
 

The First Self-Contained Hardware Implementation of 
the Parallel Radix Sort 

Nathan V. Morrical​1​, Patsy Cadareanu​1​, Walter Lau Neto​1​, and 
Max D. Austin​1 

1​The University of Utah, Salt Lake City, UT, USA  

As chip density reaches its limits, many programmers are switching to 
concurrent programming models to meet high performance computing 
demands. These concurrent models achieve massive performance 
gains by distributing similar computation to local compute modules, 
which typically work in a ​Single Instruction Multiple Data​ (SIMD) 
fashion. However, performance suffers when thread divergence is high, 
since individual threads need to execute different instructions which 
are often not parallelizable. Even with newer generation ​Graphical 
Processing Units​ (GPUs) like the Nvidia ​Volta ​and ​Turing ​architectures, 
thread divergence tends to cause uncoalesced memory access 
patterns, minimizing potential memory bandwidth. 

These complications can be resolved by aggregating similar 
computation together, which is achievable through a sort. As a result, 
many database systems, computer graphics data structures, and linear 
algebra systems all depend on efficient sorting as a fundamental 
building block. However even when parallelized, sorting is 
computationally demanding and becomes the speed-limiting factor. 
For example, more than 50% of the parallel BVH construction algorithm 
in [1] is spent sorting numbers. 

To improve sorting performance, this paper presents a 
hardware-accelerated parallel-radix sorter capable of sorting an 
arbitrary number of elements and bits in linear time. Parallel radix sort 
was chosen due to its non-comparative sorting algorithm which allows 
for improved parallelization. It is also the fastest GPU parallel sorting 
algorithm to date [2] and a variant is used by Nvidia’s ​Thrust ​library to 
perform sorting. The parallel-radix sort is composed of three repeated 
stages. 

The first stage is ​predication​. This works as follows: For each element 
in parallel, copy the bit at the current iteration. The predication for 
each element equals the extracted bit compared with the ascending/ 
descending flag.  

The second stage is the ​prefix sum​: For each prediction element in 
parallel, take the sum of all elements before and including the current 
prediction element. Figure 1 shows an example of a prefix-sum 
iteration on 8 elements of 3-bits for a better visualization.  

The final stage is ​compaction​: If the predication corresponding to an 
element is 1, move that element to the left. Otherwise, move that 
element to the right. For an example showing the radix-sort at work for 
4 elements of 3-bits, see Figure 2. 

These three stages are repeated for the total number of bits to sort. 

Our implementation of the parallel radix sorting algorithm is broken up 
into 4 modules. Three modules are used for each of the three major 
stages of the sorting algorithm, processing N input elements. The last 
module defines a finite state machine which iterates over the three 
stages K times, where K is the number of bits to sort. Figure 3 shows 
the block diagram for this design.  

The predication module is composed of a set of MUXes, one per each 
element. The select line for these MUXes controls which bit to extract 
from each element. The Verilog pseudo-code used for this step is 
included in Figure 4. The prefix sum module is composed of several 
prefix iteration modules (seen in Figure 5), and works similar to a 
Kogge Stone adder. Figure 6 implements this module in pseudo-code. 
The compaction module is composed of several parallel MUX’s, one 
per element. The select line for the compaction MUXes is driven using 
a procedural address computation, as seen in Figure 7. Finally, the 
finite state machine is composed of a register containing the current 
iteration, and the instantiation of the predication, prefix sum, and 
compaction modules. The pseudo-code for this module is included in 
Figure 8.  

Our implementation can be compared against a similar, although more 
complicated design proposed by Liu ​et al.​ [3] which requires external 
memory. To our knowledge, no such device has been fabricated, 
packaged, and tested at this time. We believe our implementation is 
the first to undergo complete logical and physical synthesis following 
the TSMC 180 nm technology. In addition, the proposed radix sorter 
will sort a specified number of bits in either ascending or descending 
order, and requires no external memory, making it completely 
self-contained.  

In application, several instances of our radix sorter would be used in 
combination to sort separate contiguous sections of a larger sequence 
of numbers.This would resolve the uncoalesced access patterns of a 
typical parallel radix sorter by aggregating subsequences in a local 
memory array, at which point coalesced rearrangement can occur at a 
higher level. 

Figure 9 presents the results after running logic synthesis with the 
Design Compiler. The total area of the chip is 314,741 µm​2​ with the 
compaction module taking up the most area at 35,504 µm​2​. The total 
power dissipation simulated for the chip is 4.75 mW, and the critical 
path delay is simulated at 2.35 ns. Figure 10 shows the results after 
running physical synthesis, ​i.e.,​ ​place and route​ (PnR), with Innovus 
which considers wire capacitances and resistances. The final total 
area of the chip after PnR is 1,169,641 µm​2​, the total power dissipation 
is 35.84 mW, and the arrival time is 4.59 ns. Figure 11 shows the final 
die where all metrics were extracted for both logic and physical 
synthesis.  

Acknowledgements 
The authors would like to acknowledge Edouard Giacomin for his 
assistance throughout this project. 

References 
[1] Karras, Tero. "Maximizing parallelism in the construction of BVHs,  
octrees, and k-d trees." In Proceedings of the Fourth ACM 
SIGGRAPH/Eurographics conference on High-Performance Graphics, 
pp. 33-37. Eurographics Association, 2012. 
[2] M. C. Delorme, T. S. Abdelrahman, and C. Zhao, “Parallel Radix Sort 
on the AMD Fusion Accelerated Processing Unit,” in Proceedings of 
International Conference on Parallel Processing, pp. 339–348, 2013. 
[3] Liu, Xingyu, Shikai Li, Kuan Fang, Yufei Ni, Zonghui Li, and Yangdong 
Deng. "RadixBoost: A hardware acceleration structure for scalable 
radix sort on graphic processors." In Circuits and Systems (ISCAS), 
2015 IEEE International Symposium on, pp. 1174-1177. IEEE, 2015. 
 



 

 
Figure 1: Example showing the prefix-sum iteration of the radix-sort 
on 8 elements of 3-bits. 

 
 
Figure 2: Example showing the radix-sort at work for 4 elements of 
3-bits.  

Figure 3: Hardware block diagram of our radix sorter. 

 
Figure 4: Verilog pseudo-code of the predication module.  

 
Figure 5: Verilog pseudo-code of the helper function “prefix-iteration” 
called in the prefix-sum module, as seen in Figure 6.  

 
Figure 6: Verilog pseudo-code of the prefix-sum module.  

 
Figure 7: Verilog pseudo-code of the compaction module. 

 
Figure 8: Verilog pseudo-code of the compaction module. 



 

 
Figure 9: The results of logic synthesis. 

 
Figure 10: The results of physical synthesis. 

 
Figure 11: Physical layout and logical synthesis layout simulation. 

 


