
Volume MLS Ray Casting

Christian Ledergerber, Gaël Guennebaud, Miriah Meyer,

Moritz Bächer and Hanspeter Pfister, Senior Member, IEEE

Abstract— The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered
data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering,
providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the
MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also
present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number
of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system
enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data.

Index Terms—Volume Visualization, Unstructured Grids, Moving Least Squares Reconstruction, Adaptive Integration

1 INTRODUCTION

Volume visualization has become an integral component of the sci-
entific discovery process and the simulation pipeline. Data coming
from scanning devices such as MRI or ultrasound machines, as well as
results from simulations in fields like computational fluid dynamics,
geophysics, and biomedical computing, are often represented volu-
metrically. These volumes, however, can be defined over regular or
irregular grids, giving rise to several distinct classes of rendering algo-
rithms and a plethora of implementations.

In this paper we propose a unified framework for generating
high-quality visualizations of arbitrary volumetric datasets using the
method of Moving Least Squares (MLS). MLS is a popular scheme for
reconstructing continuous functions from scattered data due to its well
understood mathematical foundations. Furthermore, the MLS frame-
work contains several distinct components that provide a high level
of control over the function reconstruction, and allows for a tunable
amount of data smoothing as well as interpolation.

Using MLS, we reconstruct continuous functions from data stored
on regular as well as irregular grids. We introduce volume MLS ray
casting to generate high-quality images with volume integration and
isosurfaces, such as that shown in Figure 1.

The volume MLS framework enables computing analytic deriva-
tives for high-quality isosurface shading with specularities. To de-
crease the over-all number of MLS function evaluations we propose a
novel adaptive preintegration technique.

The main contributions of this work are: a unified MLS framework
for reconstructing continuous functions and their derivatives from both
regular grids and unstructured volume data; a novel adaptive preinte-
gration scheme for ray casting continuous functions with transfer func-
tions that include isosurfaces; and a system that combines high-quality
isosurface rendering and volume integration. We provide details on the
theoretical foundations of the MLS framework, along with an explo-
ration of the various tunable parameters. We also present an imple-
mentation of volume MLS ray casting on modern graphics processor
units (GPUs), provide details of our system implementation, and show
results on several regular and irregular volume data sets.

• C. Ledergerber, M. Meyer, M. Bächer, and H. Pfister are with the IIC at

Harvard University, E-mail: firstname lastname@harvard.edu

• G. Guennebaud is with CNR of Pisa, E-mail: guennebaud.gael@isti.cnr.it

Manuscript received 31 March 2008; accepted 1 August 2008; posted online

19 October 2008; mailed on 13 October 2008.

For information on obtaining reprints of this article, please send

e-mailto:tvcg@computer.org.

2 PREVIOUS WORK

Direct Volume Rendering: The generation of high-quality im-
ages of volume data relies on methods that accurately solve the vol-
ume rendering integral [28], which models a volume as a medium that
can emit, transmit, and absorb light. The standard method for solv-
ing this integral is ray casting, and was proposed by Levoy [21] for
regular grids, and by Garrity [14] for irregular grids, specifically tetra-
hedral meshes. Splatting, an alternative to ray casting, was proposed
by Westover [49] for regular grids, and has been extended to irregular
grids [25, 51]. In either case, a continuous function must be recon-
structed from the discrete volume data.

While there are well-established mathematical frameworks for re-
construction of continuous functions from regular volume data [10, 18,
27, 9], irregular volumes are more challenging as there is no implied
spatial structure to the data points. Ray casting of tetrahedral meshes
allows a direct interpolation of the data at ray-triangle intersections us-
ing homogeneous coordinates [14]. For curvilinear grids, interpolation
is more complicated [45] and is typically performed at the intersection
points with cell faces [6] or in computational space [13]. Another pop-
ular algorithm for rendering tetrahedral meshes is the cell projection
method [42], in which tetrahedral cells are projected in back to front
order onto the image plane [5, 11]. However, a correct depth-ordering
of cells does not always exist, and great care must be taken to avoid
visual artifacts [50]. Finally, another class of algorithms uses a sweep-
plane through the volume followed by rendering of 2D cells [15, 43].

In the case where no explicit structure of the data is given, scattered
data reconstruction schemes are applied. Arguably the most promi-
nent method among these are radial basis functions (RBFs) that were
introduced to volume rendering by Jang et al.[17]. While RBFs can be
evaluated and rendered efficiently [31], the method requires a costly
initial solution to a global system of equations, the size of which is
tied to the number of data points. Other methods proposed in the con-
text of volume visualization are inverse distance weighting [35], which
is a special case of MLS [41], and discrete Sibson interpolation [36].
This latter method inherently relies on resampling the data onto a reg-
ular grid. In contrast to these approaches, volume MLS ray casting
provides a unifying mathematical framework for the reconstruction of
arbitrarily sampled volume data that allows the user to control the re-
construction and data smoothing in a principled manner.

MLS Function Reconstruction: MLS was introduced almost
half a century ago by Shepard [41], and more recently shown by
Levin as a powerful surface approximation technique [20]. This tech-
nique has been embraced by the computer graphics community for
reconstructing point set surfaces [3, 4], where a number of extensions
have been proposed, such as reconstructing surfaces with sharp fea-
tures [12, 23] and using anisotropic support regions [1]. Unlike RBFs,
MLS does not require a solution to a global system of equations.

Volume Integration: During ray casting, a transfer function (TF),
which maps scalar values and (optionally) gradients to colors and
opacities, is applied to the volume function. These color and opac-
ity properties of the volume are integrated along rays to obtain the
final pixel colors. The TF must be smooth in order to compute the nu-
merical integral efficiently and accurately as no general, closed-form
solutions are available. For the case of a smooth TF, well-known adap-
tive numerical schemes can be employed [32], and theory from Monte
Carlo integration can guide their design [7]. Also, interval arithmetic
has been proposed to make the above approaches robust [33].

