer to the original paper by Morton [18], or to Kar-
ras [10] for more explanation on the bit shifting operations shown
in Algorithm 2.

Figure 3: The left and center images show the HZ-order
curve at low and higher levels of detail in 2D. The right im-
age is the extension to 3D for a cube.

Although Z-order retains spatial locality of the input data, it
does so only at full resolution, and does not support hierarchical
access. So instead, we use a hierarchical Z-order variant proposed
by Pascucci and Frank [21]. The HZ-order curve organizes a given
Z-ordered dataset by levels corresponding to a subsampling tree, in
which each level doubles the number of points in one dimension.
An example of multiple levels of the HZ-order curve are shown in
Figure 3.

This hierarchical Z-order curve allows us to stream and query
data in an output-sensitive manner while still preserving spatial
locality. Pseudocode for mapping Cartesian coordinates to Z-order
is found in Algorithm 2 and an optimized version of the Z-order to
HZ-order can be seen in Algorithm 3.

Algorithm 2: Naive Cartesian to Z-order
1 unsigned int zId = 0;
2 for (int i = 0; i < numLevels; i++) do
3 zId |= (x & 1 « i) « i | (y & 1 « i) « (i + 1) | (z & 1 « i) « (i + 2);
4 end

Algorithm 3: Z-order to HZ-order
1 int last_bit_mask = 1 « (3 * numLevels);
2 zId |= last_bit_mask;
3 zId /= z & -z;
4 hz = zId » 1;

4.3 Apportioning
For optimal read and write times, we curve each brick in the parti-
tioned volume in parallel. Voxels in a particular brick are reordered
in parallel in high bandwidth GPU memory. Once curved, each
brick can be written to disk using only one seek.

Each block is stored in its own file, and can be allocated before
apportioning. In addition, a metadata file is generated which con-
tains information on block sizes and positions. This file is used by
the Unity 3D volume renderer to stream in contents.

3

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA J. H. Money et al.

5 VOLUME RENDERING
Our direct volume rendering approach makes use of volume ray
casting, implemented within the fragment shader on a per data
brick basis. The entirety of the volume data set is mapped to fit
within a unit cube bounding volume. A direct volume rendering
approach was chosen due to the need for a minimization of render-
ing artifacts, as well as the need for hierarchical visualization of
the data. Indirect or hybrid volume rendering methods, such as the
shear-warp technique [14], would produce lower quality results
and introduce visual artifacts when rendering at lower levels of the
HZ-order curve.

Ray casting is typically limited due to the need for the entirety
of the data set to be available within GPU memory. Our approach
mitigates this issue by curving the data into a hierarchical Z-order,
allowing only the specific parts of the data that are needed, or pos-
sible due to device limitation, to be loaded into the GPU’s memory.

5.1 Ray casting
The backbone of our data rendering process is a ray marching
technique, which can be seen in Algorithm 4. This inherently par-
allel algorithm produces high quality results for a large variety of
data sets, and allows for changes in the data to be viewed quickly
without the need for additional heavy processing.

Rays are projected through the volume and intersect with the
data represented by voxels. A specified step size is used to determine
the points along the ray at which samples of the data are taken.
These intensity values are mapped to a specific color and alpha
value based on a predetermined one-dimensional transfer function
and are then composited using a standard front to back blending
technique. The ray marching is terminated early in two primary
cases. The first occurs when the current ray sampling position is
outside of the cube. The second case is triggered if the composited
fragment color value has reached the maximum alpha value, in
which case further sampling along the ray has no practical effect.

Algorithm 4: Ray Casting
input :Ray origin, ray direction
output :Fragment color

1 ray = IntersectAABB(rayOrigin, rayDirection);
2 if clipping plane is enabled then
3 ray = ClippingPlane(ray, plane);
4 end
5 foreach step along the ray do
6 intensityValue = SampleIntensity(rayPosition);
7 intensityColor = TransferFunction(intensityValue);
8 fragColor = FrontToBackBlend(intensityColor);
9 rayPosition = rayPosition + rayStep;

10 if rayPosition is outside bounding cube or fragAlpha > 1.0
then

11 break;
12 end
13 end

5.2 Analysis tools
In order to facilitate more in-depth visual analysis of the data, we
added functionality including a one-dimensional transfer function
and a clipping plane tool to the volume renderer.

