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ABSTRACT

A ubiquitous requirement in many mathematical and computational problems isd set
well-placed point samples. For producing very even distributions of sanguess complex
surfaces, a dynamic particle system is a controllable mechanism that naagatljnmodates
strict sampling requirements. The system first constrains particles tces@spaind then moves the
particles across the surface until they are arranged in minimal enerfjgwations. Adaptivity
is added into the system by scaling the distance between particles, caugieg dégsities of
points around surface features. In this dissertation we explore and th& dynamics of particle
systems for generating efficient and adaptive point samples of implicécasf

Throughout this dissertation, we apply the adaptive particle system frarkew several
application areas. First, efficient visualizations of high-order finite el¢hiasets are generated
by developing adaptivity metrics of surfaces that exist in the presencerailinear coordinate
transformation. Second, a framework is proposed that meets fundarsantpling constraints
of Delaunay-based surface reconstruction algorithms. In meeting tbaseants, the particle
distributions produce nearly-regular, efficient isosurface tessellthi@nare geometrically and
topologically accurate. And third, a novel analytic representation of mbateviandaries in
multimaterial volume datasets is developed, as well as a set of projectioriapetiaat allow for
explicit sampling of nonmanifold material intersections. Using a tetrahedralifepalgorithm,
the material intersections are extracted as watertight, nonmanifold meshaethail-suited for

simulations.



To my cheerleading squad.
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CHAPTER 1

INTRODUCTION

This dissertation is about manipulating points that sample an implicit surface. Byizimg
an energy function associated with the point distribution, a wide rangengblsgpatterns can
be achieved, from homogeneous distributions to those that are highlyiedaphe point set is
described by garticle systemwhich constrains a set of dynamic particles to the surface while
simultaneously associating potential energy functions with each particle thatannterparticle
repulsive forces, pushing the particles across the surface. Thensyteratively moves the
particles along the induced force field to locally minimize the energy distributiesslting in a
regular distribution of points over the entire surface. Furthermore, ttempal energy kernels can
be manipulated to create higher densities of points around interestingesieddigres. Robust and
controllable, the particle system is an implicit surface sampling strategy thaecaonfigured to
meet the needs of a broad range of applications, from visualization to reeshagion.

Because of their volumetric expression, implicit functions are a naturakseptation for
three-dimensional (3D) digital data representing the physical worldtheh¢hose data are ac-
quired through a simulation or through a measuring device like magnetic resmmaaging
(MRI) machines. Implicit functions characterize a volume by defining whiethmint is on one
side of the surface or the other, implicitly specifying the surface as a eamstiThese surfaces
can be interpreted as a thin band of some value embedded within a volume rtkearknes on
a map for indicating paths of constant altitude over a landscape, illustratéglireA..1.

Oftentimes, data from scanning devices or simulations come in the form of mgutia lattice
of values, which can then be interpreted as an implicit function. In MRI diztasity values for
different tissue types in a patient’'s head, for example, are stored aeguéar grid and can be
used to deduce boundaries between the skull and the brain, or the bdaintamor. Similarly,
vortices in data computed from a computational fluid dynamics simulation can atedbby
finding surfaces of constant pressure, inferred from pressaltees stored at simulation data
points. The ability to locate and visualize these implicitly defined surfaces allowstists to

study effects that would otherwise be too costly, or even impossible, tteceperimentially



Figure 1.1 Implicit surfaces are implied bands of some constant value embedded within a

volume, much like lines of constant altitude in a topographic map.

while similarly providing physicians a noninvasive lens into the physiology @attiology of
their patients. Figure 1.2 provides examples of implicit surface visualizations.

Advances in the acquisition of digital data, as well as the associated abilitytraceihe
implicit surfaces defined within, has also enabled patient-specific simulatiorisriodgeatly in-
crease the accuracy and relevance of biomedical simulations. Simulatioioglefctric fields [151],
cardiovascular fluid dynamics [144, 34], and implanted medical deviceséikdiac defibrilla-
tors [1], to name a few, have benefited from technology that capturésdivédual geometry and
pathology of a patient. To generate these models, digital data of a patientesped to extract
the implicit surface of interest, which is then parameterized into an explica&representation,
such as a polygonal mesh like those shown in Figure 1.3. The parametsuifade model can
then be used directly to study phenomena that occur over the surfaegtemded to a volumetric
representation suitable for biomedical simulations.

Visualization, analysis, and extraction of implicit surfaces are all computtjoohalleng-
ing problems due to the lack of an explicit surface representation. LocHtegurface is a
root-finding problem; the surface exists as the zero crossings of a fgattion. For implicit

functions that have a closed-form inverse, root-finding can be adiimegd efficiently using first-



(@) (b)

Figure 1.2 Examples of implicit surface visualizations: (a) a volume rendering of a tumor
extracted from MRI data using a levelset surface deformation techn8fij€ifnage courtesy of
Aaron Lefohn); (b) a raytraced image of a helium plume computed frormgutational fluid
dynamics simulation (image courtesy of the University of Utah Center for Aotad Fires and
Explosions (C-SAFE)).

(@) (b)

Figure 1.3 Examples of implicit surface extractions for biomedical applications: (egwature
extraction for use in a catheter-placement simulation [34] (image used wipeomtission); (b)
patient-specific model used in an EKG simulation [151] (image used withootigg&on).
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order approximations schemes like Newton-Raphson or subdivisioritailgsr More complex
functions, however, like those embedded in curvilinear coordinate sy$68fsequire compu-
tationally intensive numerical algorithms that do not easily extend to traditiosizlzation and
surface extraction schemes.

Locating the surface of interest embedded in an implicit function for visuaizar extrac-
tion inheriently relies on effective and accurate sampling schemes. Hffisasampling of an
implicit surface comes down to how well a set of discrete points approximagegtierlying
continuous geometry to meet the needs of an application. In visualizaticioricgpsmall fea-
tures is important for providing accurate illustrations of the data. Many traditieisualization
techniques rely on piecewise-linear approximations, thus faithfully reptiesy a curved surface
thar requires a dense enough sampling that the approximation capturgstiogycand geometry
of the surface.

A straightforward approach to adequately sampling an implicit surface isnergee a large
number of samples everywhere on the surface, ensuring, by sheaenuhat all of the features
are captured. Algorithms for producing such surface points are gignsimple to implement and
fast to execute, such as supersampling a surface over a finely slgatliattice. The drawback of
such methods is that most parts of the surface will be sampled by far mots g@n necessary,
which can be particularly inefficient when the root-finding is computationaibtlg. A counter
approach is to purposefully place the surface points according toatbessics of the implicit
surface, such as generating sparser sets across flat areas.d$idthbproduce these adaptive
point distributions are typically more computationally intensive and complex,utbmately
produce more efficient and compact representations of the underlyirigiirsprface.

Extracting a surface mesh for biomedical simulations further requires #hpbiht samples be
regularly spaced such that the resulting polygonalization contains wededheements. In finite
element simulations, theondition numberwhich is the value that quantifies how numerically
well-behaved the simulation will be, is often dictated by the most poorly shdpeteats — for
triangular meshes, a well-shaped element is as close to an equilateral teanqgssible. Thus,
sampling a surface for finite element mesh generation will ideally result ingloered patterns of
points.

The fundamental goal of this dissertation is to provide a robust and dlabteframework for
adaptive sampling of implicit surfaces, specifically for the generationfafieft visualizations
and high-quality polygonal representations of scientific and biomedidal déhe framework

posed in Chapter 3 uses a system of dynamic particles that are constmaretmplicit surface



and minimize a global energy configuration. By employing specific types t@ngial energy
kernels, the system easily accommodates numerous optimization schemedsidtemitlgfdis-
tribute large numbers of particles while requireing that very few paramie¢sttsned by the user.
Furthermore, the addition of a space-warping scheme provides a tureiiéefor a user to
create highly controllable adaptive distributions. Combined with a simple set ihfematical
constraints based on the geometry of the surface, the system cantgeoenalex, adaptive, and
regular distributions of points across arbitrarily shaped surfaces.

Using this new particle system framework, high-quality, direct visualizatimsplicit sur-
faces can be produced for even the most complex of data sets. Forlex&@hapter 4 presents
results from visualizing isosurfaces embedded in high-order finite eledaat sets. These
data sets pose numerous challenges for traditional visualization techrgtiesn be sampled
naturally and efficiently using a particle system by warping space aniosittlypaccording to
surface metrics computed from tensor product quantities. The flexibilitycanttollability of
dynamic particle systems also allows for a framework where particles samgieitaeslement
basis functions directly, avoiding costly numerical inversions of higleordapping functions
which have no closed-form analytical inverse.

In Chapter 5, a pipeline that exploits the regularity of the particle distributioreisgmted for
generating geometrically and topologically accurate surface meshes.nilyiring the particle
system framework with surface sampling theory and PDE-based methaasitoolling the local
variability of particle densities, the meshing pipeline is shown to create higltyquzeshes
of implicit surfaces. Extending this pipeline, Chapter 6 presents a mathemfatioawork
for describing the nonmanifold material intersections in multimaterial volumes tieathan
sampled with dynamic particles. The use of multiple, interacting particle systemssdthow
explicit sampling of topological points, lines, and planes, a feature whictersuked to produce
consistent meshes of intersection materials. These meshes of abutting materigortant for
simulations that span multiple layers and boundaries, such as models fagptimg electrical

signals through the body [1].

1.1 Contributions
This dissertation seeks to provide a robust and controllable method fotivadagampling
implicit surfaces using a system of dynamic particles. In meeting the statedlgsalissertation

provides several contributions:



e A method for adding controllable adaptivity into a dynamic particle system framew
By combining carefully designed potential functions for controlling particléioms with
mechanisms for adding and removing particles, a novel adaptivity frarkds/presented
that alters the effective distance between particles for precise cofftirateoparticle dis-
tances (Chapter 3) [93, 95].

e A framework for adaptively and efficiently distributing particles in the presesfccurvi-
linear coordinate transforms.The controllability of the particle system is employed to
adapt particle distributions to surface geometry that is influenced by c@wailicoordinate
transformations. Furthermore, the particles remain in the space in whichdisdunactions
are defined, avoiding costly inversions of coordinate transformatioichvidenerally) have
no analytic inverse. This framework is shown to be effective for visuajidiata produced

by high-order finite element simulations (Chapter 4) [95].

e A pipeline for generating isosurface triangulations suitable for simulatiodsing fun-
damental work in computational geometry and PDE-based methods, partiolde dis-
tributed such that the resulting set of surface samples will generate smegular Delaunay

triangulations of volumetric data (Chapter 5) [94].

e A mathematical representation of nonmanifold material junctions in multimatesiames,
and a systematic approach for sampling these junctions for tessellations aidtezial
interfaces which are suitable for simulatiorghe development of novel, analytic functions
for describing nonmanifold junctions of materials, as well as a correspgrset of pro-
jection operators, allows particle systems to explicitly sample corners, emlggesurfaces
of material intersections. The resulting point distributions meet fundameartgilsg con-
straints, allowing Delaunay-based meshing algorithms to reliably extracttigataneshes

that include sharp features (Chapter 6) [96].

1.2 Overview
Chapter 2 is devoted to a brief overview of implicit surfaces and their histottye fields of
computer graphics, scientific visualization, and computational geometnaifrhef that chapter
is to establish a mathematical description of implicits that we will use throughoutigisisrtation,
as well as an overview of reconstruction methods used to produce srddfarentiable implicit
functions from volume data (Section 2.4). Also included are severalaeie@oncepts from the

image processing literature for preprocessing segmented volumes tatgeingplicit functions



with controlled feature sizes (Section 2.5).

Chapter 3 provides a detailed discussion of the proposed particle systerawork and its
benefits over other methods posed in the literature (Section 3.2). We pneseenergy functions
and algorithms that guide the dynamic particles (Sections 3.3 and 3.4), aswethaiques for
adapting and controlling the distribution of particles (Section 3.5). The chepteludes with a
comprehensive implementation outline (Section 3.6) that will guide implementionsgisais in
later chapters.

Chapter 4 adapts the basic particle system framework for the visualizatimosafrfaces
embedded in high-order finite element data. After presenting previodsamdsosurface visual-
ization, including that specific to high-order finite elements, we presentraugh investigation
on the difficulties of adapting traditional, piecewise-linear visualization tectesigo these data
sets (Section 4.2). Next, a particle system framework for sampling higir-dirdte element
isosurfaces is proposed (Section 4.3) that includes a formulation ovataug-based adaptivity
metric for surfaces embedded in curvilinear coordinate systems (Sectidy £mally, we com-
pare results generated using the particle system approach againstistiadization algorithms,
indicating that the proposed method is an efficient scheme for creatingpéesisualizations of
these challenging data sets (Section 4.6).

Chapter 5 describes a method for constructing isosurface triangulaticsasmpled, volu-
metric, 3D scalar fields by combining the particle system with surface samplimgytiaad
PDE-based methods. The chapter first introduces previous worknamajang isosurface meshes
that are suitable for simulations, which is followed by a discussion of the sagn@dinstraints
posed by Delaunay-based reconstruction algorithms (Section 5.2). Weressent a pipeline that
outlines a scheme for generating particle distributions that conform to thelingropnstraints
(Section 5.3), followed by an analysis of results (Section 5.5).

Chapter 6 proposes a method for constructing geometrically accurateandold tessella-
tions of material intersections in multimaterial volumes. We develop a novel, furattiepre-
sentation of material junctions, along with a set of projection operatorh, that each material
junction is explicitly sampled with a dynamic particle system (Section 6.4). Whep &atures
in the data are explicitly sampled, we show that Delaunay-based meshingtatgocan be used
to generate watertight, nonmanifold tessellations of the intersections of multinha@idsets
(Sections 6.4.3 and 6.5). The chapter concludes with results that indicgieophesed method
reliably generates meshes that are well-suited for simulations (Section 6.7).

The final chapter of this dissertation presents preliminary results fromsgtes to the parti-



cle system and mesh generation frameworks. Included in this chapter tnedsiéor generating
qguad-packings of particles, for generating sphere-packings tewhedcreation of tetrahedral

meshes, and future avenues of work.



CHAPTER 2

TECHNICAL BACKGROUND

Although this dissertation is abosamplingimplicit surfaces, the ideas herein fundamentally
rely on the description and mathematical properties of implicit functions. Tlapteh briefly
describes and reviews implicit functions as they are used in the computgriegaand image
processing literature. Details on constructing implicit functions, as well asegsing volume

data to control the geometry of the levelsets,are is also included.

2.1 Notation
Our notation for this disseration is as follows: bold face lower-case dagatenote column
vectors, such ag = [z y z]T, while bold face upper-case variables denote matrices, such as

the identity matrixI; bold face subscripts denote partial derivatives of the function withees

to each component of the subscripted column vector, sudh.as [55 55 9E]T

the position of the-th particle, and other nonbold subscripts denote the evaluation of a scalar

; x; specifies

function at a specific particle’s location, suchfs We stray from this notation only in Section
4.3.1, Equations 4.4 — 4.12, where we present the Einstein notation comviamtibe derivations

of curvature computed in the presence of curvilinear coordinate tnanafmns.

2.2 Implicit Surfaces

An implicit surface is mathematically characterized as the zero level setlaf §iedd defined
by a functionF : R? — R. That is, F implicitly defines a locus wheréx € R3 : F(x) =
0} [16]. All other points lie either inside or outside of the surfa¢gx) < 0 and F'(x) > 0,
respectively, by standard convention), with the valud“¢k) frequently indicating the relative
distance of the point to the surface [70].

The specification ofF" is typically given as either a set of discrete samples, often spaced
regularly over a lattice, or as a set of mathematical functions which evaliaea pointx.
Discrete samples are usually physical measurements such as densityatenep@r pressure,

which, when convolved with functional kernels, defiis@surfaceswithin F' as {x € R3 :
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F(x) = ¢} [99] — these kernels will be described in detail in Section 2.4. Heiereferred to as
theisovalueof the surface, and can be varied in visualization applications for explsdientific
and medical data. These mathematical descriptiorfs gipecify the implicit surface as the roots
of a function. Recent work in the computer graphics community has als@gedpmethods
for constructing implicit functions from scattered point data using functsuch as radial basis
functions [27, 108] and moving least squares descriptions [3].

Implicit surfaces defined by continuous, differentiable functions arelyidsed in computer
graphics, visualization, and scientific computing, in part due to their mathetatgeerties. The
gradients of a surface, that is the first partial derivative' o¥ F(x) = [0F/dx, OF /dy, OF/9z]",
are used for advanced shading effects to enhance the perceptimalbsarface features [116,
56, 60]. The definition of surface normals., the normalized gradients, is also important for
surface deformations in simulations and medical imaging [133]. Furthermeringiicit surface
representation easily accommodates morphing and surface editing [23]pQ&ations [102],
shape interpolation [150], and collision detection [41].

The curvature of an implicit surface can be computed as the eigenvaltks tfe second
derivative matrix, oHessian evaluated at a point and projected onto the local tangent plane at
that point. With the Hessian given as:

0’F/0xz% 0°F/0x0y 0°F/0x0z

H=| 0°F/0oxdy 0°F/0y*> 0°F/0ydz (2.2)
0?’F/0x0z 0*F/0y0z 0*F/0z°

the projection ofl onto the local tangent plane of the surface is:

_PHP
=5 (2.2)

whereP = I — nn' is the projection operator, with as the normalized gradient. Tlsbape
matrix G will have two (possibly) nonzero eigenvalues, giving the minimum and maximum
curvature values, with the corresponding eigenvectors defining trepectve directions. A
thorough derivation of this curvature calculation is presented by Kindlreaah[78]. Curvature
is used in visualization to enhance features and provide depth and orierdiaiss [121, 36], as
well as for parameterization of implicit surfaces [129].

Blobbies [15] and metaballs [107] were the first implicit surfaces usechfmteling in com-
puter graphics, while more recent work has focused on functionsiibnatie greater controllabil-

ity, a richer set of surface characteristics, and the ability to reconstomtinuous surfaces from
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scattered point data. For reconstructing continuous surfaces framewdislata sampled over a
regular lattice, certain types of compact spline kernels have been shaffictently and accu-
rately approximate the original data [99, 78]. Methods for reconstruetisigrface by interpolat-
ing a set of surface points are used for interactive sculpting and domy@olygonal models to
smooth representations — example implicit functions include radial basis foadiRBF) [27],
and their more scalable successors, compactly supported radial bagisris (CSRBF) [100],
along with variational implicits [149]. Approximating implicits, such as multipartition oity
(MPU) functions [108], on the other hand, are ideal for reconstrgcturfaces from noisy or
missing surface point data.

There are several major drawbacks of implicit surfaces that limit their usimend mod-
eling applications. Their inability to capture sharp features, as well as tlecligputational
overhead associated with defining many types of implicit functions such &sRBSRBFs,
and MPUs, limit the number of shapes and variety of surfaces that can tieledo Further-
more, implicit functions are inherently unintuitive to deform, and require aifstgnt amount
of machinery to indirectly produce specific deformations [162]. In scieniBualization and
computing, however, the biggest drawbacks for using implicit surfacesh& computational
challenges of directly rendering implicits and the lack of an explicit paramatériz of the
surface for defining computational boundaries — methods in the literatureadadaess these

two challenges will be discussed in Chapters 4 and 5, respectively.