In practice, however, smooth TFs limit the range of achievable ren-
dering effects, e.g., isosurface rendering via thin spikes in the TF that,
in theory, require an infinite sampling density. To circumvent this
problem Roettger et al. [39] introduce preintegration, which avoids
visual artifacts by precomputing the volume rendering integral for
ray segments, assuming that the underlying scalar function is lin-
ear. Recent efforts focus on accelerating the precomputation [8, 37],
faster approximation algorithms [24], multidimensional transfer func-
tions [30], and preintegrated lighting [24, 29].

In this paper we propose an adaptive integration scheme based on
preintegration. This scheme is similar in spirit to other numerical inte-
gration schemes, such as adaptive Simpson [32] and the second deriva-
tive refinement scheme of Roettger et al. [38].

3 VOLUME MLS

In order to generate high-quality images, a ray caster must evaluate a
continuous representation, and the associated derivatives, of volumet-
ric data. For volume data defined over a grid, two approaches can be
taken: first, the connectivity of the grid can be used to define a recon-
struction scheme over the locally connected data points; or second,
the data points can be used independently of their grid connections
in a scattered data reconstruction scheme. The first approach works
well for regular grids, where higher order polynomials are often em-
ployed to reconstruct functions of arbitrary continuity. For irregular
grids, however, reconstructions are challenging for anything other then
piecewise linear interpolation. Thus, we advocate a unified reconstruc-
tion framework that takes the latter approach, allowing for continuous
and differentiable representations of regular and irregular grids.

Scattered data reconstruction takes a set of n data points, pi =
(xi, fi), defined over a volume V , and computes an approximation
(or interpolation) to the data points f (x) : V → R. One such well-
studied, meshless scheme is MLS, where f (x) is obtained by approxi-
mating the local neighborhood of x in a weighted least squares (WLS)
sense. The MLS method has a high degree of flexibility, making it
particularly appealing for the reconstruction of volumetric data, while
avoiding the artifacts often incurred by reconstruction schemes that are
constrained to arbitrarily poor connectivities (i.e., interpolation over
poorly shaped mesh elements). This flexibility provides the capacity
for (controllably) handling noise due to measurement errors in scanned
data or numerical errors in simulated data. Furthermore, the MLS ap-
proximation is a continuous reconstruction with well-defined, smooth
derivatives which allows for high-quality shading effects.

In this section, we first describe the MLS framework and mathe-
matical foundations in the context of reconstructing continuous func-
tions from scattered data. We then discuss and explore the various
components of the MLS method as they relate to reconstructing data
stored over regular and irregular grids specifically for generating high-
quality visualizations by ray casting. Our notation is as follows: bold
face lower-case variables denote column vectors, such as x = [x y z]T ,
while bold face upper-case variables denote matrices, such as the iden-
tity matrix I. We note that the MLS discussion and mathematical def-
inition holds for arbitrary dimensions, even though we restrict our ex-
amples and results to R

3.

3.1 The MLS Framework

The main idea behind the MLS reconstruction method is depicted for
a 1D signal in Figure 2. Shown in red, a continuous approximation
f (x) is reconstructed from a set of n data points (xi, fi) by computing

Fig. 1. The continuous temperature function of a simulated heptane
plume rendered with volume MLS ray casting.

Fig. 2. MLS reconstruction of a given set of scattered data points (xi, fi)
in 1D. The local WLS approximation gx for the point x is shown in blue.
Its computation and evaluation at every point of the domain yields the
complete MLS reconstruction shown in red.

and evaluating a local approximation gx at x (shown in blue):

f (x) = gx(x). (1)

The local approximation gx is obtained by the following WLS mini-
mization problem:

gx = argmin
g

∑
i

wi(x)|g(xi)− fi|
2, (2)

where wi(x) is the weight of the sample pi for the current evaluation
point x. These weights typically decrease with distance from x (see
Section 3.1.2). Assuming gx can be represented as a linear combina-
tion of k basis functions b(x) = [b1(x), . . . ,bk(x)]T with coefficients

cx = [c1, . . . ,ck]
T , Equation 2 can be rewritten in the following matrix

form:
cx = min

c∈Rk
‖(

√

W(x)Bc− f)‖2, (3)

where W(x) = diag(w1(x), . . . ,wn(x)) ∈ R
n×n and Bi j = bi(x j),B ∈

R
n×k. It is well-known from linear algebra that the above least squares

problem can be solved using the normal equation. Substituting the so-
lution for cx into f (x) = b(x)T cx yields the following explicit formu-
lation of the MLS approximating function:

f (x) = b(x)T (BT W(x)B)−1BT W(x)f . (4)

This function is smooth, assuming the weights wi(x) are smooth [19],
and can be computed as long as the weighted covariance matrix
BT W(x)B is invertible, which is the case if rank(W(x)B) ≥ k — this

Fig. 3. The effects of using different basis functions and support sizes for reconstructing the Marschner-Lobb data set. In the first row, the data is
approximated using a linear basis with support size 1.8 (left), 2.4 (middle), 4 (right). The second row shows a quadratic basis with support size 2.6
(left), 3 (middle), 4 (right). The boundary behavior of the MLS reconstruction is due to the divergence of the function during extrapolation [19].

implies that at least k weights have to be nonzero. We emphasize that
the matrix W(x) depends on the evaluation point, and hence the least
squares system must be solved at every x.

In the MLS framework, the smoothness of the reconstruction, as
well as the tightness of the approximation to the data values (i.e., inter-
polation), is controlled through the choice of the basis and weighting
functions. Each of these components are discussed in the following
sections.