5.2.1 One-dimensional transfer function. Transfer functions are
a common way to quickly isolate and highlight different voxel val-
ues and allow for the data to be analyzed according to the intensity
values of the data set. The input into a one-dimensional transfer
function [15] is a single intensity value, which is then mapped to a
corresponding RGBA color value. The transfer function is defined
by two sets of control points: one for mapping color values, and one
for mapping alpha values. Voxels that are not explicitly mapped
are determined by interpolating between the control points.

5.2.2 Clipping plane. Depending upon the orientation of the
clipping plane relative to the volume, the clipping plane will cull
data points from the render pass by modifying the ray that is cur-
rently being cast. This enables a cross-sectional view of the data
volume and allows the internal voxel data to be examined. Al-
gorithm 5 shows the method utilized for the clipping plane. The
variable t declared on line 2 is the distance along the ray at which
the intersection between the ray and the plane occurs.

Algorithm 5: Clipping Plane
input :Ray, plane
output :Updated ray

1 denom = dot(planeNorm, rayDir);
2 t = 0.0;
3 if denom != 0.0 then
4 t = dot(planeNorm, planePos - rayStart) / denom;
5 end
6 if plane is not facing camera and t < 0.0 then
7 discard fragment;
8 end
9 if plane is facing camera and t > rayLength then

10 discard fragment;
11 end
12 if t > 0.0 and t < rayLength then
13 if plane is facing camera then
14 rayStart = rayStart + rayDirection * t;
15 end
16 else
17 rayStop = rayStart + rayDirection * t;
18 end
19 end

5.3 Rendering multiple data bricks
In order to render the data bricks that make up the volume, the
bricks are transformed from their native voxel space into the space
of the 1x1x1 bounding cube that is used to contain the volume. It is
assumed that the bounding cube has its bottom left corner placed
at the origin in world space.

4

GPGPU Enabled Adaptive Volume Visualization PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

A metadata file, in standard JSON format [7], is used to provide
mandatory information about the volume, including size of the
volume in voxel space, the total number of bricks that comprise
the volume, the number of bytes per voxel value, and the minimum
and maximum brick size. Information about individual bricks is
also provided, including the corresponding file name, the brick’s
size, and its position in voxel space. Pseudocode for this process
can be found in Algorithm 6. The final position and scale of each
data brick are computed on lines 7 and 8, respectively.

Algorithm 6: Rendering Multiple Bricks
input :Brick position from metadata
output :Location and scale of brick within

1 foreach brick in volume do
2 brickPosition = (0,0,0);
3 volumeCornerVoxelSpace = boundingCubeCenter -

volumeCenter;
4 brickPositionVoxelSpace = ReadMetadata();
5 brickPositionVoxelSpace = volumeCornerVoxelSpace +

brickPositionVoxelSpace;
6 brickOffsetVoxelSpace = brickSize / 2.0;
7 brickPosition = brickPosition + (brickPositionVoxelSpace +

brickOffsetVoxelSpace) / maxGlobalSize;
8 brickScale = brickSize / maxGlobalSize;
9 end

5.4 Utilizing HZ-Order
In order to utilize HZ-ordering, the current position of the ray
march in Cartesian coordinates must be converted to the correct
index in the HZ-order file format using the method in Algorithm
7. This enables each brick to be rendered at the desired level of
detail. In turn, this allows for the volume data to be loaded in only
as required by the current level of detail. We achieve this through a
four step process.

First, the Z-order index is computed by interleaving the bits of
the Cartesian coordinates, as previously mentioned. Then, rather
than converting directly to HZ-order, the second step is to compute
a masked Z-order index that is based on the desired level of detail.
The pseudocode for the Z-order index masking can be found in
Algorithm 7. The while loop on line 2 computes the total number
of HZ-order levels that a brick has in total, based on its dimensions.
Lines 5 and 6 determine the appropriate mask that will effectively
quantize the Z-order index to the current level of detail the brick is
being rendered at.

Third, the HZ-order index is computed based on the masked
Z-order index, as shown in Algorithm 7. In the final step, the com-
puted HZ-order index can be used to index into the brick’s data.
Depending upon how the data is stored in memory, additional
conversions to the HZ-order index may be necessary.