2.3 Distance Transforms
A commonly used implicit function is thdistance transfornmwhich will be used throughout
this dissertation. This function returns, for anywhere in the domain of thetifun, the distance
to the closest point on a surface [70]. The distance transform ofaceXt at a pointx is defined

as

de(x)=Inf [|x—s|. (2.3)

Oftentimes we are interested in thigneddistance transform of a soli§l, which is the distance to
the closest point on the boundary ®f 4.5, with the sign of the value indicating inside (negative

by convention) or outside of:

ds(x) = sgn(x) inf | x s | (2.4)
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where

-1 ifxeS
sgn(x) = { 1 otherwise. (2.5)

Unless stated otherwise, we will assume a signed function when discussiagog transforms
in this dissertation, and will thus refer to Equation 2.4 as simiffly). Figure 2.1 shows a 2D
distance transformation of curve.

The distance transform is an implicit representation of the surfgeg = 0, and has nu-
merous interesting mathematical properties. For examyplé(x)| = 1 almost everywhere with
Vd(x) orthogonal to the levelset passing throughthe exception being at locations where the
gradient is undefined due to more than one closest surface peifp¢ints along thenedial axis
which will be discussed in more detail in Section 5.3.1). The distance trans$ocontinuous
everywhere, and is differentiable almost everywherme, (exceptthe points along the medial
axis). Furthermore, where the distance transform is differentiabler#uamt field isl-Lipschitz
continuous which is defined for a functio#” as|F(x) — F(y)| < |x — y|— this property is
a smoothness condition that states that the magnitude of the gradients of theeliséamsform
will never be larger than its Lipschitz value of one.

To compute a distance transform of a solid, such as a binary classificatipayscale classi-

fication can be initialized in a narrow band around the boundary of the satluthat

Figure 2.1 A distance transformation of the black curve, where the shade of gpagsents the
signed distance from the curve.
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Tl elsewhere. (2.6)

P(x) = { d(x) in the narrowband
Methods such as anti-aliasing have been shown to be effective atimgdumxelization arti-
facts [156]. For cases where the boundary is defined as an isoswoiffa functiont”, a first-order
approximation ofl can be computed d$" — ¢)/|VF| in the narrow band region, wheeas the
isovalue of the surface.

Once the narrow band region has been initialized, several methods exgsiniputing the
distance transformation over the domain of the function, such as the chdmsfance trans-
form [124, 24] and the vector distance transform [38, 101]. A popuoiathod for computing
the distance transformation is the fast marching method (FMM) [132, 138¢hvwcomputes the
arrival time of a front that expands in the normal direction over a setidfgpints. By solving
the Eikonal equation from the boundary conditions given in the narrowd begion around the
surface, the FMM establishes an inverse relationship between the spéwsel foont and the
magnitude of the gradient field over a domain. Becgdd&é = 1 at the surface, the front will

move with unit speed and result in a distance transformation.

2.4 Reconstruction Kernels
The proposed system specifically targets volumetric data, such as setjiomsntaom MRI
or CT scans, which come as a set of discrete values defined overlarriegtice. We construct
a continuous, differentiable implicit function from these discrete points Imyawing the data
with reconstruction kernels. In 1D, a set of discrete sample pojntecated at positions;, are
represented continuously a&) = ) . v;0(x — x;), whered(x) is the Dirac delta function. The

convolution ofv(x) with a continuous kernef (x) is defined as [54]

7

(v f)(x) = Z vid(x = xi) f(x) = Y vif (x — x,). (2.7)

In visualization, reconstruction of a continuous implicit function in 2D and i&gdiently uses
separable convolutigrwhich treats each axis in an image (or volume) separately [76]. Thus, a 1D
continuous kernef(x) generates a 3D continuous kerifék,y,z) = f(x)f(y)f(z), resulting

in a 3D convolution:
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(0 [)x%,y,2) = D _vigef(x = x) f(y — y;)f (2 — z). (2.8)
1,7,k
Using separable convolution, derivatives of the reconstructed funcén also be evaluated and

summed along each axis:

M Zi,j,k: Uijk‘f/(x xi) f(y — YJ) (z — z)
(’U*f)é,’yz) — Zi,j,k U”kf(X — XZ) ( ]) (Z - Zk) (29)
% = Zi,j,k Uijkf(x - Xz) (y y]) (Z - zk)'

The choice of reconstruction kernel for different applications aniémiht scanning modal-
ities has been extensively studied in image processing [54]. In visualizaterever, the most
common reconstruction method is trilinear interpolation due to the ease and dfpéedom-
putation, as well as its pairing with many techniques that assume piecewisedmtaa For
visualization tasks that require a higher order reconstruction, sucheadefign of transfer
functions for volume rendering boundaries and interfaces [77],indstpes of compact kernels
have been shown to effectively balance computation efficiency with gppdogimations of
derivatives [99, 78]. Using these observations, this dissertation utdizéscubic B-spline for
approximating volume data, or4& Catmull-Rom spline for interpolation. Figure 2.2 presents
two isosurface extractions of a distance transform using an approxinkaing! (eft) and inter-

polating kernel (ight).

2.5 Mathematical Morphology

Volume (and image) data in the form ofténary image i.e., where the value at each pixel
indicates the pixel is part of the material, or not, is often preprocessed ttlsifieatures and fill
gaps. Using only blurring kernels that smooth data through diffusioin as@ Gaussian kernel,
can result in arbitrarily small (and sharp) features which can impose ailyithigh sampling
requirements for applications that must capture all parts of the surfaeeindéad propose to
preprocess labeled data using mathematical morphology, first on binargsrtmaglose gaps and
remove features of a certain pixel size, followed by a grayscale morghthat limits the radius
of curvature of the reconstructed data. We explain each of thesetogxirathe following two
subsections. For these sections we will refer to 2D and 3D data stored oegular lattice as an

image
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(@) (b)

Figure 2.2 Examples of an isosurface of a distance tranform extracted using @p@oxi-
mating4® cubic B-spline reconstruction kernel, and (b) an interpolatih@atmull-Rom spline
reconstruction kernel.

2.5.1 Binary Morphology
By expressing an image in a set theoretic framework, binary morphologratipns can be
described by unions and intersections of the shape contained in the imagmaeviphologic
stencils. As described by Gonzalez and Woods [54], binary morphalpgyations have two
fundamental operations -dilation, which will add material to the shape boundary; @nosion
which removes material from the boundary. Dilation of a set (a shape iresyhimage)A by a

stencilB is

A& B=1{z|B,nA#0} (2.10)

while erosion is

A6 B ={2|B, C A} (2.12)

These two operations are shown in Figure 2.3.
Building on these two primitive operations, two other fundamental morpholgagcations

can be defined.Openingsmooths the boundary by removing small features and thin regions,

while closingsmooths the boundary by closing gaps and eliminating small holes. Opening is an

erosion ofA by B, followed by a dilation of the result bjs:



16

(@) (b) ()

Figure 2.3 A binary segmentation (a) and results of the fundamental binary morpholog
operationdilate (b) anderode(c).

AoB= (Ao B)® B. (2.12)

Closing, on the other hand, is a dilation4foy B, followed by an erosion of the result 3.

AeB=(A®B)o B. (2.13)

These two operations are shown in Figure 2.4.

For 3D binary images, there are three basic, isotropic stencils. The fag-inted stencil
we will call aplus the second is a 22-point stencil that is a solid cube minus the cornerswaich
will call a ball; and the third is a 26-point solicubestencil. The operations erosion and dilation

can be intuitively thought of as sliding these stencils along the inside or outsitie dinary

(@) (b) (©)

Figure 2.4. A binary segmentation (a) and results of the binary morphology operaimersb)
andclose(c).
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shape, respectively. In Figure 2.5, isosurface extractions of the steacils are shown. These
stencils can be dilated with themselves, or in combination to produce largeilstenopening
or closing features larger than one pixel.

For results in this dissertation, specifically those presented in Chapterltaweefound that
rounder stencils (like the ball stencil) produce the best binary shapesfeasing the minimum
size of features in the reconstructed data. In Table 2.1 we present tiocd stanbinations used
in this dissertation. However, other combinations can produce the similidtsegun example
of the effects of morphology on the geometry and topology of an implicit saran be seen in
Figure 2.6.

2.5.2 Tightening

To produce smooth surface reconstructions from binary data, the datdmsmoothed at the
subvoxel level to eliminate aliasing artifacts from the voxelization. Blurringdiffusion (.e.,
using a Gaussian blurring kernel) can generate arbitrarily small suidateres, even if small
features in the binary data have been eliminated using morphology opera&diotise other hand,
methods that perform grayscale morphology operations based ontwerflws can smooth
the data while maintaining a lower bound on the feature size. One such gieysorphology
scheme proposed by Williams and Rossignac [160], used in Chapter Betstaghtening which
limits the radius of curvature of the resulting boundary using constrainezisk curvature flow.
Other methods have also been proposed that obtain similar results, suobethtit use discrete
Willmore flows [18] or implicit fairing [40].

Tightening eliminates high curvature on a surface while preserving lovatuner parts of the
boundary by defining a region around the surface calledrtbgar in which minimum length
loops are computed. These loops are the boundary of a tightenedestinéadas the properties
that the radius of curvature is greater thaeverywhere and differs from the original surface

only within the mortar. The mortar is defined by morphological operations caillendingand

— -
/ /
i D l | //
y /
/ /
L
/ /
y /
/ /

plus ball cube

Figure 2.5 Isosurface extractions of the three basic isotropic stencilplusis a 6-pointed
stencil,ball is a solid cube minus the corners, aubeis a solid cube.
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@)

(b)

(©)

Figure 2.6. Isosurface of a brain segmentation [142] at various stages ofqmesgsing, extracted
using an approximating kernel: (a) the original segmentation; (b) afteringend closing the
volume using a ball stencil; (c) after tightening with= 1.
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Table 2.1 The specific, round stencils used in this dissertation for a range oféesizes. The
stencils were generated by dilating combinations of the three basic isotropidstevherep is
theplusstencil,b is theball stencil, and: is thecubestencil.

| feature size stencil morphologyl stencil isosurface |
. ®
2 bdc
3 (b®p)de
4 (pob)®d@p

filleting, which are analoguous to the binary morphology operations openinglesidg: The
mortar of the shape in Figure 2.7(a) is shown in gray in Figure 2.7(b); minimngitidoops are
computed in the mortar with = 40 to generate the shape in Figure 2.7(c). Figure 2.6(c) shows
an isosurface extraction of a brain segmentation tightenedrith.
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(@) (b) ()

Figure 2.7. The original shape (a) has a mortar shown in gray in (b). The tightenéats, with
r = 40 is shown in (c). (images used without permission)



CHAPTER 3

DYNAMIC PARTICLE SYSTEMS

Particle systems are a mechanism for controlling point samples and distribugimgaitross
an implicit surface, producing compact, object-space samples of thelyindegeometry which
can then be rendered efficiently, or, used as input to a parameterizeliems. Recent research
on point-based surface representations also suggests that point gdis engiable alternative to
parametric surface representations in applications where the topologitstaints of a param-
eterization are unwieldy or inefficient [57]. The state of the art in partigdtesns for sampling
implicit surfaces, however, presents some shortcomings. First, mostsef $yetems have many
parameters that interact in complicated ways, making it difficult for users® tlie system to
meet specific requirements. And second, these systems do not readillydemzElves to spatially
adaptive sampling schemes, which are essential for efficient, accepagsentations of complex
surfaces.

In this chapter we first review the history of particle systems in the compuaphgrs litera-
ture, focusing on the work of Witkin and Heckbert [162] which establighe scheme as a viable
method for sampling implicit surface. We then present a new frameworkdtitaliting particles
on implicit surfaces, including a new class of energy functions and aespaging scheme for
adapting the particle densities. These techniques are shown to provilie stattable, efficient,
and controllable mechanisms for distributing particles that sample implicit ssriaithin a

locally adaptive framework.

3.1 Background
Particle systems for sampling implicit surfaces were introduced to the compajpdrigs com-
munity more than a quarter of a century ago. Modeling surfaces with panvelesirst proposed
by Szeliski and Tonnesen [139, 140] as an oriented particle systensahgiles deformable
surface models. They employ an energy function from the molecular dyeditei@ature which
causes particles to exert short-range repulsion and long-rangdiattraeeping particles at an

appropriate distance from each other. Turk [148] uses repelling lesrtic resample polygo-



22

nalized static surfaces using curvature measurements, while De Figuetrad{B39] propose a
physically-based particle method to polygonalize implicit surfaces by modedirtcies with a

mass-spring system. Other work presents ideas for sampling implicit ssiffacanimation [41]

and texture mapping [169]. In parallel, a body of work has been degdlopthe mathematics
community that studies the discretization of surfaces via energy minimizationsg2p

In 1994, Witkin and Heckbert [162] introduced a novel approach nopgdiag and controlling
implicit surfaces that builds on many of these early ideas. The system thegilmieconstrains a
set of interacting particles to lie on an implicit surface while each particle repealby particles
to minimize a Gaussian energy function. The Gaussian energy has atehiatimdength, which
is adapted for each particle to suit the distribution of its neighbors. The lgani®ractions
are constrained to the local tangent plane of the surface, while the padreeeprojected onto
the implicit surface. The Witkin and Heckbert (W-H) method includes appraeind0 free
parameters, and when they are carefully tuned ([162] gives antieffeset of guidelines), the
resulting system produces a homogeneous distribution of particles on rflaeesu The W-H
system will be covered in more detail in the following section.

Heckbert [65] extends the original W-H method by developing a spatiaimgoptimization
that determines the radius of influence of a particle and only calculatessféwc neighboring
particles within this radius. The radius of influence varies from particle ttig® so the
bounding sphere must be computed for each particle. An extension to thedethmosed
by Hartet al. [62] allows the system to sample increasingly complex surfaces within antobjec
oriented framework that numerically differentiates implicit surfaces compaséarge numbers
of control parameters. Galet al.[52] propose a method that uniformly samples implicit surfaces
generated from the BlobTree model [164], creating interactive visu@imof these surfaces.
To decrease the number of iterations a particle system requires to centengetet al. [86]
present a geometric scheme for initializing particle positions over a surfdie method is fast
to generate uniform initial positions, and Okaal. [109] extend these preprocessing ideas to

quickly produce initial particle positions that are adaptive to surfaceaturs.

3.2 The Witkin and Heckbert Method
The W-H method constrains repulsive particle® = {py,--- ,pn—1} to lie on an implicit
surface of the functiorf'(¢), which is controlled by parametetgt) that change over time to

meet user-defined surface deformation goals. That is,
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F(xi,q(t)) =0 3.1)

wherex; is the position of particlegp;. In this framework, particles provide not only a way
to visualize the implicit surface in real time, but also provide a handle throdgbhwsurface
deformations are controlled by updating the parametgt$. This dissertation is concerned
with only the particle placement, and thus, to simplify the discussion, we ignorsuiti@ce
deformation terms from the original W-H formulation.

Once the particles lie on the surface, individual potential functions a@caged with each
to induce particle-particle interactions. Each partiglg, creates a potential field, which is a
function of the distance betwegs; and all neighboring particles that lie within the potential
field. The energy at a particie; is defined as the sum of potentials of theparticles that interact
with p;:

m

Bi=y Y Bl 32

=1,

wherer;; = x; — x;. In the W-H scheme, a Gaussian kernel is used for the potential function:

ij = QLexp 552 .
where« is a global repulsion amplitude parameter, andcalled the repulsion radius, is the
standard deviation of the Gaussian.

The derivative of a particle’s energy with respect to its position givestashe repulsive force

that defines the repulsion velocity direction (steepest descent) that minitinézlecal energy:

m

V,L- = =

Oxi  Oxi A= 0wy [ |

(3.4)

Iteratively moving particles along their energy gradients causes the systamnverge toward a
minimal energy configuration.

The surface constraint is enforced by projectingnto the local tangent plane of partigg,
and then reprojecting the updated particle position onto the zero Satsihg a Newton-Raphson

gradient descent technique. The change in a particle’s positjaa characterized by
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VE;

. VF; @ VF;

- W) Vi — ¢Fz
wherel is the identity matrixV F; is the spatial gradient df' at the particlep;, andV F; @ V F; is

the projection operator formed by the vector direct product of the gnadide last term in (3.5)

is the reprojection onto the implicit surface (tleedback ternmn [162]), which is scaled by a free
parameter. A fraction of x; is added to the current position in the manner of a finite forward
difference schemd,e., x; «— x; + A%;, where\ is the gradient descent constant mentioned
previously. The patrticle is then rendered using a disk oriented to lie in thedodace tangent
plane [139].

Each particle maintains an adaptive repulsion radiysywhich grows and shrinks based on
the local energy values. This allows particles to quickly spread over ttfi@ceuby increasing
their repulsion radius in sparse regions, which in turn increases theantiehp forces that push
particles to lower energy states. Accompanying the adjustable radiusghtting and dying
mechanism based on a target radiisthat controls the insertion and deletion of particles in
the system. When a particle’s drops below some fraction @f, indicating a densely sampled
region, it is removed, and when it goes above some multipte afdicating a sparsely sampled
region, a new particle is inserted nearby. The system can thus quickly paotieles into sparse
regions by growings; for particles in underpopulated regions, and then inserting new patrticles
wheng; becomes too high.

The dying mechanism is also important to keep particles from clumping together if they get
closer to each other than the characteristic length of the Gaussian potemtial. kKAt o;, a
particle’s force function begins to dip towards zero as the derivativih@fGaussian energy
reaches a maximum, creating a potential well that can trap particles togetltiboudh the
particles will not be able to force each other away, the increase in theectse energies will
cause theib; values to decrease, either eventually moving the particles out of the poteelial
or causing a particle to die as s falls below the dying criteria cut-off.

Ultimately, the system forms homogeneous distributions of particles over tif@csuny
adaptingo; until all particles have similar energy measures. Many applications, howeggiire
inhomogeneous distributions based on curvature, such as using pddiplelygonalize [72] or
to parametrize [169] the surface. Several extensions to the originap@titie system have been
proposed in order to accommodate increased sampling in areas of highurarfd23, 35, 72].

All three extensions apply an adaptive, per-particle, curvature digmey to either the repulsion



25

radius,o;, or to the target radiugj;. We have found these extensions do not provide adequate
curvature dependent distributions for complex surfaces with largetizar$ain curvature values,
confirming the difficulties mentioned bydachet al.[123] and Karkani®t al.[72].

These difficulties arise becausgwill grow and shrink regardless of the underlying curvature
value, ands; does not control the behavior of a particle apart from its splitting and dyiig
example, consider a particle in a high curvature area with a relativelyJods o; increases this
particle splits at faster rates than particles in nearby flatter areas. Howee®se new particles
will merely be pushed out onto flat areas, which will, in turn, become toodeowresulting in the
deletion of particles. Meanwhile, the high-curvature particle, missing then§emarticles it re-
cently created, will continue to split—a never ending cycle of insertion aledide, illustrated in
Figure 3.1. In our experiments, when we tuned parameters to stop the insietation cycle by
expanding the hysteresis of insertion and deletion we found that the paistibutions did not
reflect the desired differences in particle densities—the W-H schemetmmasd homogeneous
distributions despite variations i Local adaptation in the W-H scheme is significantly more
complex than a single parameter; it also requires modifications to the partidlentachctions
with the per-particle energy functions.

Further complicating fine-grained control of the system are not only theemus free pa-
rameters in the splitting and dying mechanism, but also the tunable parametersiimtbgcal
algorithm used for iteratively distributing the particles. The W-H method relies gradient

descent for both particle repulsion angd adaptation. Discretized gradient descent algorithms

00|[00][0O
O o O 0%°0C|O e O
00|’ /loo

Figure 3.1 Adapting the radius of particles based on local surface curvature MWiHesystem

results in a cycle of insertion and deletion of particles: (a) a high curvatanticle in red has
a low energy value; (b) the high curvature particle splits to increase itggrand these new
particles are pushed outwards towards a lower curvature region sabypled yellow particles;
(c) the new particles are deleted as the lower curvature area becomeasaweed, leaving the
high curvature particle again in a low energy state.
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invariably introduce a critical free parameter (the descent rate, or lnaitge per iteration), and
the system can easily become either too slow or unstable if the parameter isényptoped. As
a result, changes to the W-H system often entail careful retuning of tnespmnding gradient
descent parameter.