3.1.1 Basis Functions

When choosing the basis (i.e., b(x)), the main trade-offs are approx-
imation power versus efficiency. Lower order polynomial bases are
less accurate at approximating the data due to fewer degrees of free-
dom in the function. Higher order polynomial bases, however, are less
efficient as a larger linear system must be solved, as well as the de-
termination of a larger neighborhood to maintain stability in the linear
system computation. Furthermore, a too-large basis can yield over-
fitting. We have experimented with several bases, and for ray casting
MLS volumes, we advocate the use of linear b(x) = (1,x,y,z)T basis
functions. Indeed, as shown in Figure 3, a quadratic basis does not
give much better results while increasing the computational burden by
more than a factor of two.

3.1.2 Weighting Functions

Once the basis function has been fixed, the quality of the reconstruc-
tion highly depends on the weights assigned to the neighboring sam-
ples. For uniform data sets, we employ the following simple weighting
scheme:

wi(x) = θ

(

‖x−xi‖

h

)

, (5)

where h is the support size, and θ is a smooth, decreasing weight
function for which several options have been proposed in the litera-
ture [47]. In this work, we use the following compactly supported
polynomial:

θ(x) =

{

(1− x2)α if x < 1
0 otherwise.

(6)

where the power factor α controls the speed at which the weighting
function decreases. Although larger values of α increases the con-
tinuity of the function, large values also require a wider support for
stable computation. A good compromise is α = 4, which guarantees
a C3 reconstruction. Note that in Equation 4, since θ(x) has a finite

support, only points within a distance h of x have to be taken into ac-
count, which allows for efficient computation while avoiding square
roots in the distance computations. The effect of the support size in
the reconstruction is depicted in Figure 3.

To reconstruct irregular, and possibly anisotropic, datasets we use
the weighting scheme proposed by Adamson and Alexa [1], and attach
ellipsoidal weight supports Hi to each input sample:

wi(x) = θ (‖Hi(x−xi)‖) . (7)

The weight transforms, Hi, are obtained using a covariance analysis
of the one-ring neighborhoods. Figure 6 depicts an example of such
anisotropic weight supports. For irregular datasets that do not present
significant anisotropy, it is sufficient to replace the expensive ellipsoids
by balls, reducing the 3×3 matrices Hi to a single scalar radius hi.

In addition to data approximation, the MLS framework is also ca-
pable of data interpolation using weighting functions that contain a
singularity [41]. One such function proposed by Adamson et al. [2] is:

θ(x) =

{

ln(x)2 − x2 +2x−1 0 ≤ x ≤ 1
0 x > 1

(8)

Compared with other interpolating weighting schemes, such as those
based on inverse distances [41, 35], Equation 8 has a finite support,
which is important for efficient evaluation. One property of interpo-
lating MLS which is noteworthy is the flat spot phenomenon [41, 19].
This implies that for a constant basis, the gradient of the approxima-
tion at any data point is zero ∇ f (xi) = 0. To avoid this undesirable
characteristic a higher order basis can be used.

3.2 Gradient Computation

The generation of high-quality shading effects requires accurate gradi-
ent information, as does the adaptive preintegration scheme discussed
in Section 4. There are two established methods for computing the
gradient within the MLS framework. The most accurate method is to
analytically compute the gradient from the partial derivatives of the
MLS scalar field formula (Equation 4):

∂ f (x)

∂xk

=
∂b(x)

∂xk

T

cx

−b(x)T
A(x)−1

(

∂A(x)

∂xk

cx +BT ∂W(x)

∂xk

f

)

(9)

where A(x) is the weighted covariance matrix BT W(x)B.

Fig. 4. MLS reconstructions shaded using the local approximate nor-
mals (left), and the exact analytic normals (right).

A more computationally efficient alternative is to compute the gra-
dient of the local WLS approximation gx, which has been shown to
reasonably approximate the gradient of the underlying function [22]:

∂ f (x)

∂xk

≈
∂gx(x)

∂xk

=
∂b(x)

∂xk

T

cx . (10)

In practice we find that images shaded using either the local gra-
dient or the analytic formula most often lead to indistinguishable re-
sults, except for models presenting high frequencies, such as the result
shown in Figure 4. Hence we advocate, in general, the use of the more
efficient local gradient.

4 ADAPTIVE PREINTEGRATION

The unified MLS framework proposed in this paper incurs a more ex-
pensive scalar field function evaluation than other lower order recon-
struction schemes. As such, we propose an adaptive preintegration
scheme that modifies the length of evaluation intervals along rays,
focusing the computation along segments where the volume integral
changes the fastest. We observe that all of the information needed
to robustly determine an appropriate interval length for evaluating the
volume integral is contained in the preintegration tables and the scalar
function itself. First, because the preintegration tables ensure that iso-
surfaces will be composited as long as the scalar function is monotonic
over an interval, the interval length can be increased with increasing
composited opacity values. And second, because isosurfaces near ex-
trema in the scalar function can be missed, the interval length must
decrease near these features.

From these observations we propose a novel, adaptive preintegra-
tion method for computing the volume rendering integral. An illus-
trative result of the method is shown in Figure 5, where the adaptive
sample locations along one ray are shown. The behavior of the scalar
function along the ray is shown in red while the accumulated opac-
ity is shown in blue. It can be seen that the sampling of the adaptive
scheme (bold vertical lines) becomes more coarse as the accumulated
opacity increases. Refinement occurs, however, around scalar func-
tion extrema to ensure that all isosurface intersections are detected.
Finally, the sampling is terminated when the opacity is saturated. In
contrast, standard preintegration methods [8] can only take advantage
of early ray termination while choosing a conservative step size such
that extrema in the scalar function are adequately sampled, produc-
ing oversampling along intervals where the volume integral changes
slowly.