6 RESULTS
We consider the efficiency and speed of the volume renderer and
the volume partitioning scheme in this section for several volumes.

Algorithm 7: Level of Detail Z-order Index Masking
input :Render level
output :The masked Z-order Index

1 totalLevels = -1;
2 while brickSize »= 1 do
3 totalLevels = totalLevels + 1;
4 end
5 zBits = totalLevels * 3;
6 zMask = -1 » (zBits - 3 * currentLevel) « (zBits - 3 *

currentLevel);
7 maskedZIndex = zIndex & zMask;

Table 1: 3D scan volume information on dimensions and bit
depth

X Y Z Bit depth
Visible Human 256 256 128 8
Sinus CT Scan 323 397 499 8
Gray Rot 2833 2872 2715 16

Table 2: Video card specification comparison.

Year CUDA Cores Memory(Gb/s)
Quadro 6000 2010 448 144
GTX 980 TI 2015 2816 336
Quadro m6000 2016 3072 317

We examine three volumes of interest: (1) The Visible Human head
scan [16] (2) Sinuses from a computed tomography (CT) scan and
(3) The Gray Rot dataset. Each of these volumes are shown in Figure
4.

The sinus CT scan includes a volume near the limiting size
for software such as Virtual Reality User Interface’s (VRUI) [12]
volume visualization tool [13]. The scan was collected from a team
members doctor’s office using a MiniCAT system [23]. Inside the
Idaho National Laboratory CAVE environment, this volume suffers
from processing speed limitation in the transfer functions. The
Gray Rot dataset is an X-ray tomographic scan of NBG-18 graphite
at a final resolution of 2833x2872x2715 and is approximately 42GB
in size on disk. Note that this scan is not possible to display in
the CAVE at this time without either rescaling or insets of smaller
resolution. Our goal, as originally stated, is to render a scan such as
Gray Rot, in its native resolution. A summary of the scans is shown
in Table 1 including x , y, and z dimensions, along with original bit
depth of the image captured.

We consider three different video cards in this study. First is an
older nVidia Quadro 6000 card. The second card is a nVidia Quadro
m6000. Finally, we compare with the nVidia Geforce GTX 980 TI,
which is a common card for gaming systems. The specifications of
the cards including CUDA core counts and memory bandwidth are
found in Table 2.

First, we consider the pre-processing conversion from raw data
scan volumes to HZ-order volumes for each of the scans in Table
3. Note that the first two conversions of the Sinus CT and Visible

5

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA J. H. Money et al.

Figure 4: The three data sets used in this paper. a) The Visi-
ble Human head scan. b) Sinuses from a computed tomogra-
phy (CT) scan. c) Gray Rot dataset.

Table 3: Speed comparison across various GPUs and datasets
for conversion from raw scan toHZ order bricked volume in
seconds.

Quadro 6000 GTX 980 TI Quadro m6000
Visible Human 0.306 0.243 0.115
Sinus CT 4.386 2.039 0.754
Gray Rot 66823 4311.151 2454.435

≈ 18.6h ≈ 71.85m ≈ 40.91m

Figure 5: Graph of HZ-order conversion computation time
for various datasets and cards. This shows linear speedup
across the datasets and cards. Note, the time axis is in the
logarithmic scale.

Human datasets complete in less than 5 seconds using all of the
cards. However, themethod here shows processing speed slowdown
on the Gray Rot dataset, but using the Quadro m6000 GPU, the
conversion time is faster than the original data collection scan
time of over one hour. In this case, it is plausible to complete the
conversion in near real-time as the bits are retrieved from the
scanner. In Figure 5, we see that the speedup is at least linear for the
computation time among the various graphics cards and datasets.

Table 4: Frames per second for rendering the volume on a
desktop monitor.

Quadro 6000 GTX 980 TI Quadro m6000
Visible Human 192 195 198
Sinus CT 191 195 193
Gray Rot - Level 3 72 122 144
Gray Rot - Level 9 64 122 144

Figure 6: Rendering of an additional skull dataset when us-
ing the HTC Vive.

Figure 7: Rendering of Visible Human skull inside the vol-
ume.