In this chapter we propose a new approach to distributing particles agnossplicit sur-
face, allowing for a wide range of distribution patterns from homogenémbéghly adaptive.
The proposed system is general across a broad range of shapéexiomgnd size, and re-
quires minimal parameter tuning from surface to surface. The new frarkdwilds upon the
constrained particle system developed by Witkin and Heckbert, but irdesda new class of
energy functions accompanied by a single, global radiukat virtually eliminates the need
for insertion-deletion to ensure even distributions of particles acrossntite surface. These
(approximately) scale-invariant energy functions allow particles to intémaa similar fashion
over a wide range of distances without adapting or tuning parameters.pdrkiele insertion
and deletion mechanism is instead applied for control of particle densitiespawihg, and is
combined with a space-warping scheme that causes particles to distributéghith teensities in
regions of interest. To address the limitations of gradient descent weifymtbpose an adaptive
time-stepping minimization scheme, which automatically tunes the descent rate tonacdate
the individual particle force magnitudes.

The result is a robust system with relatively few parameters that progicesv capability:
a controllable, locally adaptive distribution of particles on implicit surfacegch&nisms such
as neighborhood size and deletion/insertion of particles can now be ddapteset other con-
straints, such as the total number of particles in the system, the averagdéepdetisity, the

efficiency of the computation, or update and rendering times.

3.3 A New Particle Energy Scheme

At the heart of the proposed particle system is the computation of the potemeiay associ-
ated with particle-particle interactions. The minimization of this energy definesdgethm for
distributing particles across the surface and leads to a quantifiable nogoriadal distribution.
This pairwise potential energy;; is the most important aspect of any such particle system, with
a bad energy function leading to numerical instabilities and uneven parti¢tédions, and
a good function resulting in a homogeneous steady state. We have expgedméth several
potential energy functions from the literature and have identified three tengiarharacteristics

of a well behaved potential energy function. First, energies should'beontinuous functions



27

of particle distance. Second, the energy functions should be compagiitbghobal influences

and allow for efficient computation. And third, to avoid characteristic lengthd the associated
parameter tuning, the energy must be scale invariant — that is, two particléf®eent distances

should have the same ratio of energies regardless of the choice of uthitssyfstem.

The Gaussian energy used in the W-H method is smooth and nearly compaaséehe
function can be truncated in a manner that does not significantly affeetits/or. The Gaussian,
however, has a characteristic length and is not scale invariant. A parlyculzresting example
of a scale-invariant energy is the electrostatic potenfigl,= 1/|r;;|. The electrostatic function
is smooth, except at the origin (which can be fixed by adding adding a soretant to the de-
nominator), but does not fall off quickly enough to provide local bétraAs a result, particles do
not remain on flat regions but instead concentrate exclusively on xgdmgg-curvature areas—a
well-known phenomenon from electrostatics. Furthermore, truncatingdéhtastatic potential
yields unreliable results, and the configurations of particle steady statesmgrsensitive to the
distance of truncation. Thus, the electrostatic function is not approximaieipact. Figures 3.2
(a-b) show graphs of the Gaussian and electrostatic energy funcéspgctively.

An energy function which establishes a good compromise between apptexsoade invari-

ance and compactness isnadified cotangent

M5> lrijle _ m <
E, - cot( 25+ =55 vl <o (3.6)
0 ’rij| >0

which is shown graphically in Figure 3.2 (c). This potential has one freanpetero, which
establishes the farthest distance at which particles interact. \Whgrj= 0 Equation 3.6 goes
to infinity — we avoid this numerical instability by adding a small valag,= 1077, to the

interparticle distances. The derivative of this energy with respect tejgatistance is:

E;; |1 =2 <M£>} .
0 _ = {1 sin e rij| <o (3.7)
a‘rij‘ 0 ‘rij|>0'

The derivative shows an analogous relationship to the electrostatic pbt&kian the distance
between particles is small relativedosin(|r;;| /o) ~ |r;;|/o, and the force behaves likel /72,
which is invariant to scale.

The particle system uses Euclidean distances when computing the distmeerbparticles
as opposed to the more accurate, and computationally expensive, igedidesce. This ap-

proximation is reasonable as long as the distance between particles is sntiak teléhe local
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Figure 3.2 Plots of energy functionsK) and the corresponding force functiong)(: (a)
Gaussian energy, exhibiting a characteristic length; (b) electrostatigyee&hibiting a necessary
truncation; (c) the proposadodified cotangergnergy, exhibiting compactness and approximate

scale invariance.

(@)

(b)

(©)
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curvature of the surface such that the surface is approximately plelmah is a valid assumption
when adapting the particle densities with curvature (discussed in Sectioh &2 values that
are large relative to the dimensions of the domain, it is possible then to inclutiggsin the

energy and force computations that lie on non-adjacent parts of tteecsufifo cull some of the
non-neighboring particles, we scale Equations 3.6 and 3.7 by a weightictidn based on the

dot product of the normals @i; andp;:

1 n; -n; >y
w;j =< cos (%) ¥>mn;-n; >0 (3.8)
0 n;-n; <0

with v = 0.156 for the results in this dissertation.

Another energy that is very similar to the modified cotangent function is al rexkagy:

(w)"’
1—( =2
o

<

Eij = (u) Iryl <o (3.9)

0 ‘I‘ij’ >0
with a derivative given as
OF 2 | 1 <
TR B LCO) e

1] “

0 |rij‘ >0

Experiments using this function result in visually similar distributions as thosergtd using
Equation 3.6.

Our experiments show that the modified cotangent and radial energiegboewusly dis-
tributes particles across the surface, freeing up the need to mediiy a per particle basis
or to implement a parameter sensitive particle insertion and deletion algorithm. artiegs
distribute themselves in a nearly hexagonal packing, which is the geradtatrpfor optimal
configurations [127]. The system is well behaved due to the lack of mctegistic length in
the energy or force function, and works across a broad rangerfafcsushapes and sizes with
no modifications. Because of this robust behawiocan be treated as an application dependent
parameter which can be tuned in accordance with the desired densityiolgseaind the run-time

requirements of the application — these ideas will be discussed furtheriioi$8c.



30

Table 3.1 illustrates the robustness and generality of the cotangent daecgpn (with the
radial energy exhibiting similar results). For these examples we start witidamaplacement of
particles, then iteratively move these particles using a gradient desd@hesystem converges
to a homogeneous distribution. We vary the value ainder two different scenarios: a sparsely
packed system of 300 particles, and a densely packed system of B@lepa Wheno = 1
(whereo is the fraction of the domain size), the energy has a global influence oweantire
surface function domain. The patrticle distributions continue to be homogsraewe reduce
o, demonstrating that the cotangent energy is approximately invariant owadearange of
scales. The only restriction is thatmust be large enough such that particles interact with a
ring of neighbors at the steady state (~ 6 for this example). The upper right example in
Table 3.1 shows the system breaking down wheg too small to provide sufficient interaction.
As discussed in later sections, this condition can be met automatically by eitheasimgoe or

adding more particles.

3.4 Moving Patrticles
Integrating the particles towards a progressively lower energy stateidiaear optimization
problem that introduces numerical challenges. A gradient desceunire@sgcareful tuning of
the step size parameter, which can vary from surface to surface,vandparticle to particle.
Improper values can lead to very long convergence times if the step size ssnilh or irrec-
oncilable oscillations around the minimum if the step size is too large. To avoid phelsiems

we have implemented an adaptive gradient descent integration algorithm, @pititeof the

Table 3.1 The effects of varying the one free parametein the cotangent energy function. The
total number of particles;, is constant along the rows, and the valuera$ the fraction of the
total domain. The average number of influenced neighborss given for each variation. The
upper right example illustrates the one constraintpwhich is thato must be large enough to
ensure adequate distributing forces at a particle.
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Levenberg-Marquardt integration scheme [119], that does notregny tuning of parameters,
described in detail in Section 3.4.1. We also propose a Gauss-Siedét ghaddegy, in which
particle positions are updated one at a time, and each particle update retles miost recent
positions of its neighbors. Moving particles in this method causes the distribatioonverge
about twice as fast as iterating using a Jacobi update where all particenmeats are computed
before making any positional updates [73].

A two-step update scheme keeps the moving particles constrained to theeskifat, particle
positions are updated based on the repulsion velocity in the tangent plane:

(3.11)

F,® VF,
X; — X; + <IW) -

VF;-VEF;

which is the result of a Lagrangian formulation of the constrained optimizatetrkéeps parti-
cles on the zero sets ¢f. Movements in the tangent plane can, however, push particles off of
the surface, especially in areas of high curvature. Therefore anptgme movement must be

followed with a reprojection:

VEF;

~FisE v (3.12)

X; < X5

which is a Newton-Rhapson approximation to the nearby roots (zero $efts)\We have found
that a single iteration of Equation 3.12 is generally sufficient to keep partaléise surface for

most well-behaved implicit functions.

3.4.1 Adaptive Gradient Descent

To overcome the numerical problems of using a fixed stepsize parametarimibgrating
the particle motions, we propose an adaptive gradient descent methoditihaiagically tunes
individual step sizes for each particle. Each particle maintains an indivitieja size parameter
\; that is adjusted by the system based on the local energy of the particletidepa temporarily
moved to a new position, with the motion scaled Xy and the new energg;“" is compared
to the old. If the energy is not lower, the value is decreased and the particle attempts another,
smaller movement. Otherwise, the particle accepts the movement, akdistsncreased for
the next iteration. When,; is low the particle moves in small steps in order to not over step
the minimum, but when\; is high, the particle moves much faster, quickly minimizing poor

configurations. This particle-by-particle adjustment allows the particles ®gtEps that con-
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tinually decrease the local energy, avoid destabilizing motions, and to makersama smaller
movements as the distribution converges to a steady state.

Particles must be on the surface before compufifi§” because a particle should not be
allowed to move to a lower energy position if that position is not on the surfsse, the system
is slow to converge if the particles are allowed to jump over one another, asdui penalize
a particle with a very high energy when it attempts to move too large a distanceo{s8.6
definestoo largg. This movement size penalty forceasto decrease until the motion is on the
same scale as the neighborhood. Each particle is updated and moved.ialivéd that changes
are propagated into subsequent particle updates. The entire proeesdl@f the particles is
repeated until convergence.

Each particle’s\; value is initialized to 1.0 (although we have found the system to be insensi-
tive to this value) and modified by factors of 10 as the system convergeseeea distribution.
Modifying A; is an iterative process governed by energy computations and comsaréh

works as follows for one particle’s position update:
Step 1: ComputeF;, and computer; with Equation 3.4.
Step 2: Computev; ¥ = \;v; .

Step 3: Compute the new particle positiot}°™ by solving Equation 3.11 witk}*", followed
by a reprojection to the surface by solving Equation 3.12.

Step 4: Compute the new energy valug;“", at the new particle locatiog}“".

Step 5: If E*Y > E;, and\; > A\nin, decrease\; by a factor of 10 and go back to Step 2. If

Ai < Amin, do NOt move the particle and skip to the next particle in the list.

Step 6: If £V < E;, updatex; = x/°V. Increase\; by a factor of 10 if this is the first time

through the loop.

We have found this integration scheme to be insensitive to the two free parantieéainitial
value of A, as well asAmin, as long as\,;, is sufficiently small (for all the results in this
dissertation \ i, = 10~'%). The method converges over a wide range of surface shapes and

sizes with no modifications.



33

3.5 System Control

The scheme described in the previous section ensures that particlesagpether and reach
a uniform distribution in a reasonable amount of time, without modifying frearpaters, or
inserting and deleting particles. The only restriction of the scheme issthmtist be large
enough such that all the particles can maintain at least a one-ring of esghiy practice, when
dealing with unfamiliar or deforming surfaces it may be necessary to enfertain relationships
between the particles and the surface. For instance, we might want to maintaimmum
number of particles, a certain minimum particle density, or a minimum particle raditisatiers
the surface with a specified number of particles. Meeting these conditiongqilire modifying
the number of particles or the radius of the energy function. Furthermaeayould also like
to have patrticle distributions that adapt to local surface features. Misrha for meeting these

conditions are discussed in the following two subsections.

3.5.1 Global Control of Particles

As with the W-H method, the particle energy quantifies the density of particle® indigh-
borhood of a single particle, while the system energy provides informatigheoglobal density
of particles. The system energy measure provides further insight tdfitierecy of the system
and the locality of the particle influences. Based on energy measuresalsichniques can be
used to ensure an efficient and effective system.

The energy of a particle quantifies the amount of interaction the particleitragswmeighbors,
where a low energy implies too few neighbors, and high energy indicatesrtyy Madetermine
whether the particle system contains enough energy to enforce evmtepdistributions without
incurring unnecessary particle-particle computations, the system enmerggure is compared
against an ideal energy measurey;q..;, wheren is the number of particles in the system
and Fi4.a1 is the ideal energy for a single particle. In our system, we defipe, based on
a hexagonal packing of particles where the repulsion radius ends ataheng of neighbors,

similar to the distribution described in the W-H method:

Bigeat = 6E;; with 2l = = 05 ~ 0,58 (3.13)

The hexagonal configuration represents a natural, low local engstgibdtion [127], and is

illustrated in Figure 3.3. When the system energy is beldW;..;, particles will generally not
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have enough neighbors to reach an acceptable distribution. On the atiegnithen the system
energy is greater thanF;q.,1, particles are influencing more neighbors than necessary, resulting
in extraneous particle-particle computations and slower global convaggen

To achieve theiF;q..1, S€Veral mechanisms exist to modify the system energy. Particles can
be inserted or deleted to increase or decrease the system energytivesper o can grow or
shrink. These mechanisms can be used separately or in combinationditepemn the goals of
the application.

Inserting and deleting particles drives the system to maintain a specificsuténsity of
particles, defined by the value of For a specifico value, the system energy specifies the
approximate local density of neighboring particles across the entireceutifehe local densities
contain more particles than the defined ideal packing, particles can bedjelgteer randomly
across the surface, or in a biased approach similar to the W-H deletion crifenaersely, low
local energies can be adjusted by splitting particles in the local tangent plane

Adjustingo can be used when a specific number of particles is desireds Vakie grows and
shrinks to ensure that particles interact with only the ideal neighborhistitbdtion. Growingo
is important when the system energy is too low to ensure an even distributpartafies, while
shrinking o when the system energy is too high produces the most computationally éfficien
system by keeping inter-particle calculations as local as possible. Changeare carried out
iteratively using a gradient descent or some other 1D optimization technique.

A combination of insertion and deletion of particles can be used with growidglrinking
o to maintain a lower bound on the number of particles, as well as an upped looun This

combination of constraints ensures a minimum number of particles in the sysadirtiraes, and

O O O

Figure 3.3 When determining the ideal energy at a particle, we want only the 6-riigilners
to influence a particle’s energy and force calculations. In this diagramaméthe distance from
i to j1 to bes, which makes the distance froito ;2 approximately0.57¢. The white particles
fall at, or just outside of, the repulsion radiusmf while the gray particles exert forces.
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a cap on the complexity of the interparticle calculations. Only changisgiseful in applications
that require a strict number of particles, such as using particles to seirrgspondence points
between multiple shapes for use in shape statistics [28]. For the applicatitims dissertation,
however, we rely solely on inserting and deleting particles to achieve speéeiisities of points.
The ability to achieve specific interparticle distances is an integral compéorenging particle

systems to generate isosurface meshes (Chapter 5 and 6).

3.5.2 Locally Adaptive Particle Distribution
The local density of particles can be controlled to achieve an adaptivdiegrop introducing

a repulsion amplitudey;;, between each pair of particles. This parameter is used to scale the
effective distancbetween particles based on the local geometry of the surface, resulticegéd s
energy and force values. For instance, if we allow surface curvatuigcrease the effective
distance between particles, the energy and force at these particles evédbade, and the areas

of high curvature will have a higher density of particles. This adaptivityhmatsm maintains a
small number of influential neighbors around a particle even in regioniglotrvature, allowing

for effective optimization strategies (discussed in Section 3.7). For raaultss dissertation,

o = 1, and the vector between two particles is:

rij = aij(xi — Xj) = _rjz'- (314)

With this formulation, wher| r;; |> 1, we haveE;; = 0, and| v;; |= 0. Equation 3.14
also ensures that the energy and force between two particles is symmatals,isvimportant for
stability in the system. The repulsion amplitudlg could be defined as a function based on any
geometric property of the surface, and we have developed one fornmutetied on the curvature

magnitude ' (root sum of squares of the principle curvatures):

1+p(35) O

e (3.15)

Qij = Qjj =

wheres andp are user defined variables that specify the distance, in world units, bepeeticles
on a planar surface and the density of particles per unit angle ovevadcsurface, respectively,

andCj; is the average of the curvature magnitudes;aandx;. The principle curvatures are
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computed analytically from the gradient and Hessian of the implicit functioneasribed in
Chapter 2, Equation 2.2.

For surfaces that contain singularities, the curvature magnitudes cambexbitrarily large
at critical points and cause extremely high densities of particles. To curkftbit a maximal
bound can be placed en;. This constraint still allows particles to get very close to singularities,
but does not guarantee that the critical point will be exactly sampled. Wedieserved, however,
that particles tend to sample the sharpest points and edges of a surfacartifaat of projecting
a particle’s motion vector into the local tangent plane of the surface.

To illustrate the adaptivity of the particle system, Figure 3.4 presents thregéesof particle

distributions over a quartic implicit function with varying values of the anguéasity parameter,

p.

3.6 Implementation

Here we present a basic implementation overview of the proposed parsotgrsysing an in-
sertion and deletion mechanism, which will be referred to in later chapteogesta.6 and 3.6 list
all the free parameters in the system. We eliminate divisions by zero in the impldioeatahe
the proposed curvature based sampling method by adding a very smaltovalldenominators.

For the results presented in this chapter we initialize our system with seveididd particles
in random positions within the 3D domain of the implicit surface, while 4f@nd p parameters
are user-defined. In later chapters (Chapters 5 and 6) we propedig the particle system
with the vertices of a mesh generated using rteching cubeslgorithm [90] to ensure that
the surface is adaquetly sampled. We have found that for complex ssifféidés possible for

the convergence criteria (described below) to fail and stop the partidkibditon early if the

Figure 3.4 The adaptivity of the particle system is modified from left to right with 0, p = 7,
andp = 15.



37

initial set of particles is not dense enough. For the results in this dissertatimever, we did not
experience this problem.

First, the particles are projected onto the isosurface by performingaéezations of Equa-
tion 3.12. We have found that five iterations is usually sufficient for movigigles to within
er = 107° of the isovalue. Next, the system iterates using a Gauss-Seidel upddtergesantil

the particle distribution converges by repeating the following steps:
1. For each particle (taken from Section 3.4.1):

(&) ComputeF;, and computer; with Equation 3.4.
(b) Computev®™ = \;v;.

(c) Compute the new particle positia}“” by solving Equation 3.11 witk}*%, followed

by a reprojection to the surface by solving Equation 3.12.

(d) Compute the new energy valug;<", at the new particle locatiox}°", as well as the

new implicit function value V.

(e) If EXY > E; or |x; — xV| > s or F"Y > ep, and\; > Anin, decrease\; by a
factor of 10 and go back to Step 2(b)ii. Xf < Amin, do not move the particle and skip

to the next particle in the list.

(f) If BV < E;, updatex; = x}°V. Increase\; by a factor of 10 if this is the first time
through Step 2b.