Fig. 5. An illustration of the sampling along a ray with adaptive (vertical
lines). The function is plotted in red while the opacity along the ray is
shown in blue. It can be seen that the adaptive scheme refines near
local extrema and at the beginning of the ray where the contribution to
the integral is large while the interval length increases with increasing
opacity.

In the remainder of this section we first formulate an approximation
of the volume rendering integral using arbitrary length evaluation in-
tervals (Section 4.1), which is followed by a description of the interval
length adaptation scheme (Sections 4.2 and 4.3). We then include de-
tails on the computation of the preintegration tables and a description
of how to handle clipped ray segments incurred from intersecting rays
with irregular grids (Section 5).

4.1 Approximating the Volume Integral

In this section we derive an approximation of the volume render-
ing equation [28] for use with the proposed adaptive preintegration
method. Specifically, the derivation allows for the integration along
a ray to be approximated with a composition of colors and opacities
computed over arbitrary-length subintervals of the ray. To begin, the
volume rendering integral is given as:

I =
∫ D

0
c(f (x(λ)))τ(f (x(λ)))e−

∫ λ
0 τ(f (x(λ ′)))dλ ′

dλ (11)

where c is the emitted color and τ is the extinction which changes
with the scalar function f along the ray x(λ). For use with preinte-
gration, the domain D of the integral can be split into the intervals [8]
([d0,d1], . . . , [dn−1,dn]), where d0 = 0 and dn = D. the opacity (α) and
color (C) for arbitrary length intervals can then be defined as:

α[di,di+1] = 1− exp

(

−
∫ di+1

di

τ(f (x(λ)))dλ

)

(12)

C[di,di+1] =
∫ di+1

di

c(f (x(λ)))τ(f (x(λ)))e
∫ λ

di
τ(f (x(λ ′)))dλ ′

dλ .(13)

Using Equations 12 and 13 we arrive at the well-known recursive
front-to-back composition formulas for opacity and color:

αi+1 = αi +(1−αi)α[di,di+1] (14)

Ci+1 = Ci +(1−αi)C[di,di+1] (15)

where I = Cn + I0αn and α0 = C0 = 0. This reformulation is exact,
and because there are no assumptions about the length of the intervals,
the step size can be varied along the ray. Furthermore, as Equations
14 and 15 add the contribution of the interval [di,di+1], this contribu-
tion is fully determined by (1−αi)α[di,di+1] and (1−αi)C[di,di+1]. This

property is important in Section 4.2.

Assuming that f (x(λ)) is a linear function on the interval [di,di+1],
α[di,di+1] and C[di,di+1] can be precomputed in a 3D table. This pre-

computation depends on the value of the scalar function f at the front
f (di) and the back f (di+1) of the interval, as well as on the length
l = di+1−di of the interval. We note that these table values are only an
approximation to the true integral over the interval because the func-
tion is, in general, nonlinear and the table has a finite resolution.

For the remainder of this section let us denote the approximated
color of an interval (stored in a preintegration table) by C̃i,i+1,l ≈
C[di,di+1] and similarly, the approximated opacity as α̃i,i+1,l ≈ α[di,di+1].

4.2 Interval Length Adaptation

The accuracy of the volume integral approximation along a interval
can be increased by further subdivision along the interval. As such, the
interval can be progressively refined until the difference of the volume
integral approximation between any two successive subdivision levels
is below some error threshold.

Starting with a coarse step size, the initial volume integral approxi-
mation along an interval for color (i.e., the contribution of the interval
in Equation 14), C1, is:

C1 = C̃i,i+1,l (16)

To increase the accuracy of this approximation, the interval is subdi-
vided, and the contribution, C2, becomes a summation over the two
subintervals:

C2 = C̃i,i+1/2,l/2 +(1− α̃i,i+1/2,l/2)C̃i+1/2,i+1,l/2

The subdivided contributions for opacity are defined similarly as:

α̃i,i+1,l ≈
(

α̃i,i+1/2,l/2 +(1− α̃i,i+1/2,l/2)α̃i+1/2,i+1,l/2

)

This subdivision continues recursively until the difference in the vol-
ume integral approximation over the entire interval changes by only
some small amount.

Based on the volume integral approximations C1 and C2 we de-
fine the relative error of the approximation as |C1 −C2|/|C2|, where

|C| =
√

C.r2 +C.g2 +C.b2 — note that this is not independent from
the opacity (see Equations 15 and 16). To adapt the sampling as the
opacity increases we multiply the relative error by (1−α). The final
termination criteria for the recursive subdivision is:

(1−αi)|C1 −C2|/|C1| < ε. (17)

In the recursion it is important to first subdivide the interval [di,di+1/2]

such that αi+1/2 is known when subdividing the interval [di+1/2,di+1].
This is because αi+1/2 is used in the computation of the termination

criteria for the interval [di+1/2,di+1]. Note that this scheme is automat-

ically optimal for constant transfer functions and linear scalar fields,
since C1 and C2 will be equal to within numerical errors.

4.3 Handling Scalar Function Extrema

The subdivision scheme in the previous section works well as long as
the scalar function is monotonic over an interval. If this property is vi-
olated, an isosurface may exist near an extrema of the scalar function
which is never recovered during subdivision. The MLS reconstruc-
tions are not guaranteed to be monotonic over an arbitrary interval as
they are not linear. Because of that, we allow extrema in the scalar
function to induce subdivisions in the adaptive preintegration scheme.