Some results achieved by utilizing the volume visualization tech-
nique on the datasets with the three video cards are shown in Table
4. In terms of frames per second (FPS), the rendering speed on a
desktop monitor varies from 64 FPS to 198 FPS depending on the
card and size of the dataset. Note that the average person cannot
perceive more than 60 FPS in stereo, but for motion in virtual re-
ality systems, we generally strive for 90 FPS. With this in mind,
another test case was performed using the HTC Vive headset with
the nVidia GTX 980 TI GPU and a locked 90 FPS was achieved for
the Visible Human head dataset as well as for an additional skull
scan dataset which is depicted in Figure 6.

It is also worth noting that we are aiming to release this software
in Fall 2018, and it will be available at https://github.com/idaholab.

7 FUTUREWORK
The ultimate goal is to be able to render exascale data in an output-
sensitive manner on any type of device, regardless of memory and
processing capacity. To this end, it is necessary to adjust the level
of detail of each data brick depending on the location of the brick
relative to the camera. In this way the bricks that are closer to

6

GPGPU Enabled Adaptive Volume Visualization PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

the user’s eye are more detailed, while bricks that are occluded
are rendered at lower levels of detail. This method will reduce the
amount of volume data that is required to be buffered over to the
GPU, while still producing a high-fidelity image with relevant data
to analyze.

Our approachwill be to first determine distances from the camera
to the front and back sides of the volume, as well as determine how
far each of the bricks is from the camera. These distances will then
be normalized to an interval of [0, 1] based on the total distance.
Lastly, the Z-order render level for each brick can be calculated with
a simple linear interpolation based on the bricks’ relative distances
from the camera.

In order for there to be greater control and modularity with
regards to the rendering pipeline, compute shaders will be utilized
for the ray-based calculations and general memory management. A
brick cache will be used for storing data about bricks currently in
GPU memory and at what level of detail they are currently stored
as described in [6]. During each frame, the data in the brick cache
can be used to determine which data needs to be uploaded to the
GPU. The necessary data is then uploaded to a brick buffer, which is
a one-dimensional array on the GPU that contains the data values
for all of the bricks that currently contribute to the rendering pass.
Stream compaction can be used to re-order the data within the brick
buffer and remove old data that is no longer used.

We will also consider machine learning algorithms for the imple-
mentation of the bricking scheme thresholds. Combining this with
optimizations for space and computation time, will help reduce the
disk storage required in experimental scans.

Finally, the streaming solution from end-to-endwill be developed
using the Scientific & Intelligence Exascale Visualization Analysis
System (SIEVAS) [17]. This will permit brick level stream controls
without physically co-locating the datasets with the tool. Addition-
ally, modules will be developed to permit stream processing in-situ
of the data as they are acquired at the scanning location.

ACKNOWLEDGMENTS
We would like to thank Joshua Kane, Idaho National Laboratory,
for his support in example datasets including the Gray Rot dataset.
We would also like to thank Idaho National Laboratory and the
Center for Advanced Energy Studies for their ongoing support for
this work.

REFERENCES
[1] Tod T Amon, Edward S Jimenez, and Kyle R Thompson. 2016. Game Development

Engines as an Ideal Platform for Exploring 3D Virtual Reality Based Visualiza-
tions Constructed from Computed Tomography Data. In 25th ASNT Research
Symposium. 18–22.

[2] Johanna Beyer, Markus Hadwiger, and Hanspeter Pfister. 2015. State-of-the-Art
in GPU-Based Large-Scale Volume Visualization. Computer Graphics Forum 34, 8
(2015), 13–37. https://doi.org/10.1111/cgf.12605

[3] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In
Proceedings of the 2009 symposium on Interactive 3D graphics and games. ACM,
15–22.

[4] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon,
and John C. Hart. 1992. The CAVE: Audio Visual Experience Automatic Virtual
Environment. Communication of the ACM 35, 6 (5 1992), 64–72. https://doi.org/
10.1145/129888.129892

[5] Klaus Engel. 2011. CERA-TVR: A framework for interactive high-quality teravoxel
volume visualization on standard pcs. In Large Data Analysis and Visualization
(LDAV), 2011 IEEE Symposium on. IEEE, 123–124.

[6] Thomas Fogal, Alexander Schiewe, and Jens Krüger. 2013. An analysis of scal-
able GPU-based ray-guided volume rendering. In Large-Scale Data Analysis and
Visualization (LDAV), 2013 IEEE Symposium on. IEEE, 43–51.