2. Decide whether the system is at a steady state. There are numerous toetieétermine
steady state, and we have chosen to use the difference of the system @me sum of the
energy at all the particles) from one iteration to the next. When the systemg\edifference
is less than a small fraction of the total energy (we use 0.15% for the rese$isriied in
this dissertation, although a range of values would produce similar resudtsg)educe that
particles have reached a steady state. Otherwise, repeat Step 2tmoFamitializations,
we have found it can be useful to skip to Step 2d every 50 iterations insfeeaiting for

the system to reach a steady state.

3. Check whether the configuration of particles is desirable. We compaite @article’'s
energy against an ideal ener@yd°®, which is defined by a hexagonal packing of neighbors
on a flat surface with inter-particle distancessof\We biasE; with a random value on the

interval [0, 1] to eliminate mass splitting or dying, then split particles with< 0.35 Eideal,
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and delete particles with; > 1.75E'9¢3! Alternatively, if a constant number of particles
is desired, the planar separation variableould be modified to move the system energy
towards the ideal system energy. While we have provided specific vidudhis step,
we have found in practice that varying the values by up to 20% produseally similar

results, although with different convergence times.

4. If the energy of the patrticles is acceptable, stop iterating.

3.7 Computational Optimizations

We have implemented several strategies to increase the computational effai¢ine distri-
bution process. First and foremost, any type of Lagrangian scheffieessirtbm an inherent lack
of explicit spatial relationships. In the case of the particle system deddnbhis dissertation,
the problem manifests in the computation of repulsive forces from locdicleamteractions.
Nominally the particle-to-particle interaction problem@sn?) for each iteration. The use of
compact energy kernels, however, leaves the energy and forceutatiops null for all but a
small subset of neighboring particles. Thus, we have implemented a spatiidbstructure [35]
that lessens the subset of potential interactions. The size of the bin®s lpasn the maximum
possible extent of the energy kernel (which derived from Equatioh &.%73), with each bin
maintaining a list of resident particles. Neighboring particle queries for adimg forces and
energies is then reduced to computing interactions with particles that residsin thx 3 block
of bins surrounding the querying particle’s bin. As such, every time tcpars moved in Step
2b above, the binning structure particle lists are updated.

Although the binning structure dramatically decreases the system coneertjme, particles
will still compute distances with many non-neighbor particles, especially asith@iaity of the
system is increased €., for large values fop). By not allowing particles to move further than
s in any one iteration (Step 2(b)v), however, the neighborhood configngeachange very little
from iteration to iteration. Taking advantage of this observation, we store afliseighbors
with each particle that is updated only after several iterations (every fiagidas for the results
in this chapter). Although the lists may be out of date for intermediate iteratioastettative
convergence method smooths out these errors. We have found thatghiseh is particularly
effective as the system approaches a steady state and the particleoneigits become stable.
Storing the lists of neighbors typically decreases the computation time by a &c2e8, and

even more so with increasing adaptivity.
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Table 3.2 Table of free parameters.

Parameter Value Description Comments
€r 1077 added to interparticle distances tesystem is insensitive to values
avoid infinite energy values near machine precision
o 1.0 effective particle radius constant for all results in this dis-
sertation
~ 0.156 defines range of normals folinsensitive to exact value as long
which the particle energies areasy <1
smoothed
Ao 1.0 initial stepsize value system is insensitive to this value
Amin 10~14 minimum stepsize value system is insensitive to this value
as long as it is sufficiently small
s user-defined planar separation value that speodbust system behavior relies on
fies desired interparticle distanceshis value to be small enough such
across a flat plane that Euclidean distance measures
closely approximate geodesic dis-
tances
p user-defined density of particles per unit anglgystem is insensitive to this value
over a curved surface
€p 107° surface threshold value should be around the ma-
chine precision value
5 number of initial projections of a system is insensitive to this value
particle as long as particles get to within
er of the surface
0.15% system energy difference fromvalue must be small enough such
previous iteration that indicates athat the particle distribution con-
steady state verges to an even packing
50 number of iterations when systemvalue must be large enough such
automatically checks for a desir-that local particle neighbors can
able configuration (Step 2d) be established
0.35 percentage of’;q..1 that indicates values with approximatel0% of

a particle should be split this value produce visually simil-
iar results with different conver-

gence times
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Table 3.3 Table of free parametersont

Parameter Value Description Comments
1.75  percentage oF;q.. that indicates values with approximatel30% of
a particle should be deleted this value produce visually simil-
iar results with different conver-
gence times

5 number of iterations when parti-values< 10 maintain stability in
cle neighbor lists are updated  the system

4w  initial value of s based on the this value must be small enough
width of a voxel,w such that Euclidean
distance computations closely ap-
proximate geodesic distances

We have also observed that the particle system quickly eliminates the higlefregerrors
in its configurations by taking large movements during the first few iteratiofieywfed by many
iterations of small movements to eliminate the low frequency errors. To exploitrénid, we
have developed a hierarchical distribution mechanism. We first distribaisedevel particles
across the system using a largealue, then split each of these particles into four evenly spaced
particles and reduce by half. This process is repeated untifeaches the user defined value.
We have found that an initial value efbased on the width of the volume voxels works most

effectively.

3.8 Rendering

Rendering a particle system with oriented disks provides the user with alizétion of
accurate surface samples. The disks allow the user to infer the topologg efitface, aided
by the ability to rotate and translate the surface in 3D. However, the orieidlezsiahnnot express
subtle shading cues or connectivity as effectively as rendering methaidgeherate water-tight
surface visualizations.

Over the last several years, work on point set surfaces has es&bfisints as a popular, and
effective, geometric primitive. One common approach for rendering [s@itst is the splatting
method, first introduced by Pfistet al. assurfels[115], with numerous extensions for improving
the quality of the rendering [170, 171], as well as the speed [29]. Splattitails an additive
blend of oriented, alpha-channel Gaussian kernels at each pointyéollby a normalization

of each pixel's color to ensure an even intensity across the surfacendimals of the points
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can also be included in the projection and blending to allow for smooth shatlihg surface.
We have implemented the basic splatting algorithm on the GPU, achieving intereatidering
speeds — results are shown in Section 3.9. The adaptivity of the partitesgiows the splat
surfaces to appear smooth with relatively sparse point samples (spanpared to typical point

set surfaces that contain millions of points).

3.9 Results

In this section we present results of the proposed particle system forisgnapvariety
of implicit surfaces. All the data sets defined over a regular grid arenstaected using an
approximating kernel, described in Section 2.4. The distributions were dedhpn a 3.2GHz
CPU with 2.0Gb of memory.

Figure 3.5 shows results of the proposed particle system sampling a sfurass and box.
The sphere and torus implicit surfaces are defined as the zerosetdydfaiunctions, while the
box is an offset surface of the distance transform of a box. The distiis on the sphere and
torus show regular, hexagonal packings of points over the surfaoésthe distribution on the
box is adaptive to the curvature on the edges and corners. The plotureRB¢gp compares the
number of particles distributed across the sphere with the convergenceftingesystem. From
this plot, the linear behavior of the distribution time of the system with increasingpbats of
particles is evident, which is due to the compact energy kernels and thensystienizations that
take advantage of this characteristic.

The next example in Figure 3.7 is an implicit surface generated from a béegnryentation
of white matter in a brain. Using the techniques discussed in Sections 2.5.15RdtRe data

were smoothed by first closing and then opening the binary volume usialy stencil, followed

(b)

Figure 3.5. Particle distributions over simple surfaces. The surfaces in (a) ardgthe zerosets
of analytic functions, while (c) is a levelset of the distance transform aba b
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Number of Particles vs Convergence Time
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Figure 3.6. Comparison of the distribution time of the particle system over a spheresvitrsu
total number particles in the system.

by a tightening of the surface with a maximum radius of curvature of 1.0. &gt (a) shows
a homogeneous packing of particles across the surface, and in Figui® ghe particle system
adapts to the curvature of the surface.

Figures 3.8 and 3.9 are surfaces reconstructed from the zerosettaoicé transforms. These
figures again present homogeneous as well as adaptive distributipastiofes. Figure 3.8 (d)
and Figure 3.9 (d) were generated using a GPU-based splat rendbiehn allows these solid
appearing surfaces to rendered at interactive rates. The GPU-bpals¢ algorithm runs on an
NVIDIA GeForce 6800 GT card with Pixel Shader 3.0.

In Table 3.9 we provide the number of particles for each of the examples isebi®n, as
well as the time the particle systems took to converge. For the surfaces éhacanstructed
from volume data, computing the curvature to adapt the particles increasedrthergence time
by roughly a factor of four over the distribution using the same value dfor the surfaces in
Figure 3.5, the jump in distribution time from the analytic surfaces to the box destaanasform

is due to the cost incurred by reconstructing volumetric data.
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Figure 3.7. Particles on a brain reconstructed fromi4® x 188 x 148 binary volume that was
closed then opened withtzall stencil, followed by a tightening with = 1. In (a) and (b)s = 2,
with p = 0in (&) andp = 5 in (b).
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(©) (d)

Figure 3.8 The dragon dataset is386 x 161 x 251 distance transform. In (a) and (b)= 4
ands = 2, respectively, wittp = 0, and in (c) and (dy = 2 andp = 7.5. Image (d) is a splat
rendering of the particles in (c).

3.10 Discussion

In this chapter we have presented a new particle system framework astyoadaptive
sampling of complex implicit surfaces. We have developed a new class @fyefumctions and
applied several numerical techniques to generalize, stabilize, and ldhvetidistribution of par-
ticles. The physically-based nature of the particle system inherently iacuigh computational
cost, and the proposed system provides the tools necessary to autongithe convergence
reliably for the production of compact sets of surface samples.

There are numerous avenues to improve the proposed system. Althoutdvergresented
several optimization strategies, more work can be done to increase theneffiof the distri-

bution process. First, the development of an adaptive spatial binnirggusguwould reduce the
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(b)

(d)

Figure 3.9. The griffin dataset is 404 x 48 x 98 distance transform. In (a) and (b)= 2 and
s = 1, respectively, withp = 0, and in (c) and (dy = 2 andp = 7.5. Image (d) is a splat
rendering of the particles in (c).



46

Table 3.4 Number of particles for each of the distributions presented in Section8Welhas
the time required for the particle systems to converge.

Dataset Number of Particles Time
sphere 492 1 second
torus 1184 1 second
box 1049 26 seconds
brain (a) 31635 3.3 minutes
brain (b) 57139 11.3 minutes
dragon (a) 11011 2.3 minutes
dragon (b) 41879 6.2 minutes
dragon (c-d) 44042 13.5 minutes
griffin () 8036 1.5 minutes
griffin (b) 21189 3.6 minutes
griffin (c-d) 32144 7.2 minutes

number of potential neighbors at highly adaptive particles. Secontthefuexploitation of the
system’s tendency to quickly eliminate high frequency error in the distributioogss could be
done by posing the system in a hierarchical framework, such as multigneseTadvancements

would help to enable visualization of dynamic data sets, where course isirddutions can help

guide fine level distributions from time step to time step.



CHAPTER 4

ISOSURFACE VISUALIZATION OF
HIGH-ORDER FINITE
ELEMENT DATA

This chapter uses the flexibility and controllability of dynamic particles for samgphplicit
surfaces in the context of visualization. Visualization has become an impadearponent of
the simulation pipeline, providing scientists and engineers a visual intuition of riredels.
Simulations that make use of the high-order finite element method for spatdiVisitn, how-
ever, present a challenge to conventional isosurface visualizationigees. High-order finite
element isosurfaces are often defined by basis functionsfémence spacgewhich give rise to
a world spacesolution through a coordinate transformation, which does not necesharity
a closed-form inverse. Therefore, world-space isosurfaceerergimethods such as marching
cubes and raytracing must perform a computationally expengsted root findingTo address
these challenges we propose visualizing the isosurfaces with a partitéensyehis chapter de-
scribes a framework that allows particles to sample an isosurface inmeéespace, avoiding the
costly inverse mapping of positions from world space when evaluating the foastions. The
distribution of particles across the reference space isosurfaceyapugcontrolled by geometric
information from the world space isosurface, such as the surfacéegtaahd curvature. The
resulting particle distributions can be homogeneous, or, adapted to accatenveotld-space
surface features, providing compact, efficient, and accurate is@surfisualizations of these
challenging data sets.

The following section provides an introduction to high-order finite elementstieadhal-
lenges they pose for isosurface visualization. This is proceeded bgreethat provide back-
ground of isosurface visualization methods, as well as the proposgth#idas of the particle
system scheme for visualizing high-order data sets. A derivation acisidurvature in the pres-
ence of curvilinear coordinate transformations is given in Section 4.3.&.cliapter concludes
with a comparison of results from the proposed particle system appratchtiver visualization

techniques.
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4.1 High-Order Finite Elements

The method of finite elements [67] is a common spatial subdivision scheme usegthtists
and engineers to reduce large simulation domains to sets of small subdona&indamh physical
simulations can be computed robustly and efficiently. While traditional finite elemetitods
utilize only low-order, linear basis functions for representing data oeeelibments, they provide
considerable flexibility for handling complex geometries. The geometric flexilidigided by
the transformation of individual elements constructed as identical culrefeirence spacato
uniqueworld spaceelements, which can have not only rectangular faces, but also triangular
faces. In world space, the spatial extent of each element is definetdrgoteristics of the
domain and simulation, such as boundary conditions and features of intéfbe mapping
functions responsible for the transformations can distort the elementsdighsiig, skewing,
or even collapsing the faces of the reference space cubes, as illdstr&igure 4.1.

A number of researchers have developed methods to improve the cengergroperties of
finite elements through the use of high-order functions for the reprasemiaf the data, as
well as the element transformations. Today, high-order finite elementiteemhave reached
a level of sophistication such that they are commonly applied to a broad cdreygineering
problems [42, 74, 138]. Although there do exist some high-order finitaeade methods that do
not rely on reference space transformations, the use of curvilineadioate transformations is
of increasing interest [68]. This chapter is addressing the problemitd &lement methods that
rely on higher order (higher than linear) basis functions for the solutiengell as the coordinate
transformations.

Conventional approaches to finite element isosurface visualization agbamknear data

D AN
W// ¢
it

Reference Space World Space

Figure 4.1 A 2D schematic of the finite element subdivision scheme.reference spacge
elements are defined as identical squares. These squares arertnadsiimoworld spaceby
a mapping functior” that can stretch, skew, shrink, or even collapse edges.
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Figure 4.2 An isosurface of a finite element fluid simulation pressure field sampled with a
particle system. The color indicates the relative direction of the surfaceal@t the particle
(blue indicatemutwardand red indicatemward).

representations can be adapted to accommodate low-order finite elemesisradtbgy, however,
faces a number of challenges when considering high-order data setstHe data must be finely
subsampled to ensure that features are adequately captured with lipeaxiagation schemes.
Second, there is, in general, no closed form expression for the éeérisigh-order mapping
functions. Numerical inversion schemes are required to transform \spéde locations into the
reference space when sampling the data, creating a nested root-findblgnp when locating
an isosurface. Furthermore, determining which reference-space reglé@menhich to invert a

particular point in world space adds to the computation.

Computational scientists who wish to visualize high-order finite element solwtidimequire
visualization algorithms that are flexible enough to accommodate these catsstidirse algo-
rithms will need to have variable degrees of freedom so that users sy amtrol the trade-off
between visualization quality and speed. For efficiency, these computatiosisbe locally
adaptive, allowing computational power to be applied to regions of the saduttie exhibit the
most complexity i¢e., h-r adaptivityin finite element terms). Furthermore, these algorithms will
need to achieve the appropriate balance of computations in world spaees thle metrics for
adaptivity are defined, and reference space, where there ard-twseexpressions for the asso-
ciated geometric quantities. To address these issues we are proposiaguafaie visualization
technique that relies on a particle system, exhibited in Figure 4.2. The pagrel@®nstrained
to an isosurface and exert repulsive forces on each other, resulgngn distributions across the
surface.

In Chapter 3, we showed how these types of systems can be made rodusirdrollable
while also adaptive to features of interest. For isosurfaces embeddigthinfder finite elements,
adaptivity based on the curvature of the isosurface in world space iscido of not only

the high-order basis functions, but also the mapping function. A contributichis chapter
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is the derivation of isosurface curvature in the presence of curvilcmadinate transformations,
including a reduction of the isosurface Hessian from a rank-threertenstraction into a series
of standard vector-matrix computations. Also, we propose a method for olatiiyy the particle
positionsin reference spaceto avoid a numerical inversion of the coordinate transformation,
while computing the particle interactions and adaptivity in world coordinates.

The resulting particle system allows for a seriesavivard computations to obtain desirable
distributions of samples that are accurate and compact over the workelspédace. The resulting
distribution of particles — a process that may take anywhere from a feandsdo minutes
— can be rendered interactively as either simple point sprites or as a tiggtiesplat surface
on the GPU, allowing a scientist or engineer to quickly explore their data froyncamera
location. Furthermore, the generality of this system can be broadly appleuyttype of data

representation that makes use of a reference space and a mappimnfunc

4.2 Background
This section first presents a brief overview of techniques in the literabudirectly sampling
implicit surfaces. The discussion is followed by an analysis of the chalkefmyeadapting
traditional visualization methods to high-order finite element data, along withewref existing

methods for visualizing these data sets.

4.2.1 Direct Visualization of Implicit Surfaces

In scientific, medical, and engineering applications, visualization has beaonméegral part
of simulation and analysis pipelines. As the size of data sets continues to stheheincrease
in computing capacities and scanning resolutions, visualization tools ardeevme invaluable
for recognizing features in otherwise dizzying amounts of information. [€3ftentimes, data
from scanning devices or simulations come in the form of a volumetric latticeloésawhich
can then be interpreted as an implicit function. When directly visualizingsesfand boundaries
embedded in these implicit functions, methods typically excel in one of two artredgharac-
teristics: they either produce a high quality visualization, or they are compudlticefficient.
These competing paradigms have brought forth two general classeshufdae— those that are
image-space based, and those that are object-space based.

Image-space methods visualize implicit surfaces by sampling the surfandteoreference
frame of the image plane in the virtual camera model. Ray tracing, for examgdestthe path
of individual rays from a virtual camera into each pixel of the output imaug through the

implicit function, computing intersections of the ray with the implicit surface [@#termining
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the intersections is done via root-finding along the ray, either by solvinthéroots directly if
the functional form of the implicit function is known, or, by an iterative meteadh as Newton-
Raphson, subdivision, or interval arithmetic [98]. Once the intersectiomtgp are computed,
advancing shading effects can be generated using the derivatitles whplicit function at the
point location [157], producing photo-realistic or highly stylized images.[55]

Another image-space approach to visualizing implicit functions is volume rewdf9],
which assigns a color as well as opacity to different levelsets of the funcBy blending the
values of the levelsets together, the result is a volumetric effect that alewesad isosurfaces to
be viewed at once. The original method, called ray casting, is a direci®ateof ray tracing,
and was proposed independently by Drebin and Levoy [48, 87]. Raiing composites the
color and opacity values of interpolated data as rays, originating frormtual/tamera, traverse
the implicit function. Methods for preprocessing the color and opacity safissigned to an
implicit function, such as shear-warp [82] and splatting [155], have lokeseloped to optimize
this volume rendering algorithm.

Although image-space approaches generate stunning visualizationaréheymputationally
expensive for two reasons: first, the algorithms are inherently depeapen the view point, thus
every new view of the data must be recomputed; and second, the samptivgiwiplicit surface
is dictated by the resolution of the final image and the data dimensions, not byrti@exity
of the surface itself. Extensions to these image-based methods exist tasmd¢he rendering
efficiency, but require multiprocessor machines [111] or specializedivaae [114, 25].