We propose using the derivatives at the beginning and end of an
interval to determine whether the interval contains an extrema. Thus,
an interval [di,di+1] will be further subdivided if

Dv(f (x(di)))Dv(f (x(di+1))) < 0 (18)

where Dv(f (x(di))) is the derivative of the scalar function f at x(di)
in the direction of the ray v. To compute Dv(f (x(di))) we use the
standard formulation:

Dv(f (x)) = ∇ f (x) ·v . (19)

Equation 19 is efficient to compute in the proposed MLS framework
as ∇ f (x) is already determined for shading, and imposes very little
overhead in an MLS function evaluation. It should be noted that the
accuracy of the termination criteria heavily depends on the accuracy
of the computed gradient ∇ f (x).

5 IMPLEMENTATION

The first step in the proposed volume MLS ray casting system is to
compute the preintegration tables based on an input transfer function.
We compute the table for opacity, as well as the packed tables for shad-
ing and material properties, using the incremental subrange preintegra-
tion algorithm proposed by Lum et al. [24]. In the adaptive preintegra-
tion scheme implementation we must choose two parameters, lmax and
lmin, which bound the length of an interval. Since we know that during
the subdivision process only intervals of length lmax, lmax/2, . . . , lmin

will be used, only those tables need to be computed.

We found that our adaptive preintegration scheme is sensitive to
numerical errors in the preintegration tables. To be able to explic-
itly control the accuracy of the preintegration tables we improved the

incremental subrange preintegration such that we can control the max-
imal step size of the numerical integration, i.e., we supersample inter-
vals if necessary. While the table of length lk can also be computed
from the table of length lk/2 using the idea of incremental preintegra-
tion [46], we found it difficult to control the errors in such a scheme.
The need for high accuracy preintegration also implies larger tables.
All the results in this paper use tables with a resolution of 5122. While
these large tables increase the memory footprint of the system (the ta-
bles require approximately 72MB), they are relatively fast to compute
(up to 10 seconds on the CPU) and could likely be generated on the
GPU at faster speeds, enabling interactive user control of the TFs.

In the case where an interval is clipped against the bounding geom-
etry of the volume we must compute the integral for a length that is not
present in any of the tables. For this scenario, the integral can be deter-
mined by carefully combining values from different tables. Because
this happens only twice per ray, this additional complexity is virtually
unnoticeable.

Next, the ray caster intersects each ray with the boundary of the
volume, finding all the intervals that lie within the (possibly noncon-
vex) hull of the grid. These intersection points are important as the
MLS function approximation is ill-defined away from the data points.
Along each of the intersected ray segments, integration intervals are
determined using the adaptive scheme described in Section 4, and the
MLS function and gradient are computed at the front and back of each
interval (see next section). Finally, the volume integration along the
interval is computed via lookups into the preintegration tables. The
resulting color and opacity are composited with the stored values on
the ray. Early ray termination occurs when the opacity value is greater
than some threshold close to one (for the results in this paper we use
0.99).

5.1 Fast and Robust MLS Evaluation

The most time critical part of our rendering system is the evaluation
of the MLS function and its gradient, which involves both a neighbor-
hood query and solving a linear system. The complexity of the latter
operation depends on the size of the neighborhood and the number of
degrees of freedom in the basis. For a small basis, once the covariance
matrix BTW(x)B is computed, solving the normal equation itself is
relatively cheap and can be done efficiently using a Cholesky decom-
position without square roots of the covariance matrix. Given

BTW(x)B = LDLT , (20)

where L is a lower triangular matrix with unit diagonal, and D is a
diagonal matrix, we can solve cx as:

cx = L−TD−1L−1
(

BTW(x)f
)

. (21)

Not only does avoiding the computation of square roots improve per-
formance, but it also increases the stability of the system. Moreover,
both stability and efficiency can be further improved by shifting the
origin of the basis to the the evaluation point, i.e., b(xi) = b(xi − x),
which is mathematically equivalent and avoids large numbers when
computing the function far from the origin. Since the basis function
is only evaluated at x, i.e., at the origin, it is therefore sufficient to
compute the constant coefficient c1 of cx, hence avoiding most of the
calculation in Equation 21.

The computations of the neighbor samples, on the other hand, re-
quires efficient spatial-data structures. More precisely, given an eval-
uation point x, the challenge is to find all samples pi having strictly
positive weights. Therefore, the choice of both the data structure and
search algorithm is related to the weighting scheme. For the weighting
function defined in Section 3.1.2, we need to find all the ellipsoids (or
balls) containing x. In our CPU implementation this is accomplished
using a kd-tree partitioning of the space where a sample is referenced
by all leaves intersecting its corresponding ellipsoid. Our kd-tree is
built recursively from top to bottom until the size of the node is smaller
than the average radius of the node’s samples.

Table 1. This table lists the data sets presented in this paper, along with the timings of our GPU implementation for the standard and adaptive
integration schemes as well as the number of function evaluations needed by both schemes to satisfy the RMSE shown. We also show the step
size parameters lmin, lmax and the termination criterion ε (see Section 4.2) for the adaptive scheme which were used to generate these results.