[7] Internet Engineering Task Force. 2018. RFC 8259 - The JavaScript Object Notation.
https://tools.ietf.org/html/rfc8259. Accessed: 2018.

[8] The Khronos Group. 2018. OpenCL. https://www.khronos.org/opencl/. Accessed:
2018.

[9] Markus Hadwiger, Johanna Beyer, Won-Ki Jeong, and Hanspeter Pfister. 2012.
Interactive volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach. IEEE Transactions on Visualization
and Computer Graphics 18, 12 (2012), 2285–2294.

[10] Tero Karras. 2012. Thinking parallel, part III: tree construction on the GPU.
Parallel Forall, Dec 19 (2012), 8.

[11] Arie Kaufman. 1990. Volume visualization. The visual computer 6, 1 (1990), 1–1.
[12] Oliver Kreylos. 2016. Virtual Reality User Interface. http://idav.ucdavis.edu/

~okreylos/ResDev/Vrui/. Accessed: 2018.
[13] Oliver Kreylos, Gunther H Weber, E Bethel, John M Shalf, Bernd Hamann, and

Kenneth I Joy. 2002. Remote interactive direct volume rendering of AMR data.
(2002).

[14] Philippe Lacroute and Marc Levoy. 1994. Fast volume rendering using a shear-
warp factorization of the viewing transformation. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 451–458.

[15] Marc Levoy. 1988. Display of surfaces from volume data. IEEE Computer Graphics
and Applications 8, 3 (1988), 29–37.

[16] William E Lorensen. 1995. Marching through the visible man. In Proceedings of
the 6th Conference on Visualization’95. IEEE Computer Society, 368.

[17] James H Money and Thomas Szewczyk. 2017. Live Integrated Visualization
Environment: An Experiment in Generalized Structured Frameworks for Visual-
ization and Analysis. In Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact. ACM, 29.

[18] GuyMMorton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. (1966).

[19] nVidia Corporation. 2018. CUDA Zone. https://developer.nvidia.com/cuda-zone.
Accessed: 2018.

[20] Steven Parker, Michael Parker, Yarden Livnat, P-P Sloan, Charles Hansen, and
Peter Shirley. 1999. Interactive ray tracing for volume visualization. IEEE Trans-
actions on Visualization and Computer Graphics 5, 3 (1999), 238–250.

[21] Valerio Pascucci and Randall J Frank. 2003. Hierarchical indexing for out-of-
core access to multi-resolution data. In Hierarchical and Geometrical Methods in
Scientific Visualization. Springer, 225–241.

[22] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma, and Rob Latham. 2009.
End-to-end study of parallel volume rendering on the ibm blue gene/p. In Inter-
national Conference on Parallel Processing, 2009. IEEE, 566–573.

[23] Xoran Technology. 2018. MiniCat Scanner. https://xorantech.com/products/
minicat/. Accessed: 2018.

[24] Unity Technologies. 2018. Unity - Multiplatform. https://unity3d.com/unity/
features/multiplatform. Accessed: 2018.

[25] JunpengWang, Fei Yang, and Yong Cao. 2017. A cache-friendly sampling strategy
for texture-based volume rendering on GPU. Visual Informatics 1, 2 (2017), 92 –
105. https://doi.org/10.1016/j.visinf.2017.08.001

7

https://doi.org/10.1111/cgf.12605
https://doi.org/10.1145/129888.129892
https://doi.org/10.1145/129888.129892
https://tools.ietf.org/html/rfc8259
https://www.khronos.org/opencl/
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/
https://developer.nvidia.com/cuda-zone
https://xorantech.com/products/minicat/
https://xorantech.com/products/minicat/
https://unity3d.com/unity/features/multiplatform
https://unity3d.com/unity/features/multiplatform
https://doi.org/10.1016/j.visinf.2017.08.001

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation Overview
	4 Data Storage and Layout
	4.1 Bricking
	4.2 Curving
	4.3 Apportioning

	5 Volume Rendering
	5.1 Ray casting
	5.2 Analysis tools
	5.3 Rendering multiple data bricks
	5.4 Utilizing HZ-Order

	6 Results
	7 Future Work
	Acknowledgments
	References