Object-space methods, on the other hand, first sample a surface in ¢hencef frame of
the virtual world, allowing the sample points to be determined as a preprogessipn. Sam-
pling the surface directly in object-space can be done by projecting af smtirds onto the
zeroset of the implicit function using a technique like gradient descentauBecthe samples
are view-independent, the surface can be visualized from many diffei@wvpoints without a
computationally expensive resampling, making these methods effectivegdimriag scientific
data on commodity desktop (and laptop) machines. The surface point saraples rendered as
simple point primitives, as disks oriented tangentially to the surface, or usimtgesophisticated

point-based rendering technique, such as splatting.

4.2.2 Low-Order Visualization Methods for High-Order Data
Until recently, much of the work in finite-element simulations has focused oarliglements.
In the simplest case where the finite elements form a regular grid in worle spaventional

methods like marching cubes [90] and direct volume rendering [91] gokcaple. In general,
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however, the finite elements produce an irregular grid in world space tiratdmpatible with
the assumptions these methods make about the regularity of the grid. EaKybw&@hirley
and Tuchman [136] and Williams [161] proposes a volume rendering apprior tetrahedral
elements, and Bunyét al. [23] propose a generalized ray-casting algorithm for irregular grids.
Doi and Koide [47] present the Marching Tetrahedra method for tritigg isosurfaces defined
over tetrahedral elements. More recently, work has moved the volumeriegd154, 26] and
isosurface generation [122, 112] algorithms onto the GPU to obtain fastéering speeds.

Applying these low-order, linear methods to high-order finite elements, vewepresents
several challenges. First, high-order basis functions repressmntrés in the data with far fewer
grid elements than an equivalent low-order representation. Thus|izatin methods that rely
on linear interpolation must first finely subdivide the domain to ensure thatris in the data are
not missed. This increase in grid resolution can have an explosive effgwt only the storage
requirements for the visualization, but also on the computation requiredfitciesotly sample the
elements.

The second problem stems from the need to compute an inverse of the méppetign
to evaluate the data in the world space. l#t(u) be the functional representation of the
finite element solution, which is defined in the reference space, arifl ket the coordinate
transformation that maps a reference space pointo a world space point, i.e, 7'(u) = x. The
world space representation of the solution is therefofe) = F*(T~!(x)). There is generally
no closed form expression fér—!, causing world-space evaluations to require iterative numerical
schemes for the computation af= 7-!(x). Thus, determining the location of isosurfaces in
high-order finite element data becomes a nested root finding problefr -(and its derivatives)
must be iteratively evaluated to determine the position of the isosurface, withegaluation of
F(x) requiring an iterative, numerical inversionBf

There is yet one more challenge for the general problem of visualizing-drder finite
elements. The data and coordinate transformations are valid for only a sieghent, and in
practice another layer of computation is required to determine which refeedament contains
the pointu = 7~ !(x). Although efficient element lookups based on regular grids [125, 98}
order curves [159] can be applied to elements with planar or quadratiedtaces, respectively,
there is no closed form solution for the general problem. Spatial partitiséhgmes can be
utilized to reduce the grid ambiguity to among a few elements [103], but the eweapping
u = T~!(x) will (generally) require multiple iterations across multiple elements. The problem

is becoming increasingly more difficult as results from the scientific computingtitee extend
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the finite element methodology to more general frameworks. For instacestrgork by Hughes
et al.[68] proposes spline-based functions for finite elements, which pesdyet another class
of curvilinear mappings between the reference and world domains.

Adapting marching cubes to accommodate high-order finite elements elucidesesthinee
challenges. In Figure 4.3 we present the results of the isosurfacetextrgechnique applied to
a sphere that is transformed through a 2 x 2 set of quadratic b-spline functions. To generate
these results, a regular world space grid is first created. The worte $peation of each grid
node is numerically inverted within each potential element until the associderénee space
location is determined and the basis functions can be evaluated. Accuratghgfthe zeros of
the high-order data along the grid is then accomplished via a root-trappirfgamem.

We have incorporated two different root-trapping methods into a marchibgscframework.
The first is a grid refinement strategy that uses an adaptive subdividieme to be as efficient
as possible, recursively subdividing only the grid cells that contain@essings. Care has been
taken in the implementation of the subdivision scheme to ensure coherenss aeighboring
cells, avoiding redundant sampling of the data. The the second rootrigagpproach uses the
Newton-Rhapson method along grid edges to determine the zero crossings.

Ensuring that point samples of the isosurface—for any sampling schemen-ee surface
to within a small error tolerance is important for generating accurate sugiagroximations. In
Figures 4.3(b-d) the vertex locations are computed using linear interpotatemprogressively
more refined grids. These results indicate that using low-order interpokstitemes requires a
very finely subdivided grid to accurately determine the zeros of the ddteapiure the geometry
of the surface (Figure 4.3(d)). In Figures 4.3(e-g) the vertex locaitaoe computed using a
Newton-Rhapson root-finding method. While the grids in these images areeblatbarse, the
zeros of the data are more accurately computed, generating more piguisgimations of the
surface.

While Figure 4.3 illustrates that capturing the geometry of high-order dataswsilge with
low-order schemes, the results come at the cost of lengthy compute timescoifipaitations
are dominated by the large number of mapping function evaluations, which MWwé&paard
evaluations The surfaces in Figures 4.3 require a numerical inversion of eacingdd, and
the surfaces in Figures 4.3(e-g) also incur nested root-finding evailsationg the grid edges.
The number of forward evaluations and timings are given in Table 4.1 $oiteegenerated on a
P4 3.2GHz CPU with 2.0Gb of memory. Itis interesting to note that Figures 4)3{at perform

Figure 4.3(d), indicating that root-finding along coarse grid edges is afticgent than linearly
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Figure 4.3 Marching cubes surfaces of a sphere mapped through quadratimé-&inctions:
(a) the transformed elements; (b-d) surfaces generated using divadapdivision root-trapping
scheme; (e-g) surfaces generated using Newton-Raphson rooiagagrid dimensions, number
of forward evaluations, and timings are given Table 4.1.

Table 4.1 The number of forward evaluations and timings for the marching cubesesdésh
Figure 4.3.

Grid Root-trapping Number Forward Time
Mesh  Resolution Method Evaluations (millions) (seconds)
(b) 5xbx13 subdivision 0.6 6.7
(c) 9x9x25 subdivision 2.4 25
(d) 17x17x49 subdivision 7.7 82
(e) 5x5x13 Newton-Raphson 1.7 19
U] 7x7x17 Newton-Raphson 3.2 35
(9) 9x9x25 Newton-Raphson 6.8 73

interpolating along refined grid edges.

4.2.3 High-Order Visualization Methods

Other researchers have also noted the challenges of efficiently adéptirayder visual-
ization methods to high-order functions, and some work has been donedificgily address
the problem of visualizing high-order finite element data. Wigyal. [159, 158] formulate
raycasting for curved-quadratic elements, and Brasher and Haimgprf#iose a GPU-based
method for color mapping cut planes of quadratic and cubic elements. A metsubdivide
elements containing high-order basis functions so that low-order visuglingthods can be
used is proposed [130, 145]. Coppeiaal. [33] address the issue of vector visualization with
high-order representations by formulating the particle advection probtemigh-order basis
functions. Similar to our framework, this work tracks particle advection in ¢fierence space to
avoid the inverse mapping problem. More recently, Nelson and Kirby [fp8jent an algorithm

for raytracing high-order, spectrafi elements. Their method uses a world-space approximation
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of the composition of the coordinate transformation and the reference $j@eis functions.
It assumes multilinear mappings (linear element boundaries in world spawk)inaudes a
guantification of the approximation and root-finding error. They show tihatimage-space
method compares favorably with marching cubes in compute time when the t@s@msurface

position are sufficiently high.

4.3 Adaptation of the Particle System Framework
In this section curvature metrics for surfaces that exist in curvilineaderged, as well as
a method for sampling the isosurfaces in reference space that resultgilarrdistributions of

particles in the world space.

4.3.1 Isosurface Geometry in Finite Elements

To adaptively distribute particles across a finite element isosurface, wefanosilate the
gradient and Hessian of the world space implicit functién,in terms of the reference space
specifications that are given by the finite element basis and mapping fusncisrmentioned in
Section 4.2.2, the implicit function representing the simulation datajs defined over a set of
finite elements in reference space and is transformed into world spacghtaonapping function
T'(u) = x. The gradient and Hessian of the world space implicit function are thusedilfiy not
only F*, but also byT", and thereford” must be included in all of the derivative calculations.

Used in the computation of the world space gradient and Hessian is theialaafkthe
mapping function, which describes how the space around a referpace position is stretched

or squashed by the mapping function:

(w) 5 onu
IT (u ox u Qv Qw
=" =g 2 2 @4
du v Ow
Also, to simplify the following derivations we denote the inverse of the Jaoddsa
K=J"1 (4.2)

and provide a linear algebra identity for a matk
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—M! (4.3)

wherez denotes some Cartesian basis vector.

Formulating the expressions for the world space gradient and Hessjaimes meticulous
derivations of the derivatives of the coordinate transformaflorCare must be taken to correctly
determine the order of the component multiplications as well as which vectdrsainices need
to be transposed. Furthermore, the derivation of the Hessian incluéesa multiplication with
a rank-three tensor, which is the result of computing the second dee\attihe vector-valued
coordinate transformation. To clarify these derivations we use the Eingtéation convention,
as described in [14]. Developed for dealing with curved spaces inigshyisinstein notation
identifies relationships often hidden by conventional linear algebra notatich as transposition
and order of operations.

To begin, we define the world space.dsthe reference space &s and the mapping function
asT : U — X;letx € X andu € U. Using Einstein notation, we define = z¢ and
u = u;, utilizing upper indices for world space components and lower indicegferance space
components. The number of indices of a variable indicates the rank of #w ten is a rank-one
tensor (or vector)j\/;; is a rank-two tensor (or matrix};;;, is a rank-three tensor, and so on. In
this convention, repeated indices in a term indicates a summation over theofangex values.

For example:

T — b — b
al ‘b= Zazbz = aib; . (4.4)
vector 1

FEinstein notation

summation

Parenthese are also dropped on functional variables, such as fedmgts functions and the

mapping function:

F(x) = F'z' (4.5)

F*(u) = Fru; (4.6)

T(u) = T]’u] = ' (4.7)
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For brevity, however, we will notate Equations 4.5 and 4.6 as sinipbnd F*, respectively,
emphasizing the role of these equations as scalar functions throughowrivetidns. Finally,
Einstein notation also uses indices to represent partial derivativdsasuor the Jacobian of the

mapping function:

J(u) = a(ij,iuk = gi; =J. (4.8)
The inverse of the Jacobian is then
K= (J)~" (4.9)
The world space gradient}’, is:

The expression of the Hessian includes the derivative of the inverebida which, using Equa-

tion 4.3, is written:

()
oup

i
Jk =

= —K!J, K. (4.11)

Notice that the second derivative of the mapping functidl,, is a rank-three tensor. Using
Equations 4.10 and 4.11 the Hessial,, is defined as:

8 (OF 9 [ OF duy - -
- —_— = — | —— - — F* K]Kl _ F*Km m K‘j Kz‘ 4.12
oz <833J> Ouy, <8xﬂ 8:1:1) ™2k R T K K, ( )

By carefully matching Einstein notation indices of each component in Equatid@sahd
4.12, the gradient and Hessian expressions are reduced to a sesiemadrd vector-matrix
operations. Introducing | - | -] to express the concatenation of three column vectors into a

matrix, the expressions for the world space gradient and Hessian irastiamotation are:
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Fx=K'F} (4.13)

Fax = (FiuK) K — ( [FT&] | FT Zi | FT gﬁ ) K. (4.14)

The expressions conveyed in Equations 4.13 and 4.14 allow world spapivity to be
achieved using reference space evaluations of the basis functiongingdpnctions, and their
derivatives, along with any standard vector-matrix library. This formutetias general applica-
bility and could, for instance, be used to add curvature dependencig¢lsenapplications that

make use of reference space regularity, such as mesh generatipn [134

4.3.2 Reference Space Particles

To avoid the computations associated with! we have developed a strategy that maintains
particle positions in reference space, while controlling the particle distrilgitiath geomet-
ric information from the world space. This strategy is similar to the guided Besgorithm
proposed by Coppolat al. [33] for particle advection. Maintaining reference space positions
allows the basis functions that defii& to be sampled using closed form expressions. Thus,
the curvature calculations and projection of particles onto the isosurEape(ion 3.12) can be
computed directly. We ensure that the particle distributions are even aptivadia the world
space by using world space positions (forward mapping) when computngepulsive force
velocities in Equation 3.4. We then transform these velocities via the degwaitihe mapping

function to obtain an approximate reference space velogijty,

v; = Kv; (4.15)

The reference space positions are then updated using Equation 3.1kfeitnce space com-
ponents. We note that Equation 4.15 is a first-order approximation, anchfisusnes updates
that are small relative to the isosurface and the curvature of the cotwdiaasformation. We
are not interested in the precise motion of particles, but rather that they tmdower energy
states. Thus we adapt the time steps to accommodate this first-order appraximatiescribed

in Section 3.4.
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To effectively distribute particles in the reference domain, particles musbalsble to move
from element to element. Finite element data sets typically contain referenme igfarmation
describing which elements abut one another in the world space, as sldiva iashed lines in
Figure 4.4. Because reference space elements are identical culis) ea&sily determine when
a particle’s positional update causes it to leave an element, and use thenagljadormation to
compute the particle’s new element and new position within that element. Whetickepmoves
from one element into the next, we use linear interpolation—based uponftérenee space
coordinates of the adjacent elements’ shared world space verticestetonde the particle’s

location in the neighboring element’s local coordinate system.

4.4 Boundary Discontinuities

Surfaces defined over finite elements are usually guaranteed to beC8rdgntinuous at
the element boundaries, allowing for cusps on a surface in areas ¢hanalytically flat. This
potentially results in lessened interparticle forces due to the tangent plgeetjon of a particle’s
neighborhood force field. The iterative nature of the convergencaném, however, smooths
out this effect.

In practice we have found the discontinuities present a problem only wdmafering the
particles. The particles’ radii do not adapt to these discontinuous é&satoausing artifacts
to sometimes appear when disks or splats intersect each other — Figure 4ratdkithe phe-
nomenon along boundaries. To more accurately capture these swéceet, the particles can
be adapted in Equation 3.15 by not only the curvature computed from trsteidebut also by the

particles’ proximity to element boundaries. This adaptation will not removeitwabpresence

Reference Space World Space

Figure 4.4. Particles move from element to element by utilizing neighboring element informatio
(dashed lines) and linear interpolation of the reference space elenrénésdo determine the
coordinates of the particle in the neighboring element.
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of the cusps but will make the discontinuities appear smoother.

4.5 Implementation
This implementation is a modified version of that found in Section 3.6. Changes basie
particle system implementation arefinld. For all of the results presented in this chapter we ini-
tialized the system with several hundred particles at random locationdyelistributed among
all finite elements. The particles maintain reference space positions as Wwedl @srresponding

world space positions.
1. For each patrticle:

(a) Computer; and computer; with Equation 3.4y summing the repulsive forces and
energies of all the neighboring particles in world space. Transformhe velocity

into reference space with Equation 4.15
(b) Compute vV = \;v7.

(c) Compute the new particle positiomreference spaceu; " by solving Equation 3.11
with vV, followed by a reprojection to the surface by solving Equation 3fithe
new position is outside of the element, determine which element the weposition

is in, and convert the position into the new, local coordinate system

(d) Compute the new energy valug; <", at the new particle locatior}*" by mapping
the new reference space position into world space with, as well as the new implicit

function value F"°%.

Figure 4.5. Artifacts due to boundary discontinuities where disks (left) or splatstjrigtersect
each other.
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(e) If B}V > E; or |x; —xY| > s or F"Y > ep, and\; > Anin, decrease\; by a
factor of 10 and go back to Step 2(b)ii. Af < Amin, do not move the particle and skip

to the next particle in the list.

(f) If E7°Y < E;, updateu; = u}*V. Increase\; by a factor of 10 if this is the first time
through Step 2b.

2. Decide whether the system is at a steady state. There are numerous toetetermine
steady state, and we have chosen to use the difference of the system @me sum of the
energy at all the particles) from one iteration to the next. When the systerg\edifference
is less than a small fraction of the total energy (we use 0.15% for the rese#tsred in
this dissertation, although a range of values would produce similar resudtg)educe that
particles have reached a steady state. Otherwise, repeat Step 2lmoFarmitializations,
we have found it can be useful to skip to Step 2d every 50 iterations insteeaiting for

the system to reach a steady state.

3. Check whether the configuration of particles is desirable. We compate marticle’s
energy against an ideal ener@yd°®, which is defined by a hexagonal packing of neighbors
on a flat surface with inter-particle distancessofWe biasE; with a random value on the
interval [0, 1] to eliminate mass splitting or dying, then split particles with< 0.35 E'de2!,
and delete particles witl; > 1.75E'°!l Alternatively, if a constant number of particles
is desired, the planar separation variableould be modified to move the system energy
towards the ideal system energy. While we have provided specific vidudkis step,
we have found in practice that varying the values by up to 20% produseally similar

results, although with different convergence times.

4. If the energy of the patrticles is acceptable, stop iterating.

4.6 Results
We begin with a demonstration of the method on a curvilinear mapping of a simple implicit
function. Figure 4.6 shows a quadratic b-spline coordinate mapping fanatibich maps a
reference space sphere into a world space teardrop, introducingadwre variation across the
surface. Our mathematical formulation of the world space curvatureatlyrigccounts for the
effects of the mapping function.
Figure 4.7 demonstrates the particle system achieving an even distributiospbers in the

world space, despite the irregular reference space geometry. Figuasgerts that the system



62

Figure 4.6. A sphere defined in reference spataft) is mapped to a teardrop in world space
(right). The mapping function induces a curvature variation to the surfacehanmhrticles adapt
accordingly.

can correctly adapt to the world space curvature introduced by the ngafypiction. All of
these results are produced by manipulating the positions of particles in ¢neneé space, while
computing inter-particle distances and curvatures using world space gezsme

The patrticle system visualizations in Figure 4.8 are generated from theatataes! in the
marching cubes example shown in Figure 4.3. These examples are pragidecbmparison of
what the particle system achieves in approximately the same amount of time dsngandbes
with root-finding. Using the same computing resources specified in Sectid) Eigure 4.8(a)
requires 16 seconds and 1.1 million forward evaluations; Figure 4.8fb)res 36 seconds and
2.5 million forward evaluations; and Figure 4.8(c) requires 70 secondigl & million forward
evaluations. The particle system is able to capture the sharp tips of theestaftnfully due
to the adaptivity mechanism, even at coarse resolutions — this is a signifitfargrtte from the
polygonal surfaces. Furthermore, the splat renderings produde smumother water-tight surface
approximations than the marching cubes results.

These results allow us to compare directly against marching cubes, elugitteiadvantage
of the particle system. First, notice that the particle system produces highktygesults in
similar amounts of time witliewerforward evaluations (compare Figures 4.3(e-g) with Figure
4.8). Thisis in part due to marching cubes evaluating grid nodes in regioai®uhe surface does
not exist, but also due to the numerous iterations at each grid intersectidarigppdetermine the

correct placement of the vertex, a chore that consumes over half chtheute time. In contrast,



Figure 4.7. The particle system converges to an even distribution in world spgte) regardless
of the shape of the surface in reference sp&fé.(

the particle system spends most computation time evaluating the data (by thessrsiuabbut
70%) and little time in the overhead of the particle system, computing particle-particle in-
teractions. These results, like those described in the literature [103] ndérai@ that generating
accuratevisualizations of high-order data is inherently expensive due to the ¢esiatuating
the high-order solutions and coordinate transformations. By simultanefindiyg the roots of
F and distributing the surface samples in a sensible way, the particle systera veakeffective
use of these costly evaluations.