Data Set Grid Size FPS FPS # Func Evals # Func Evals Min / Max ε RMSE

Type Standard Adaptive Standard Adaptive Interval Length

Marschner-Lobb regular 41x41x41 0.28 0.46 22M 9.4M 0.16 / 2.6 0.03 0.044

Heptane Plume regular 302x302x302 0.72 0.69 44.6M 18.8M 0.16 / 2.6 0.03 0.044

Blunt Fin irregular 180K tets 241s(CPU) 196s(CPU) 1.7M 1.4M 4.6 / 1.15 0.08 0.017

Bucky Ball irregular 1.2M tets 0.45 0.64 26M 10M 0.25 / 4 0.03 0.017

Torso irregular 1.1M tets 1.9 3.2 5.4M 1.9M 0.25 / 4 0.05 0.043

5.2 CUDA Implementation

In order to achieve nearly interactive performance we implemented a
GPU-based version of the raycaster using CUDA [34]. In our cur-
rent implementation, each thread processes a single ray, and the ray
traversal is entirely decoupled from the volume data structure. For the
ray traversal we implemented both a constant step size strategy and
the adaptive algorithm described in Section 4. In the latter case, the
recursion is managed via a small stack stored in local memory. To ef-
ficiently find neighbor samples, we use the dynamic redundant octree
of Guennebaud et al. [16]. This spatial search data structure is partic-
ularly efficient for GPU applications, allowing for dynamic updates as
well as intuitive control of the memory footprint versus performance.
We did not yet implement the anisotropic weights discussed in Sec-
tion 3.1.2 on the GPU, even though that is possible.

6 RESULTS

In this section we present results of the proposed MLS framework for
several well-known regular and irregular datasets. Except where noted
otherwise, all of the MLS images were generated using a linear basis
with approximate gradients and the proposed adaptive preintegration
scheme with our GPU-based implementation.

Table 1 provides information on each data set, including the rele-
vant parameters used to generate the images and performance results.
The results were computed on a 2.6GHz Intel Core 2 Duo with 8 GB
of RAM and an NVIDIA Quadro FX5600 GPU with 1.5 GB of video
memory. The parameters in Table 1 lead to a root mean square error
(RMSE) below 5% compared to ground truth images computed us-
ing a very small step size. We found that this error tolerance leads
to visually indistinguishable results from the ground truth images. Of
all the parameters ε (see Section 4.2) is the least sensitive for the re-
sulting image quality, while a too-large value for lmax (see Section 5)
can cause the adaptive integration scheme to entirely miss extrema in
the volume integral by inducing an early termination of the automatic
refinement scheme. This early termination results in visible disconti-
nuities in the final image. A too-large segment length for the standard
integration scheme also introduces artifacts, but those are harder to
detect because the images is less likely to exhibit discontinuites as the
sampling positions on neighboring rays are very similar.

The capabilities of the MLS system for regular grids are shown
in the renderings of the heptane plume dataset in Figure 1 and the
Marschner-Lobb dataset in Figure 7. To illustrate MLS ray casting of
curvilinear grids we show renderings of the highly anisotropic NASA
blunt fin dataset in Figure 6. We show performance numbers for ren-
dering the blunt fin on the CPU because we did not yet implement
anisotropic weights on the GPU. Note that the CPU implementation
is not optimized and takes orders of magnitude longer than the GPU
implementation. Irregular grid renderings of tetrahedral meshes are
shown in Figure 8 with the bucky ball dataset (left) and the Utah torso
model (right). For the torso model we estimated the sampling density
at the input samples using the k-nearest neighbor radius and rendered
the reconstructed function. In all of these images, the high-quality
shading of smooth isosurfaces confirms the quality of the MLS re-
construction, while the range of datasets and grid-types illustrates the
versatility of the MLS scheme.

To compare the MLS system with existing ray casting methods,
we implemented a standard piecewise-linear scheme with weighted
normals [26] for tetrahedral meshes (see Figure 6 (left)). The image
shows significant visual artifacts, even though we are using weighted
normals. Figure 7 (middle) shows the result of cubic B-spline convo-
lution for the reconstruction of a continuous function over a regular
grid. The B-spline reconstruction has been shown to be optimal for
the Marschner-Lobb dataset [27]. The comparison shows that MLS
reconstruction obtains competitive results. Using a linear MLS ba-
sis on a regular grid does not reduce approximation errors at the grid
points [44], which explains why the MLS approximation is not tighter.
However, we note that convolution is equivalent to MLS with a con-
stant basis function [44], making MLS is a more general framework
that subsumes convolution.

Fig. 8. Our MLS framework allows for high-quality isosurface shading,
including specularity, combined with volume integration. This is illus-
trated for the irregular bucky ball dataset (left) and the torso model
(right). The torso model displays the sampling density of the sample
points estimated using the k-nearest neighbor radius.

6.1 Performance Analysis

In theory, the complexity of our algorithm is O(m ∗ p ∗ (k + log(n)))
for irregular data sets where m is the number of pixels, p is the number
of function evaluations per ray, n is the size of the dataset, and k is the
number of neighbors used. As pointed out in Section 4.2, the number
of function evaluations per ray depends on the complexity of the scalar
function and transfer function. The runtime of a function evaluation is
O(k+ log(n)), where O(log(n)) represents the traversal complexity of
the hierarchical data structure — in practice the size of the dataset has
very little impact on the evaluation cost that is highly dominated by the
size of the neighborhoods. Using an adaptive scheme, the total num-
ber of function evaluations can be significantly reduced (see Table 1).
However, the limited flexibility of current GPU architectures makes it
very challenging to take full advantage of this gain. In our experiments
we observed that more complex datasets (i.e., those that contain more
high-frequency features) benefited the most from the adaptive scheme.

To give further insight into the complexity of a function evaluation
we compare the number of floating point operations (flops) used for

Fig. 6. The irregular blunt fin data set rendered using a standard tetrahedral rendering scheme (left), the proposed MLS technique with adaptive
preintegration (middle), and the anisotropic weights used in the MLS reconstruction (right).

Fig. 7. This image shows a comparison of different reconstructions of the Marschner-Lobb dataset sampled on a 41× 41× 41 grid. We show the
analytic function (left), a reconstruction with a B-spline filter (middle), and a reconstruction using MLS with linear basis and a support size of 2.4
samples (right).

the evaluation of a number of reconstructing functions in Table 2. We
compare standard trilinear interpolation of the normals and standard
tetrahedral ray casting with weighted normals [26] to MLS ray casting
with constant and linear basis functions. The MLS performance is a
function of the number of neighbors (k). In practice, k usually varies
between 8 and 20. From this analysis we conclude that the flops for
one MLS evaluation is usually less then three times that of a trilin-
ear interpolation. For irregular datasets the most expensive part of a
function evaluation remains the neighborhood query.