The raytracing method described in [103] generates nicely shadedatrdtight image®f
high-order finite element isosurfaces, but with the image-space dr&w/hdxerent to all raytrac-
ing methods. Data exploration is computationally expensive because eagioiierequires the
isosurface to be resampled, and the computational cost is also assodtatéaewesolution of
the resultant image. Furthermore, the accuracy of the ray-isosurfieesdations are related to
the degree of the polynomial used to approximate the implicit function along yhie retorld
space. This relationship scales with computation timg?a® p3, wherep is the degree of the
polynomial.

Conversely, the particle system allows users the freedom to explore thbydiatiractively

moving a distributed set of particles in space. The accuracy of the partisieoms with respect
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Figure 4.8 The data set from Figure 4.3 sampled with a particle system. righé column
images are splat renderings of the particles inléfiecolumn: (a) 1280 particles distributed in
16 seconds with 1.1 million forward evaluations; (b) 3232 particles distribinted6 seconds
with 2.5 million forward evaluations; (c) 8647 particles distributed in 70 ses@vith 4.8 million
forward evaluations.

to the isosurface are controlled on a per particle basis by the error ddesh, and is indepen-
dent of the sampling density of the particle system, unlike the raytracing meffimgs, very
coarse, fast distributions of particles will be guaranteed to lie withiof the isosurface. The
accuracy of the visualization produced by the particle system is instedddetatheinferred
topologyof the isosurface by the viewer. Course level distributions provide insigthe gross
geometry of the isosurface, while finer distributions provide increasinglserdetailed repre-
sentations of the underlying geometry. Accuracy thus relates to the amfodetiadl that can be
visualized with a specific resolution of the particle system — a relationship ¢h#sslinearly
with time.

Figures 4.9(a) and 4.9(b) illustrate the results of two different resolutibiiie particle system
with 500 and 6800 particles, respectively. In Figure 4.9(c), the partistaltition from Figure
4.9(b) has been rendered with a GPU-based splat algorithm, and is virtudibginguishable

from a raytraced image &tl2 x 512 resolution. Moreover, the isosurface in Figure 4.9(c) can
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be rotated at interactive frame rates (greater than 30 frames per $eddredGPU-based splat
algorithm runs on an NVIDIA GeForce 6800 GT card with Pixel Shader 3le isosurfaces
in Figure 4.9 reside within a single hexahedral element, and are the zefasetighth-order
polynomial implicit function. The 500 particles in Figure 4.9(a) took 4 secdndsonverge,
and the 6800 particles in Figure 4.9(b) took 3 minutes to converge.5Thex 512 raytraced
image with ar25"-order reconstruction polynomial required 6 minutes to render. We nate tha
the particle system implementation uses the same finite element evaluation codeagtr fier,
which is also the implementation used for results in [103]. We have founddhgilig the finite
element implicit function takes, on average, an order of magnitude longercthraputing the
inter-particle forces. This is consistent with our earlier observationptisis-element evaluations
dominate the computation.

We demonstrate the capabilities of our proposed particle system by visugliassure field
isosurfaces of two CFD simulations. In the first example, shown in Figuzs410, and
4.11, we examine the wake of a rotating canister traveling through an incesitee fluid.
The finite element mesh consists of 5040 hexahedra and 696 prisms, witbrtipait@ational
fluid mechanics problem being solved with third-order polynomials per elenherhe second
example, shown in Figure 4.12, we visualize the flow past a block with ap afsplitter plates
placed downstream of the block. This example contains 3360 hexahediz644 prisms, again
with the computational fluid mechanics problem being solved with third-ordgnpmials per
element. The color of the disks in Figures 4.2, 4.10, and 4.12 indicates thigael@ection of
the surface normal at the particle (blue indicateswvardand red indicategwward). In Figure

4.11, color specifies the size of the particles.

4.7 Discussion

In this chapter we have presented a general and robust method faliziisg isosurfaces of
high-order finite element data sets that would allow scientists and enginesfisitently explore
simulation data. By sampling isosurfaces with a particle system, the method psoclumpact
and adaptive visualizations that can be viewed at a variety of resolutibngthermore, the
proposed system is general and easily adaptable to a broad range @lénitnt representations,
from low-order linear elements, to complex, spline based elements. Thatere\derivation
presented in Section 4.3.1 is also relevant for any application that measukegure in the
presence of curvilinear coordinate transformations.

As mentioned in Section 4.3.1, the discontinuities in the derivatives at the elbmamaries
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(©) (d)

Figure 4.9. The zeroset of an eighth-order implicit function defined within a singleahedral
element: (@) 500 particles, with a distribution time of 4 seconds; (b) 6800 leartiwith a
distribution time of 3 minutes; (c) A GPU-based splat rendering of the 680icies that is
visually indistinguishable from th&l2 x 512 raytraced image in (d) that required 6 minutes to

render.
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Figure 4.10 The isosurface of pressu¢é = 0 for a CFD simulation over 5736 elements with a
third-order polynomial implicit function in each element: (a) Schematic for the Humulation;
(b) 5000 particles, 55 seconds; (c) 13,000 particles, 3.4 minutes; @)@PBarticles, 15 minutes;
(e) 59,000 particles, 39 minutes.
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Figure 4.11 The distribution from Figure 4.10(d), color-mapped based on the rédie
particles. The colorbar provides the range of values of the radii.

can cause features in the surface that cannot be analytically deteaedthromputation of
surface curvature. These undetectable features will contain a vargespampling of particles,
which create artifacts when the particles are splat. One solution would be tanepie& more
sophisticated splatting algorithm that clips splats along these boundari¢sAlS@, the particle-
based visualization system could be bundled with an image-space rentistimigue, such as

raytracing, and serve as a preview for quickly determining isovaluesiangboints of interest.
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Figure 4.12 The isosurface of pressuéé = —0.1 for a CFD simulation over 11,004 elements
with a third-order polynomial implicit function in each element: (a) Schematic ferfthid
simulation; (b) 43,000 particles, 25 minutes.



CHAPTER 5

ISOSURFACE MESHES USING DYNAMIC
PARTICLES WITH QUALITY
CONSTRAINTS

Biomedical simulations increasing rely on patient-specific models for accuagthyring the
pathology and physiology of individual patients. The generation of thesgels depends on
a pipeline for extrating high-quality parameterizations of implicit surfacesnstcucted from
MRI or computed tomography (CT) data. In this chapter we describe a méthbdddresses
a piece of this pipeline — specifically, the construction of isosurface triatigns of implicit
surfaces. The resulting meshes consist of triangles that are well-soitaddurate interpolation
of scalar and vector-valued quantities, as required for numerous afptis in visualization and
numerical simulation. The proposed method does not rely on a local cotiatrar adjustment of
triangles as is done, for instance, in advancing wavefront or adapfimement methods. Instead,
a system of dynamic particles optimally samples an implicit function such that thielgsir

relative positions produce a topologically correct Delaunay triangulatidmus, the proposed

method relies on global placement of triangle vertices. The main contributions of the chapter

are the integration of dynamic particles systems with surface sampling theoryRB-based
methods for controlling the local variability of particle densities, as well asloeja practical
method that accommodates Delaunay sampling requirements to generatesisao$@oints for
the generation of surface tessellations.

The chapter begins with an introduction of biomedical applications that udeimyegchnol-
ogy, and is followed by a review of existing methods for parameterizing implicfases. We
then present a detailed description of the proposed particle-based meghéfine along with

results and a discussion.

5.1 Meshing for Biomedical Simulations
The problem of surface meshing has been studied extensively in a waedrapplications

and contexts by a range of disciplines, from visualization and graphicsrputational geometry
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and applied mathematics. Existing approaches for tackling the surface ggsbisiem can

generally be distinguished by:
e how the original surface ispecified
e what therepresentatiorof the output mesh is; and
e what the metrics are for measuring tipeality of the mesh.

This chapter deals with a particular application, whictlthe generation of nearly-regular
triangle meshes from medical or biological data either for visualizing iterpolated quantities
or for conducting numerical simulations.

Generating polygonal reconstructions of biological data is important imiatyaf contexts.
For example, in bioelectric field problems there is evidence of better sourakzktion when
inverse-problem solution techniques employ geometry and material prapttéieconform to
those of the patient or subject [151]. Similarly, research in cardiolaséiuid dynamics and
image guided medical simulations rely increasingly on models created from irohges vas-
culature [144, 34]. Recent work proposes using image driven gegrfamtithe analysis of
biomolecular functional models [167]. Accurate and compelling visualizata@insmulated
guantities over surfaces, such as the visualization of flow on manifolds B8, also require
high-quality geometry. In the context of mesh generation, visualizationiandation are related
in the way they demand not only accurate geometric approximations but pfeseatations that
provide for accurate interpolation of other physical quantities acrossuti@ce.

The dependence of biomedical applications on image data drives saspealts of this work.
First, a surface is not represented in a parameterized form but ratleev@umetric constraint,
such as a levelset in a binary or grayscale mask resulting from an imagesegion. Thus,
we focus on isosurfaces. Second, images have finite resolution andteapture small, sharp
features beyond the resolution of the imaging device, which is limited by intefsadigtance
and the point-spread function of the measurement process. Thusofespd method trades
geometric accuracy for mesh quality and topological consistency, resintmgnerically useful
meshes.

The strategy described in this chapter combines work from severalrdispiéelds, estab-
lishing aglobal approachto meshing isosurfaces of volume data. This approach allows for
local decisions about point placements to effect the global distributiontiomer and generates

high-quality, closed surface meshég.( water-tight) that adapt triangle size to closely approx-
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imate the isosurface geometry. In this work, high-quality is defined by tatgasasures of
the regularity of the triangles. Although the proposed method is computatiorxpinsive, the
production of consistently higher quality meshes than other approaches thekmethod useful
for applications that demand very regular triangulations. Starting with a smeoctmstruction
of the volume data, the method computes the curvature and medial axis of aridgseswhich

are then used to construct a Lipschitz continuous measuiacaf feature sizea fundamental
geometric quantity that governs the minimal sampling rate of a surface. A dyraarticle

system then positions a large number of samples with interpoint distancesgpatt this local
feature size. The resulting point samples are triangulated using the Dglaased meshing
algorithm of Dey and Goswami [44], an algorithm that relies on samplingtiesithat exceed the
minimal sampling rate. Thus, this chapter proposes a new meshing pipeline ishibddressing
the question of how, in practice, to make use of the fundamental work iacgusimpling theory

by detailing an algorithm for reliably achieving specific sampling densities.

5.2 Background

For many applications it is useful to generate a parametric representationimiplicit sur-
face, such as a piecewise-linear polygonal mesh. In visualization, gutenmesh can be
rendered very efficiently using modern graphics hardware, while in stirontg boundaries rep-
resented in implicit functions can be linearly subdivided into a finite element.nk&sty work on
isosurface meshing in the computer graphics literature focuses on dffi@denerating approxi-
mate meshes, used mostly for visualization. The well-knovainching cubealgorithm [165, 90]
provides a well-defined set of rules for reliably and quickly producirsg-firder approximations,
but does not construct tessellations that are adaptive to the isosgdaneetry. Furthermore,
quality measures of triangle regularity can be arbitrarily poor while verteneas vary greatly,
independent of the input surface geometry. Improvements to marchirgs @re numerous,
including improvements for better geometric approximations and closed mdgi&ds [

One general class of strategies for achieving higher quality surfdgg@ulizations is to
start with a mesh that is either coarse or of low quality and, through some catiolirof mesh
refinement, edge-swapping, or vertex repositioning, incrementally impghavenesh geometry
and triangle quality. For example, Velho [153] proposes a curvaturedbasinement method for
improving the geometric accuracy of a marching cubes mesh, but doadlgatddress the issue
of triangle quality. Woodet al. [163] propose another strategy that first constructs a coarse,

topologically correct mesh that is then smoothly refined, producing higbality triangles.
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Other researchers have proposed refinement algorithms without ttéarese base mesh [31].
In general, however, the strategy of refining a mesh to improve triangléygpeoduces the
inefficiency of a great many samples that are dictated by mesh quality raéimethés geometry
of the underlying surface (for convergence rates of mesh quality34ge [

Another scheme for generating quality isosurface meshes is to start freroranore seed
points and grow triangles in the form of an expandingadvancing front [83, 63]. The basic
approach is quite fast and can produce high-quality triangles, espewgiady triangle size is
adapted to local surface curvature [72, 129]. The core algorithiepies in two phases. First,
the front is grown by adding triangles along active edges, where thglemare sized according
to local curvature metrics. Triangles are added as long as they are rtasedo other preexisting
ones until the initial front and the active front are separated by a thintyeragion. The second
phase of the algorithm stitches these fronts together using a variety atieufor detecting and
connecting nearby triangles.

A key element of advancing front techniques is the detection of mergimgsfroSpatial
subdivision schemes can be used to find any nearby triangles [724nastlter methods such
asfenceg128], which test for bounding sphere intersections. Even with these fresits can
still overshoot or miss existing triangles. Using more stringent triangle sizingrses, such as
a guidence field128], can help to limit the size of triangles and avoid misdetections of nearby
fronts. The detection and stitching schemes, however, are based oiety v heuristics and
special cases that have yet to be provably correct or implementabléheFuore, the shapes
and sizes of triangles along merging fronts is determined not only by sugfs@metry, but also
by the geodesic curvature (curvature in the tangent plane) of the mawng fThis problem
becomes even more acute when the data contain wavefronts that collidedpasite directions,
which is unavoidable for certain topologies or shapes. Thus, advafrongalgorithms must
have additional built-in heuristics, such as wavefront smoothing [131§pecial triangulation
schemesd.g, edge swapping) that deal with collapsing or colliding wavefronts, oftethe
expense of triangle quality in those areas.

A third approach to surface meshing is to generate an unorganizedssefaxfe samples and
use algorithms from the computational geometry literature to create a Delagsaildgon of the
points. Early work in the field provides the algorithmic foundations for poatlyisolid Delaunay
triangulations in 2D and 3D [126, 50, 32], complemented by literature on tloeytlh@d methods
for extracting the surface manifold [6, 5, 8, 43]. These methods employn@elling bottom-up

approach for constructing edges and faces from nonlocal propefti point set, guaranteeing
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closed, nonintersecting meshes. Generating the set of surface sawmlpigls,determine the
topology of the resulting tessellatiand the quality of the resulting triangles, is difficult and
generally treated as either a separate problem, or as part of an adaghteree for iteratively
improving mesh quality [31, 45].

This chapter proposes a surface sampling and triangulation algorithnelieaton fundamen-
tal sampling requirements associated with Delaunay surface reconstrsctiemes. Amentet
al. provide the quantitative requirements, based on surface geometryDfoues [6] and
3D surfaces [5], such that a unique Delaunay tessellation exists frdohwahsubset of edges
or faces have a topological equivalence to the underlying surfacter Aistributing a set of
points based on these sampling requirements, we use methods that geazatiivt Delaunay
reconstructions from such samples [44, 9] to create a tessellation.

The core of the Delaunay sampling requirements relies on a characterigdsornface ge-
ometry that depends on nonlocal information. Given a smooth sufface ®3, a sufficiently
dense sampling’ is one such that for any pointe F' the Euclidean distance betweeand the
closest sample point € P is no greater thaatimes thelocal feature sizat s. Any discrete set
of surface points’ that meets this requirement is asample off’. The current theoretical (3D)
results show = 0.06 is sufficient [5]. However, empirical results indicate that the actual doun
might be looser, and several authors have conjectured thdt.5 may be closer to the necessary
bound [7].

The definition of local feature size (LFS) is an important aspect of thesdts and of the
proposed algorithm. The LFS of a poinite F' is defined as the distance frasrto the nearest
point on the medial axis (MA) of’, shown in Figure 5.1 as the distané¢e¢o the point on the
surfaces. The MA has been heavily studied in the literature [80, 70] in the contexhapes
modeling, computational geometry, and computer vision. Although the MA hesadormal
definitions and many interesting and important characteristics, it is suffimerle proposed
method to consider the MA of a surface as (the closure of) the set of pdintsR® such that the
nearest point on the surfacertoc M (i.e, mingcr |s —m|) is not unique. Alternatively, several
authors define the MA as the set of points where there exists a sphedo#sanot intersect the
surface and is tangent to the surface in more than one location.

The relationships between the MA, local surface geometry, and samptjoirements are
important in several ways. First, the cotangency definition implies that theof 5S F' is no
greater thanthe local radius of curvature at that point. The radius of curvature isdheupper

bound, as is the sampling condition, and is therefore not a suitable pnatkefbFS. For instance,



75

*—O ®
S

Figure 5.1 A curve (shown in black), with assampling of points (also shown in black), and its
MA is (shown in red). The-sampling requirements state that a point on the surfa@annot be
further away from a sample point thatimes the LFS as.

the feature size can be very small on thinly separated, flat objects thethary large radius of
curvature. Second, the LFS condition is necessary for establishingthexttopology among
an unorganized set of points. If the topology is somehow knaweriori (e.g, via continuity in
an advancing front) the sampling density could be much more sparse. Eiowee common
use of a surface mesh is for the construction of a body fitting tetrahedraitiZd] where it is
important that the triangles, which form the faces of the correspondirahttra, conform to the
global solid geometry. If, for example, a thin region of a surface wemgp$ed with a sparse set
of points, the corresponding tetrahedra would be very flat. Howewbe iboint density is related
to the LFS, the tetrahedra are more likely to be regularly shaped.

Algorithms for constructing aa-sampling of a surfacé” are not immediately evident from
the sampling theorems or mesh generation algorithms. Although several sehtgdes propose
methods for sampling surfaces with less-strict or slightly different bout@is3[1], the--sampling
requirement provides guarantees necessary for subsequent sinsitdii® to the side effect of
respecting local as well as global object shape. Among the contributfotissochapter is a
practical scheme for generating sets of surface points that closelproond thee-sampling

requirements.
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5.3 Mesh Generation with Particle Systems

The goal of the proposed meshing system is to generate nearly-regagutar meshes of
isosurfaces. By adaptively distributing a set of dynamic particles sutthsiapositions conform
to ane-sampling requirement, the particles can be used to generate a Delauiaag suesh that
corresponds to the geometry and topology of the isosurface. To adhievgoal, the proposed
method consists of several steps: (1) computation of a MA approximationd¢muee the local
feature size; (2) creation of a sizing field to specify the desired distdretesen particles; (3)
adaptive distribution of particles across the isosurface; and (4) ti@igu of particle positions
to create a polygonal reconstruction of the isosurface. Figure 5.2tddpis pipeline. The

following subsections will describe each of these steps in more detail.

5.3.1 Local Feature Size

As described in Section 5.2, the LFS is the distance to the MA of a surfaceurdte
computation of the MA is a challenging research problem, and numerousaabh@s have been
proposed for its solution. One approach presented in the computer visiatuie is to detect
discontinuitiesite., shocks) in a distance transform of a surface. Detecting the shaukbeace
the MA approximation, in the distance transform is numerically tricky due to treodiguities
in the derivatives at these points. Siddigial. [137] propose measuring the divergence of the
gradient of the distance transform, where high values indicate a signitibange in the field,
and thus a MA point. Another approach by Persson [113] fits localrgtiad over the distance
transformation grid, looking for places where these functions interseset Af heuristics then
determine whether an intersection point should be included in the MA apprtgima

For this work we have developed a medial axis detection algorithm for mowerglamplicit
surfaces which is moderately robust to free parameters, gives suignistacy, and does not
require the thinning or postprocessing of similar methods [137]. This scheliee on thefoot
pointmethod, which is the nearest popbn a surface to a given poigt and can be found using
gradient descent by the method described in [64]. Here we consitjethenMA proper, and not
the singular points where the MA terminates. The line segment defipiscoerpendicular to the
surface, and every point gi hasp as its foot point. This line segment formsharacteristic
which is the path of a surface point that moves inward/outward in the direcfitime surface
normal (to within a sign difference). As we proceed from the surfacegaém inward or outward
characteristic, the foot point of each point along that path remains thengtaoint for the

characteristiauntil the characteristic intersects the MA — once the characteristic intersects the
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Implicit Surface Medial Axis Initial Sizing Field

Final Mesh Particle Distribution Smoothed Sizing Field

Figure 5.2 The proposed mesh generation pipeline using a dynamic particle systerm.aFirs
medial axis is computed from a distance transform of an implicit surface; aexnitial sizing
field is built from the local feature size and radius of curvature; a smdattzing field is then
generated by limiting the gradient of the initial sizing field; particles sample thegsiil and
distribute themselves accordingly; and finally, the particles are triangulaied a Delaunay
surface reconstruction algorithm.

MA, the position of the foot point changes. The algorithm for detecting thadvas follows. For
each point on the grig find the foot pointp, then find the poing, along the characteristic (away

from the foot point) that intersects the current voxel (far face of thieed. Find the footpoint

p. associated witly,. If the angle between the line segmepisandp,g; is greater than some
small threshold:, then the segmenip, crosses the MA. The position of the MA alopg, can
be found by using a first-order (tangent plane) approximation to thacigt the poinp,.. We
usecos(a) = 0.9 for all of the results in this paper.

After constructingV/, a LFS field\(x) is created by finding the distance to the closest medial

axis pointm € M atthe grid nodes. For efficiency, we restrict this field to the subsetdhgdes
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that bound the isosurface. Thdield needs only to be a conservative estimate of the distance to
the true MA as LFS (and curvature, which will be discussed in the netibs@provides an upper
bound on the distance between particles in the proposed system; anytlsitiglesor equal to,

the true distance will drive the final distribution of particles to be-awampling.

The accuracy of the field fundamentally relies on the underlying accuracy of the medial
axis detection algorithm, which is itself a sampling problem. Creating the medialeajiges a
sampling of the data field, where those samples are chosen dictating thacgcolithe medial
axis detection. The problem thus cycles between choosing samples totbetewtdial axis, and
using the detected medial axis to determine where the samples should be tielg@apture the
true medial axis. For this work, we intentionally break the cycle by relegatmgdhuracy of the
system for determining thiés, and ultimately achieving a truesampling of the surface, to that
of the accuracy of the underlying medial axis detection algorithm. As refs@ato medial axis
detection progresses, the proposed sampling method can make use dfowthras to achieve

more accurate results.

5.3.2 Sizing Field
The sizing field is the mechanism by which the particle system adapts its distriboitioeet
ane-sampling requirement. There are two geometric quantities, LFS and radiusvature, and
two parameters; andd, that govern the construction of the field.
To establish an initial sizing fieldlo(x), the A field is compared to the radius of curvature
at each grid node in a narrow band around the isosurface. The i@diusvature is calculated
asl/|kma.| — the absolute value of the maximum curvature can be computed directly from the

Hessian off’ [78]. The initial sizing field is given as:

ho(x) = Cmin(A(x), 1/|kmaz(x)]) (5.1)

where C' is a constant based anthat is discussed and defined in the following paragraphs.
Including the radius of curvature in Equation 5.1 helps to ensure that suntte features that
may not have been capturedif appear in the sizing field construction.

Although hg contains most of the core geometric information about a surface negdssar
describing ane-sample, it is not suitable on its own for regulating particle distances for two
reason: first, the Delaunay sampling theory indicates that some fractioe &H& is required

for topologically correct reconstructions; and second, to achieveduglity triangles across the
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entire mesh, the gradient of the sizing field must be limited to ensure smoothiagdtnges
in triangle size. These two characteristics are controlled by the user digfimameters ands,
which modify h to create arfe, 6)-sizing fieldh(x).

Multiplying hq by twice theec parameter, such that = 2¢, causes the sampling to be a fraction
of local feature sizei,e., ane-sampling. The Delaunay sampling requirement [6] specifies
some point on the surfageherthan the sample points, thus we include this implied factor of
two in C, and the literature indicates that= 0.5 may be a loose upper bound forThe second
parametery, is used to limit the gradient dfy such that the values in the resulting fiéidwill
not change faster thah Thus,d dictates how quickly the edge lengths of neighboring triangles
can change — < ¢ will generally produce well-shaped triangles. This limiting produces a
0-Lipschitz field (described in Section 2.3), an important property for smiviathgle gradation.

To limit the rate of change ol over its grid we use the following discrete operator, operating
on a lattice sampling of our field;;;, = h(x) at a grid node positiox, which is shown by

Persson [113] to generateyd.ipschitz field:

hZJ]gl h”k+At(mln(A$k,5) A:;k) (5.2)
where
A;;k =[ max(D, wk,O) + min(D;" Z]k,O)Q—f-
maX(D h”ka ) +m1n(D+hUk’ ) +
max(D; i, 0)? +m1n(D+h'ija 0) ]1/2 (5-3)

and whereD™ and D~ are the forward and backward difference operators, respegtiwély
subscripts denoting the axes along which they are operating. In our impitioarof the system
we consider the limiting of the gradient to have converged when the maximutiveeithange of
any grid node is less thal®)—5.

While the LFS function) is 1—Lipschitz [126], the inclusion of the radius of curvature
causes to lose this property. We have found, however, that the initial sizing figld nearly
1—Lipschitz, producing a final sizing field which ismin(2e, ¢)-Lipschitz. Notice that ip > 2e,
the gradient limiting smoothing will have no effect ég. We have experimented with a range

of values for bothe andd, and present an illustrative example in Figure 5.3 to provide intuition
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on each parameter’s role in the final mesh quality. This example visually eimpbadse balance
between geometric accuracy, the number of triangles, and triangle qudl@y.otinded box is a
level-set of a sampled analytic distance transform of box, where the &eeplanar, the edges
are cylindrical, and the corners are spherical. The surface is rtegotexl using a Catmull-Rom
spline kernel and the first and second derivative of a cubic B-splive. also note that this
sizing field could be incorporated in the advancing front algorithm to determiangle size by

replacing theguidence field128] with the sizing field.

5.3.3 Distributing Particles

Using the particle system framework described in Chapter 3, a set ofrdymarticles can
be controlled by: such that their final distribution meets the sampling requirementg fdio do
this, the system is initialized with a set of particles, the positions of which arendieed from
a marching cubes triangulation to ensure that disconnected parts of thefasesare seeded
with particles. The particles are then projected afitosing a Newton-Raphson gradient descent
method. Once on the surface, each particle is associated with an indipioheattial function
which induces interpatrticle forces that push them towards lower, loeaggstates (see Chapter
3). To control the sampling density, we scale the distances between partielbéch determines
the magnitude of the interparticle forces — by the valué: Gft each particle’s position. The

distance between particlpsandp; becomes:

dij = a5l (x; — x5)| = dji (5.4)

whereqy;; is defined byh (evaluated at particle positions andx; using linear reconstruction

kernels) as follows:

g

min(h;, h;) (5-:5)

Qij = Qjj =

with 3 = 0.5/ cos(§). The particles are then iteratively moved to lower local energy states until
the system reaches an equilibrium.

Equation 5.5 scales the effective distance between particles based opahrhéstagonal
packing across a flat surface where the region of influence of alpaetids at the closest two-ring
neighbors. The value ¢f is derived from this ideal packing, and allows for a population control

mechanism to be defined that adds and removes particles based on tiggiy @riéng the system
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e =0.125

e =0.25

e=0.5

Figure 5.3 lllustrative comparison of mesh quality and number of triangles for varyaiges
of e andd, the user defined parameters in Equations 5.1 and 5.2, respectively.vahees vary
down the columns while thé&values vary across the rows.
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towards an ideal packing. Becausgestablishes an upper bound on the allowed distance between
particles for meeting astsampling requirement, using the minimum sizing field value of any pair
of particles establishes a conservative sampling, as do the convex fitezaolation kernels that
reconstruct at arbitrary particle locations.

There is, however, a caveat to producingegparticle sampling. The particle system uses
Euclidean distances to compute interparticle forces and energies, aeddpdhe more accurate
(and computationally expensive) geodesic distance. The distancexapation causes particles
in a two-ring neighborhood to become influential, adversely effecting tipailption-control
mechanism for obtaining ideal neighborhood packings. This artifactebenvis bounded by
¢, which allows for a contraction factgrto be introduced to the system to counter-act the effects.
Figure 5.4 shows the distance contraction for particles equally spaaessaceircle. The distance
between each adjacent particlelis— the distance between, andp-, however, is no2d as the

ideal packing model assumes. Instead, it is:

(5.6)

In the proposed systerd,< ¢/k,,q. because the LFS is bounded from above by the radius of

curvature. Thus, we can bound the contraction paramgtes:

2\ /2

As e goes to zerog approaches one because the surface becomes locally more and maraglan
the distance between patrticles shrinks. These boungstgst that the contraction effect cannot
get arbitrarily worse as the surface features become smaller; the wmsestschounded by,

To counteract the contraction of distance to neighboring particles, wesglyescale the sizing
field ash <— h/g. We empirically determined a value gfby observing histograms of the ratio
of triangle edge lengths to the averagéait each edge’s vertices. Over a range ahdo values
for a variety of data sets the shapes of the histograms were visually idemttegt for the tails,
which contain a relatively small number of outliers — an example of one histograhown in
Figure 5.4. Based on our observations, we determined a consengttivat ofg to bel.5. The
inclusion ofg creates a final mesh where the length of virtually every edge is at2vlost These

results are detailed in Section 5.5.
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Figure 5.4. The effects of curvature cause the two-ring neighboring particlesdorbe closer
than2d (left). This effect is bounded by; which allows for a scaling parameter to be introduced
into the system. We empirically determined this value by studying histograms of thglé&riedge
lengths versug, such as that of the pelvis reconstructioiglt).

5.3.4 Triangulation

To triangulate a distribution of particles, we use the water-tight Delaunaytriation method
TIGHT COCONE [44] — a free version of the software is available fromahthor's website.
TIGHT COCONE first builds a Delaunay tetrahedralization of the union of¢hefdnput surface
points and the Voronoi vertices of those points. The faces of the tetatzadion are then culled
such that the remaining triangles exist only in a thickened region arounditfeces samples.
To avoid the creation of holes in the manifold extraction step from these apdigces, the
remaining tetrahedral elements are markednagle or outside The marking is done by first
creating an adacent tetrahedral element to some candidate face with>aateriénity. This
element is marked as outside, and a walking algorithm then determines, basel@djencies,
which tetrahedral elements are inside or outside. The labeling of the elem#rds isonsidered
in the final manifold extraction step that extracts a surface triangluatiorf the set of candidate
triangles such that the resulting mesh is gauranteed to be water-tight.

The TIGHT COCONE algorithm works well for single materials when the samgiitgria
is met. There are applications of particle-based meshing, however, suichraultimaterial
datasets for which the sampling criterial cannot be explicitly met. In Chaptee fresent a
simple labeling algorithm that takes advantage of the volumetric data for cotstywatertight
surface meshes — this algorithm could be applied to any of the sets of pati¢tes chapter

for achieving reliable surface meshes.
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5.4 Implementation
This particle system implementation is a slightly modified version of that found itidBec
3.6, where changes are lld, and free parameters introduced in this chapter are presented in
Tables 6.6.4 and 6.6.4, where we also present the free parametershapteC3 that were used
in the meshing implementation. Note that almost all of these parameters use theataeseas

previously discussed implementations.
For all of the results presented in this chapter we initialized the system with ttieegeof
a marching cubes mesh. TBeand p user-defined variables are replaced with a sizing field

generated as a preprocessing step.
1. For each patrticle:

(a) ComputeE;, and computev; with Equation 3.4where the interparticle distances

are scaled by theo;; given in Equation 5.5.
(b) Computev®™ = \;v;.

(c) Compute the new particle positi}“” by solving Equation 3.11 witkr}%, followed

by a reprojection to the surface by solving Equation 3.12.

(d) Compute the new energy valug; ", at the new particle locatiox}", as well as the
new implicit function value F;"°%.

(e) If E}*Y > E;or |x; —xY| > s or F"Y > ep, and\; > A, decrease\; by a
factor of 10 and go back to Step 2(b)ii. Af < Amin, do not move the particle and skip

to the next particle in the list.

(f) If B}V < E;, updatex; = x}°V. Increase\; by a factor of 10 if this is the first time

through Step 2b.

2. Decide whether the system is at a steady state. There are numerous toetietermine
steady state, and we have chosen to use the difference of the system @#me sum of the
energy at all the particles) from one iteration to the next. When the systemyedifference
is less than a small fraction of the total energy (we use 0.15% for the resed#tsmied in
this dissertation, although a range of values would produce similar resudtsleduce that
particles have reached a steady state. Otherwise, repeat Step 2koFdmitializations,
we have found it can be useful to skip to Step 2d every 50 iterations instewaiting for

the system to reach a steady state.



85

3. Check whether the configuration of particles is desirable. We compate @article’s
energy against an ideal energgid®®!, which is defined by a hexagonal packing of neighbors
on a flat surface with inter-particle distancessofWe biasE; with a random value on the
interval [0, 1] to eliminate mass splitting or dying, then split particles with< 0.35 E'dea!,
and delete particles witli; > 1.75E°l While we have provided specific values for
this step, we have found in practice that varying the values by up to 208tipes visually

similar results, although with different convergence times.

4. If the energy of the patrticles is acceptable, stop iterating.

5.5 Results

In this section we present results from the proposed system for gewgeisosurface meshes
of a variety of biological data sets. The first two tessellations, shown irr€sdgu5 and 5.6, are of
a pelvis [10] and brain [142] generated from binary segmentations #ivetheen smoothed with
a Gaussian kernet(= 1.5). Figure 5.7 illustrates a skull extracted from gray-scale CT data, and
Figure 5.8 depicts vasculature represented by the zero-set of a distamsform generated by an
anisotropic smoothing algorithm [104]. All four surfaces are reconstdiwith approximating
cubic B-spline kernels.

The proposed method was run on a P4 3.2GHz CPU with 2GB of memory. Tieeagieon of
the medial axes and thegrids took on average about an hour for each data set while limiting the
gradient field ofhg to generaté: required several minutes. Run times to distribute the particle
systems, along with the resulting mesh dimensions are presented in Table aBo\Weesent the
e andd values used to generate the sets of particles and note that for all bustansetthese two
values were constant over the set of data. These values are slightlyftarthe pelvis data set as
the resolution of the surface was more coarse than the underlying dataltpwing for a more
spare set of particles to accurately reconstruct the surface. As methiioSection 5.3.4, we use
TIGHT COCONE [44] to triangulate the particle distributions — the tessellationsired on the
order of several minutes.

The stated goal for this work is the generation of isosurface mesheslsditalsimulations
and the interpolation of data. To measure the quality of our results for thepeges we
draw upon ideas established in the finite element literature which charadtezizele of mesh
quality in the simulation accuracy [67]. Here, we briefly discuss the inteftween geometric

accuracy and the error of a finite element solution computed over a mesh.
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Table 5.1 Table of free parameters.

Parameter Value Description Comments
€r 10-7 added to interparticle distances t®ystem is insensitive to values
avoid infinite energy values near machine precision
o 1.0  effective particle radius constant for all results in this dis-
sertation
0% 0.156 defines range of normals foinsensitive to exact value as long
which the particle energies areasy <1
smoothed
Ao 1.0 initial stepsize value system is insensitive to this value
Amin 10~ minimum stepsize value system is insensitive to this value
as long as it is sufficiently small
€F 10~°  surface threshold value should be around the ma-
chine precision value
5 number of initial projections of a system is insensitive to this value
particle as long as particles get to within
e of the surface
0.15% system energy difference fromvalue must be small enough such
previous iteration that indicates athat the particle distribution con-
steady state verges to an even packing
50 number of iterations when systenmvalue must be large enough such
automatically checks for a desir-that local particle neighbors can
able configuration (Step 2d) be established
0.35  percentage of4., that indicates values with approximatel30% of

a particle should be split this value produce visually simil-
iar results with different conver-
gence times
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Table 5.2 Table of free parameterspont

Parameter Value Description Comments
1.75 percentage of’i4.,1 that indicates values with approximatel0% of
a particle should be deleted this value produce visually simil-
iar results with different conver-
gence times
5 number of iterations when parti-values< 10 maintain stability in
cle neighbor lists are updated  the system
€ user-defined  fraction of LFS stored in the values< 0.5 are important for
sizing field the reliability of accurate trian-
gulations
0 user-defined  Lipschitz value of sizing field values muskbe
107° convergence threshold for gra- value should be near machine
dient limiting precision
1.1 TIGHT COCONE parameter values in the range [0.9, 1.2]
produce reasonable tessellation
results

Table 5.3 Details of each data set, including size of the volume, values fordj, minutes
required to distribute the particle system, and resulting number of mesh ventidégangles.

Data \Volume €,0 Time Vertices Triangles
Size (mins)
brain 149x188x148 0.5,0.3 41 91702 182188
pelvis  271x390x282 0.75,0.5 1 4992 9984
skull 256x256x115 0.5,0.3 232 212188 424588
vessel 265x265x171 0.5,0.3 280 287990 576493
dendrite  270x586x154 0.5,0.3 225 203744 406994
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Figure 5.5. A tessellation of a pelvis segmentation [10].

Given a domaif2 and a partial differential equation (PDE) that operates on a solutibat
lives over(l, the standard finite element method attempts to construct a geometric approximation
Q= 7 (®) consisting of a tessellation of polygonal shapeg.(triangles and quadrilaterals
for 2D surfaces) of the domaift, and to build an approximating function spageconsisting
of piece-wise linear functions based upon the tessellation [67]. Buildinthese two things,
the goal of a finite element analysis is to find an approximatios V that satisfies the PDE
operator in the Galerkin sense. The details of how this is accomplished yoadthe scope
of this work. The important points, however, are that a finite element dnatysst balance
geometric error and approximation error while respecting stability consti@igtsas discussed
by Babuska and Aziz [11]), and that these errors are connectedgthtbe tessellation that is
generated. The space of functions from whicks generated depends on the type of elements
that exist inQ. Thus the quality of the solution approximation is not only related to the acgurac
of Q) for approximating(2, butalsoto the geometric properties of the mesh elements. Irithe
norm, the accuracy of is bounded by a constant that includes angles of triangular elements.