Table 2. This table compares the number of flops needed to compute
one function evaluation for different function approximation schemes
and k neighbor samples. For the constant basis we computed the an-
alytic MLS gradient while we included the approximate gradient for the
linear basis. For the trilinear interpolation we included a central differ-
ence gradient.

TriLinear Standard Tetrahedral Constant Linear

Kernel Ray Casting Basis Basis

function 30 7 15*k + 1 39*k + 56

gradient 186 20 14*k + 9 free

total 216 27 (+52 ray intersect.) 29*k + 10 39*k + 56

6.2 Reconstruction Quality Analysis

In practice, function reconstruction is an ill-posed problem for which
there are many reasonable solutions. Furthermore, for visualization
there is a tradeoff between approximation power and visually pleasing
results. The latter is subjective, while the former is well-studied for
MLS. Convergence theory [48, 22] yields error bounds of the MLS
reconstruction, and multivaried nonparametric regression in statis-
tics [40] has lead to a thorough understanding of its bias and variance.

7 CONCLUSIONS & FUTURE WORK

Volume MLS ray casting produces high-quality images and provides
an easy to understand mathematical framework with intuitive param-
eters. It is a first step towards creating an efficient framework which
is able to handle any kind of data regardless of its topology. A next
step in this direction would be to remove the necessary boundary in-
formation and compute a (possibly) nonconvex hull of the data purely
based on the sampling. Our volume MLS framework ties in nicely
with a wealth of existing tools for MLS reconstruction. For example,
one could extend this work to include exact reconstruction of sharp
features.

The proposed system lends itself well to streaming data. Since an
additional data point only affects the scalar function in a bounded re-
gion, a local update of the image could be computed and no global
system has to be solved. The ray casting approach is attractive due to
its simplicity and because it can easily be extended to include complex
cut and region of interest geometry. Finally, our adaptive preintegra-
tion scheme is immediately useful for other ray casting frameworks.
We believe that progress on the theory of the convergence of preinte-
gration could improve the efficiency and robustness of our scheme.

ACKNOWLEDGEMENTS

The authors sincerely thank Markus Gross, ETH Zurich, for inspiring
this work during stimulating discussions at the outset of this project.
The authors wish to thank David Luebke and NVIDIA for gener-
ous donation of hardware. Christian Ledergerber, Miriah Meyer, and
Moritz Bächer were supported by funding from the Initiative in Inno-
vative Computing (IIC) at Harvard. Gael Guennebaud was supported
by the ERCIM “Alain Bensoussan” Fellowship Programme. The Utah
torso model is courtesy of the NCRR Center for Integrative Biomed-
ical Computing at the University of Utah, and heptane plume dataset
is courtesy of the Center for the Simulation of Accidental Fires and
Explosions, also at the University of Utah.

REFERENCES

[1] A. Adamson and M. Alexa. Anisotropic point set surfaces. In ACM

Afrigraph, pages 7–13, New York, NY, USA, 2006.

[2] A. Adamson and M. Alexa. Point-sampled cell complexes. ACM Trans.

Graph., 25(3):671–680, 2006.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva.

Computing and rendering point set surfaces. IEEE Transactions on Visu-

alization and Computer Graphics, 9(1):3–15, 2003.

[4] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM Trans. Graph.,

23(3):264–270, 2004.

[5] F. F. Bernardon, S. P. Callahan, a. L. D. C. Jo and C. T. Silva. An

adaptive framework for visualizing unstructured grids with time-varying

scalar fields. Parallel Comput., 33(6):391–405, 2007.

[6] J. Challinger. Parallel volume rendering for curvilinear volumes. In Scal-

able High Performance Computing, pages 14–21, 1992.

[7] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In

IEEE Workshop on Volume Visualization, pages 91–98, New York, NY,

USA, 1992.

[8] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated vol-

ume rendering using hardware-accelerated pixel shading. In ACM SIG-

GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pages 9–

16, New York, NY, USA, 2001.

[9] A. Entezari. Extensions of the zwart-powell box spline for volumetric

data reconstruction on the cartesian lattice. IEEE Transactions on Vi-

sualization and Computer Graphics, 12(5):1337–1344, 2006. Member-

Torsten Moller.

[10] A. Entezari, D. Van De Ville, and T. Moller. Practical box splines for

reconstruction on the body centered cubic lattice. IEEE Transactions

on Visualization and Computer Graphics, 14(2):313–328, March-April

2008.

[11] R. Farias, J. S. B. Mitchell, and C. T. Silva. Zsweep: An efficient and

exact projection algorithm for unstructured volume rendering. In IEEE

Symposium on Volume visualization, pages 91–99, New York, NY, USA,

2000.

[12] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares

fitting with sharp features. ACM Trans. Graph., 24(3):544–552, 2005.

[13] T. Frühauf. Raycasting of non regularly structured volume data. Com-

puter Graphics Forum, 13(3):293–303, 1994.

[14] M. P. Garrity. Raytracing irregular volume data. In IEEE Workshop on

Volume visualization, pages 35–40, New York, NY, USA, 1990.

[15] C. Giertsen. Volume visualization of sparse irregular meshes. IEEE Com-

puter Graphics & Applications, 12(2):40–48, Mar 1992.

[16] G. Guennebaud, M. Germann, and M. Gross. Dynamic sampling and

rendering of algebraic point set surfaces. Computer Graphics Forum,

27(2):653–662, Apr. 2008.

[17] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P. Gaither, and

T. Ertl. Interactively visualizing procedurally encoded scalar fields. In

Eurographics / IEEE Symposium on Visualization, pages 35–44, 2004.

[18] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-based

transfer functions for direct volume rendering: Methods and applications.

In IEEE Visualization, pages 513–520, Washington, DC, USA, 2003.

[19] P. Lancaster and K. Salkauskas. Surfaces generated by moving least

squares methods. Mathematics of Computation, 37(155):141–158, 1981.

[20] D. Levin. The approximation power of moving least-squares. Mathemat-

ics of Computation, 67(224):1517–1531, 1998.

[21] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-

ics & Applications, 8(3):29–37, May 1988.

[22] Y. Lipman, D. Cohen-Or, and D. Levin. Error bounds and optimal neigh-

borhoods for mls approximation. In Symposium on Geometry Processing,

pages 71–80, 2006.

[23] Y. Lipman, D. Cohen-Or, and D. Levin. Data-dependent MLS for faithful

surface approximation. In Symposium on Geometry Processing, pages

59–67, 2007.

[24] E. B. Lum, B. Wilson, and K.-L. Ma. High-quality lighting and efficient

pre-integration for volume rendering. In Eurographics / IEEE Symposium

on Visualization, pages 25–34, 2004.

[25] X. Mao. Splatting of non rectilinear volumes through stochastic re-

sampling. IEEE Transactions on Visualization and Computer Graphics,

2(2):156–170, Jun 1996.

[26] G. Marmitt and P. Slusallek. Fast ray traversal of unstructured volume

data using plucker tests. Technical report, Saarland University, 2005.

[27] S. Marschner and R. Lobb. An evaluation of reconstruction filters for

volume rendering. In Symposium on Volume Visualization, pages 100–

107, 1994.

[28] N. Max. Optical models for direct volume rendering. IEEE Transactions

on Visualization and Computer Graphics, 1(2):99–108, 1995.

[29] M. Meissner, S. Guthe, and W. Strasser. Interactive lighting models and

pre-integration for volume rendering on PC graphics accelerators. In

Graphics Interface, pages 209–218, 2002.

[30] K. Moreland and E. Angel. A fast high accuracy volume renderer for

unstructured data. In IEEE Symposium on Volume Visualization, pages

9–16, 2004.

[31] N. Neophytou and K. Mueller. Gpu accelerated image aligned splatting.

Volume Graphics, pages 197–205, June 2005.

[32] K. Novins and J. Arvo. Controlled precision volume integration. In Work-

shop on Volume visualization, pages 83–89, 1992.

[33] K. L. Novins, J. Arvo, and D. Salesin. Adaptive error bracketing for

controlled-precision volume rendering. Technical Report TR92-1312,

Cornell University Department of Computer Science, 1992.

[34] NVIDIA. NVIDIA CUDA: Programming Guide. url:

http://developer.nvidia.com/object/cuda.html, 2007.

[35] S. Park, L. Linsen, O. Kreylos, J. D. Owens, and B. Hamann. A frame-

work for real-time volume visualization of streaming scattered data. In

Workshop on Vision, Modeling, and Visualization, pages 225–232, 2005.

[36] S. W. Park, L. Linsen, O. Kreylos, and J. D. Owens. Discrete Sibson in-

terpolation. IEEE Transactions on Visualization and Computer Graphics,

12(2):243–253, 2006. Member-Bernd Hamann.

[37] S. Röttger and T. Ertl. A two-step approach for interactive pre-integrated

volume rendering of unstructured grids. In IEEE symposium on Volume

visualization and graphics, pages 23–28, 2002.

[38] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart

hardware-accelerated volume rendering. In Eurographics Symposium on

Data visualisation, pages 231–238, 2003.

[39] S. Röttger, M. Kraus, and T. Ertl. Hardware-accelerated volume and iso-

surface rendering based on cell-projection. In IEEE Visualization, pages

109–116, 2000.

[40] D. Ruppert and M. P. Wand. Multivariate locally weighted least squares

regression. The Annals of Statistics, 22(3):1346–1370, 1994.

[41] D. Shepard. A two-dimensional interpolation function for irregularly-

spaced data. In ACM national conference, pages 517–524, 1968.

[42] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar

volume rendering. SIGGRAPH Comput. Graph., 24(5):63–70, 1990.

[43] C. T. Silva and J. S. Mitchell. The lazy sweep ray casting algorithm

for rendering irregular grids. IEEE Transactions on Visualization and

Computer Graphics, 03(2):142–157, 1997.

[44] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image pro-

cessing and reconstruction. Image Processing, 16(2):349–366, February

2007.

[45] A. Van Gelder and J. Wilhelms. Rapid exploration of curvilinear grids

using direct volume rendering. IEEE Visualization, pages 70–77, 1993.

[46] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting

for tetrahedral meshes. In IEEE Visualization, page 333, 2003.

[47] H. Wendland. Piecewise polynomial, positive definite and compactly sup-

ported radial functions of minimal degree. Advances in Computational

Mathematics, 4(1):389–396, 1995.

[48] H. Wendland. Local polynomial reproduction and moving least squares

approximation. IMA Journal of Numerical Analysis, 21(1):285–300,

2001.

[49] L. Westover. Footprint evaluation for volume rendering. In ACM SIG-

GRAPH Comp. Graph., pages 367–376, 1990.

[50] J. Wilhelms and A. V. Gelder. A coherent projection approach for direct

volume rendering. In ACM SIGGRAPH Comp. Graph., pages 275–284,

1991.

[51] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting.

In IEEE Visualization, pages 29–36, 2001.