Babuska and Aziz [11] show that if the largest triangle angle is boundeg &om 180°, the
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Figure 5.6. Particles on the brain and the resulting tessellation. The surface is atembion
of a white-matter segmentation [142].

finite element method converges as the triangle size decreases. Sh¢h&bjukotes that small
angles are preferable over large angles, so long as the largest argghex too large, and extends
these results to provide functions that guide mesh generation and refinaigenthms toward
the production of high quality finite element tessellations. A common quality metrid inse
the literature for measuring this relationship of element angles is the ratio oadtlieof the
inscribed circle to the circumscribing circle of a trianglg,/ri-.. This metric penalizes triangles
containing small angles, with the worst ratios going to triangles that also cantaige angle.
The proposed system addresses both aspects of geometric qualitypgdbedinite element

method. First, the accuracy of the tessellation for capturing the topology afdimain is guar-
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particle system

Figure 5.7. The skull mesh is generated by reconstructing a level-set of a gedg-83 image.
Close-ups are from triangulations generated using the proposed pastatiem method, an
advancing front technique [129], and a marching cubes algorithm.

anteed by the Delaunay reconstruction algorithmsefdistributions of particles. We quantify
the ability of the proposed system to meet this requirement by computing the fatiangle
edge lengths versus the averagéigfat the edge vertices. In Figure 5.9 we present histograms
of the results for each data set. The pelvis mesh contains no edges langéy ttictates, and
virtually every edge in the other three tessellations meets the sampling requisesheéined in

ho — less than 0.004% of the triangles in the brain and skull meshes, and le€5@08f0 in the
vessel mesh, contain an edge that falls above the required sampling I&Vigtiote that while

the particles reliably meet the sampling requirementgpthe correctness of these requirements
are ultimately related to the accuracy of the medial axis detection method, asdidauSection
5.3.1. These results indicate that the proposed particle-based method ®ieapsrheme for

generating ar-sample of an isosurface that relates point density solely to the geometrg of th
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R
5
5

Figure 5.8 The vessel mesh represents the zero-set of a distance transfoenatgel using an
anisotropic smoothing algorithm [104].

surface, and not to the quality of the tessellation which is instead achieved ithpdbyg the
low-energy configuration of particles.

The second finite element requirement for generating high quality tessedléitive produc-
tion of nearly regular triangles. We compute the radius ratios for each data measure the
quality of the triangles in the resulting meshes — Figure 5.10 displays theserhistag We
present the average radius ratios for each data set in Table 5.4, atbripevminimum (worst)
ratio which is important for determining the condition number in a finite element simulatien
also include the radius ratios for meshes generated using a marching[@0pakjorithm that
has been modified to use the same reconstruction kernels as those usegartithe system,
and from an advancing front algorithm [129] that has been supplied toyuhe authors. The
data indicate that the proposed method generates average radius ratwe tiearly identical to
the advancing front technique, but consistently produces much better miniatios than either
alternative triangulation method. The proposed system is able to (globatighige very regular
triangulations due to the natural, low energy, hexagonal packing of leatevoiding the prob-

lems associated with grid-based methdds, (restriction of vertices to grid edges) or advancing
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brain pelvis

0 02 04 06 08 1 0 02 04 06 08 1
skull vessel

Figure 5.9. The edge length versusratios for the four data sets. Values greater thanwere
encountered at a frequency of less tiia % in the brain, skull, and vessel meshes.

front techniquesi(e., detecting and stitching merging fronts) — poorly shaped triangles due to
these problems are shown in Figure 5.7.

A third metric for measuring the quality of triangulations is a measure of the veaiexce
of a mesh. For applications such as mesh compression [146] and sidrdstisfaces [84] the
regularity of the vertex valences across a mesh is important for efficrehiecurate results.
Regular triangulations tend toward a valence of six for most vertices, simiketbexagonal
properties of particle packing. Vertex valence also indirectly indicates Hueteies of a mesh
to contain large and small angles. In Table 5.5 we summarize the valencesvefties in our
triangulations. The meshes indicate a good affinity for valence-six ve(68e275%, compared
with 44.15% for marching cubes and 71.75% for advancing front), with ardgnall fraction of
vertices exhibiting valences greater than seven or less than five (0.@%baced with 12.86% for
marching cubes and 0.95% for advancing front). These numbers slabvihthparticle-based
method out-performs marching cubes while also containing a smaller pereevitazxtreme
valences than the advancing front technique.

Practically, the proposed method relies on a lower bound for the LFS toesthsi the number

of particles does not blow up. In general, however, implicit functionsteare arbitrarily large
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brain pelvis

1 0 02 04 06 08 1
vessel

0 02 04 06 08
skull

Figure 5.10 The radius ratios for the four data sets, all with an average ratio@4.

Table 5.4 The minimum and average radius ratios for each datarsafgvg using the proposed
particle-based methogg), an advancing front schemaf), and a modified marching cubes

algorithm (o).

pelvis brain skull vessel
ps 0.40/0.92 0.18/0.94 0.092/0.94 0.0195/0.94
af 0.23/0.94 0.02/0.93 0.006/0.93 0.0007/0.94
mc 0.00/0.66 0.00/0.67 0.000/0.66 0.0000/0.66

Table 5.5 Vertex valences for each data set, given as a percentage of theuimitaénof vertices.

<5 5 6 7T >T
bran 0.1 172 653 171 0.3
pelvis 0.3 223 56.2 208 04
skull 0.1 16.8 66.0 180 0.2
vessel 0.3 16.7 656 169 05
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curvature, which results in very high densities of points around smallreEsatuBy controlling
the local configurations of binary voxels as well as the curvature of théidingurface, e.g.
through mathematical morphology operations, the curvature of the thesteected isosurface,
and thus the maximum density of particles, can be controllably bounded. etbelsed defor-
mations [143, 133, 160], such as thghteningalgorithm discussed in Section 2.5.2, can also
systematically control the curvature of an implicit surface.

When the curvature of an implicit surface is bounded, we find that the [gabiased meshing
algorithm consistently generates triangulations with minimimum radius-ratios in th®.6.2
range — Figure 5.11 presents one such example. This mesh consists@{iaggpely 407,000
triangles, and has a minimum radius ratio of 0.38. The sampled implicit functiogererated

from a binary segmentation of a dendrite [51] that was tightened with rafiill® 0

5.6 Discussion

In this chapter we propose a particle-based method for generating baditydessellations of
biological data sets. By creating a sizing field to dictate the density of the patiitiédutions,
this method produces sets of points that can meet the sampling requiremeetawi&y surface
reconstruction algorithms for generating topologically accurate tessellatioesaccuracy of
which depends on the correctness of the underlying medial axis detelgarittan. We present
results from a variety of data sets that indicate the proposed method cétyrplieduce meshes
that closely capture isosurface geometry, as well as generate vetgreggangulations. We also
compare the method against other tessellation techniques and show thatithe-pased scheme
generates consistently higher minimum radius ratios, an important charéctinisreducing

geometric error in finite element simulations.
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Figure 5.11 A high-quality mesh of a spinny dendrite segmentation [51]. The triangulation
contains over 400,000 elements, and has a minimum radius ratio of 0.38.



CHAPTER 6

SAMPLING AND MESHING OF
MULTIMATERIAL VOLUMES

Methods that faithfully and robustly capture the geometry of complex matetifaces
in labeled volume data are important for generating realistic and accurat@izéions and
simulations of real-world objects. The generation of such multimaterial modets rinreasured
data poses two unique challenges: first, the surfaces must be well-sanifledgular, efficient
tessellations that are consistent across material boundaries; and dbeaesulting meshes must
respect the nonmanifold geometry of the multimaterial interfaces. In this chaptpropose a
strategy for sampling and meshing multimaterial volumes using dynamic particlensyste
present a novel differentiable representation of the material junctionsalloss the particle
system to explicitly sample corners, edges, and surfaces of materiakirtterss. We show that
the resulting point distributions meet fundamental sampling constraints, all@®eiaginay-based

meshing algorithms to reliably extract watertight meshes of consistently higlityqu

6.1 Introduction

Volumetric scans (volumes) provide an important source of informationdoergating real-
istic computer models of real-world objects. For example, biological andhysagal data are
often captured using volumetric scanning methods such as magnetic resamaging (MRI) or
ultrasound. The data from these devices is usually stored as a reddlaf galues that provide
information about the surface of the scanned object and its detailed ingtrneture. Most
objects, natural or man-made, contain multiple materials with vastly differeisiqgaiyproperties
that are typically organized in complicated geometric configurations. Extgaptiecise geo-
metric models of the interfaces between these materials is important both folizatoa and
for realistic physically-based simulations in a variety of fields, from biomédicanputing and
computer animation to oil-and-gas exploration and engineering.

Multimaterial volumes impose particular challenges for sampling and meshingtaigsr

because the boundaries between materials are typically not smooth manifdda. result,
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intersections of materials can produce sharp features such as edges@ers (see Section 6.3).
Furthermore, the development of increasingly realistic simulations dictatémadtconstraints,
such as a sufficient number of samples to accurately represent the tggarnenpact sets of
nearly-regular triangles, and consistent tessellations across mateniadrees. The construction
of geometric models that meet these requirements for surfaces of distjactils well-studied.
However, generating high-quality models of objects that contain multiple mateaalshus far
received little attention.

In this chapter we use a dynamic particle system to produce well-spaceidudistrs of
points on material interfaces in multimaterial volumes. The particles move to minimize an
objective function that is designed to produce configurations of samlearthlocally adaptive,
geometrically accurate, and well-suited for subsequent meshing. Tbérseterial boundaries
are described as a CW-complex [79], and this chapter proposes nalytia representations
for the different kinds of cells that form this structure. Also defined @ggection operators
that allow the particles to sample these material boundaries in a hierarclsbadrfa— 0-cells,
1-cells, and then 2-cells. The resultis a set of surface points thatt@dhp underlying geometry
and meet fundamental surface sampling requirements. Using Delauseg-im@shing schemes,
an algorithm based on labeling tetrahedron creates surface meshesethatllasuited to the
generation of well-shaped volumetric elements [4].

The main contribution of the chapter is a novel scheme for representingotiraamifold
sets formed at the material interfaces in multimaterial volume data, and a cordisg set of
projection operators that allow these interfaces to be sampled with dynartidgosystems. We
also present an algorithm for distributing sets of particle systems sucheittatype of interface
is sampled explicitly, and show that high-quality surface meshes of the sawipks pxist as
well-defined subsets of a Delaunay tetrahedralization. Implementation ddt#ils proposed
algorithm are presented, and results for several multimaterial volumesagethé&om MRI scans

of real-world objects are shown, demonstrating the proposed systdatafness.

6.2 Previous Work
Most of the previous work on meshing multiple material data focuses on gddebtes-
sellation algorithms. These algorithms work on the original, labeled volumesfoand on
extensions of the marching cubes case tables to handle the nonmanifotat sSatéasections. A
postprocessing step is then applied to reduce the voxelization artifacts.dbtmeecarliest work

presents methods that generate nonmanifold meshes from tetrahedraltslémae are created
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from the original rectilinear volume. Bloomenthal and Ferguson [17]@se@ scheme that first
subdivides each voxel in a multilabel dataset into six tetrahedral elements.these elements,
intersections of multiple materials along element edges, as well as in elementritean be
determined such that a nonmanifold triangulation can be reliably extractedndiching tetra-
hedralmethod [105] adapts the well-knowmarching cubeslgorithm [90] for the tessellation of
irregular grids, and is extended by Bonreglhl.[20] to incorporate fractional volume information
of multiple material datasets. Dillat al. [46] also extend the marching tetrahedra scheme for
generating boundary meshes of data consisting of thousands of matenalgdlycrystal data.

Resolving the triangulation ambiguities of the honmanifold topology when tesselltng
multimaterial interfaces is straight-forward using tetrahedral elementsg$uits in an excessive
number of triangles. Methods based on extracting interfaces in hexaluedls can reduce the
overall number of triangles, but they must handle an increased numbenofanifold ambigu-
ities. Reitingeret al.[120] propose a scheme for extracting nonmanifold meshes from a regula
grid of multilabel data by specifically detecting voxels that contain more than tweriais,
placing a vertex inside these voxels, and, through a series of heurtstioputing a triangulation
of the voxels’ intersection points. Bertragn al.[12] produce a single multiple material dataset
from time-sequenced volumes usinfpiring procedure that produces signed distance functions
of the materials from which a nonmanifold tessellation is extracted using arthlga@imilar to
that proposed by Hegst al. [66]. By preprocessing multiple material datasets to eliminate voxels
with more than three materials, Bischoff and Kobbelt [13] greatly reducedhwlexity of the
triangulation of these datasets. Recently, Zhangl. [166] proposed an octree-based approach
that relies on the dual contouring method [71] to produce adaptive telaleements as well as
to preserve sharp features.

In general, these irregular and regular grid-based methods are awloLsfficient, but generate
large numbers of triangles that are usually poorly shaped because thedsiéih not focus on
the placement of the vertices. Furthermore, the size of the elements is reldbedrésolution
of the grid, rather than to the geometry of the material surfaces, and thiénmgsneshes must
be postprocessed to reduce voxelization artifacts and generate tesselatitable for simula-
tion [37]. To remove the dependence of the tessellation resolution fromnttherlying grid,
Ponset al. [118] extend the Delaunay-based volume meshing algorithm of Qetdait [110]
to multimaterial datasets. This approach instead builds a geometric model of multigleatsa
by subdividing a Delaunay tetrahedral mesh, generating consistentiah@itegrfaces by con-

struction. The algorithm defines material boundaries as a subset of thiect@talization for all
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faces that are bounded by tetrahedral elements belonging to differésiaise The quality of
the resulting elements are controlled through a refinement procedureedheetyic accuracy of
which is proved by Boissonnat al.[19]. This proof, however, requires that the surface€Be
continuous, which is not the case for multiple material data — we will discussatio®es.3 that
the surfaces of materials in a multilabel dataset are 6filas they contain sharp features where

more than two materials intersect.

6.3 Topology of Multimaterial Interfaces

We represent interfaces in a multimaterial dataset using a model that @sseaith material
with a smooth, volumetrimdicator function f; [92]. A set of N indicator functiong” = { f;| fi :
V — R} representsV materials. The model assigns a material laltel a pointz € V' if (and
only if) fi(x) > f;(x) ¥ j #i.

Looking at the simple case when only two materials exist in the dataset, forits povhere
fi(x) — fa(z) > 0 the model will assign a label df, while assigning a label df otherwise.
Notice that this description corresponds to the conventional formulation ohpglicit surface.
In the multimaterial model, the set of pointsvhere fi(z) — f2(z) = 0 forms the interface, or
junction, between these two materials.

In the case of an arbitrary number of materials in the dataset, the configngrafimterfaces
become somewhat more complex. The boundaries that separate materiadsl@nger mani-
fold, and can form sharp corners and edges. The topology of thesggns, however, can be
characterized by certagenericconfigurations (see Figure 6.1). The teganeric from the field
of singularity theory, refers to the cases where the set of functtoase ingeneral position

This situation is analogous to the finite-dimensional spaces considered liateigeometry —

(a) (b) (©) (d)

Figure 6.1 In 2D, a 3-material junction is generic and forms a 0-cell (a); it maintainsptsogy
under small perturbations (b). A 4-material junction (c), however, isrgaperic case, and is
anihilated under small perturbations (d) to form generic 2- and 3- matenietiquns.
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i.e., three points in general position cannot lie on a line, and if they do, a a@lgp@sition can be
restored through very small perturbations. This work generally corssaidy generic configura-
tions, which is justified by the system’s reliance on measured data that itlgerentains some
level of noise, as well as the use of a data processing pipeline thaesressdegree of smoothness
in the indicator functions (see Section 6.6.1).

Each material interface is characterized in terms of the number of materiatodfanctions
that are maximal (and equal) at that junction. Forc %2, 2-junctions and 3-junctions occur
generically, as shown in Figure 6.1 (a-b), while a 4-junction is a nongenase, as shown in
Figure 6.1 (c-d). Fol’ c R eachK -junction forms a subset 6f that is topologically equivalent
(homeomorphic) to @-disk, whereP = d — K + 1. Thus each type of material junction can be
considered &-cell, as described in the literature on discrete topology [61]. Thusfgaiig, for
d = 3 we have 4-junctions, which are 0-cells or points; 3-junctions, which arell$ or curves;
and 2-junctions, which are 2-cells or surfaces.

The collection of cells that describe the different types of material junctiaken together,
form a CW-complex. That is, we can organize them hierarchically, suaheach 2-cell is
attached to a collection of 1-cells (at its border), and each one cell is ettdolone or more
O-cells. Special care must be taken to describe the cases where algartiaterial junction
is itself closed, but this formality is not important to the proposed method. Tagegirin this
chapter is to sample nonmanifold multimaterial boundaries using this hierarohgrofolds, and

to form the appropriate relationships between samples at each level in taechie

6.4 Representing and Sampling Junctions
Given a set of material indicator functions first defined are a set of analyticadll indicator
functions J, that approximate the cells formed by each type of material junction (Sectid).6.4
In the proposed particle system sampling scheme, each patrticle will beaioedtto a particular
material junction. The formulation for each type of cell includes a set géption operators to
enforce this constraint (Section 6.4.2). The system generates a hieddrparticle systems so
that each type of generically occurring material junction is representee ifinhl mesh. Thus,
in 3D we begin by sampling the 0-cells (points), followed by the 1-cells (@)nand concluding
with the 2-cells (surfaces). Finally, the multimaterial surface meshes agetdras a subset of

a Delaunay tetrahedralization of the samples (Section 6.4.3).
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6.4.1 Differentiable Multimaterial Junctions
The individual material junctions present in the volumetric model of multimatesialsts are
analytically represent to allow sets of particles to specifically sample eactigando do this,
inside/outsid€10) functions for each material are defined using the volumetric modetites!

in Section 6.3. These functions are:

~i: i 5 i 6.1
fi=Ff j;nﬂ?;ifg (6.1)

where positive values indicate the presence of mateeat negative values indicate some other
material. These functions have the property that the zero-set of aripdnaction, f;, coincides
with the material transitions betweérand some other material. This means, for instance, that
for two adjacent materials,andj, we havef; = fj = 0 along the 2-junction where these two
materials meet.

This coincidence of zero-sets for adjacent materials in Equation 6.1 altovesrfovel repre-
sentation that approximates the different kinds of material junctions (cetlsjva multimaterial
volume. These junctions are detected gl indicator functiorthat identifies points i where
a set of 10 functions evaluate to zero, such as the material interfacedemwaterials 1 and 2
shown as the red dashed line in Figure 6.2. Along this cufves f» = 0 and f; < 0, while
in the the vicinity of this curvef; and f, will be nonzero (one negative and the other positive).
Thus, in 3D, we can represent the set of 2-cells that form the intebfaivecen two materials

andj, wherei # j, as the zero-set of the continuous cell indicator function:

Figure 6.2 Material interfaces in multimaterial datasets exist where a volumetric modetof th
data transitions from one maximal material to another, shown by the dotteddinesét of three
indicator functions.
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iy =2+ 2 (6.2)

In this scheme, the 1-cells for the set of materials &k (assumed distinct) are given by the set of

points.J;;;, = 0 where:
Jige = [+ 17+ 1R (6.3)
and likewise, the indicator for a 0-cell is:

T =+ i+ R+ . (6.4)

6.4.2 Sampling Multimaterial Junctions with Particles

To distribute a set of dynamic particles across a manifold we need to defirtbitvgs: first,
how particles will be projected onto the manifold; and second, how partidleserconstrained
to move along the manifold. The first case is usually done using a gradssgrtenethod such as
Newton-Raphson, while the latter case is most often accomplished by prgjemtition vectors
onto the local tangent space of the manifold. For distributing particles sacnodtimaterial
intersections, both of these tasks require first derivative informatitireafell indicator functions.

The gradient of Equation 6.2 (with analogous definitions for Equationsr@l®at) is:

VJij = 2fVfi +2f;Vf;. (6.5)

The max function is onlyC?, however, and the derivative is not defined at the transition
between materials. Thus, we approximatex with a smooth function that is differentiable
and can be tuned (via a parameter) to be arbitrarily closedo. One example of an analytic,
differentiable approximation tmax for a setZ of unique values, zo, - - - z,,, IS given by first

defining a functiory:

(6.6)

Themax function is then:
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max(Z) = 27371 Zzi H 9(zi — zj) (6.7)

i=1 =l

with the gradient given by:

1 m m
VmaX(Z)ZQW_IZ Vz; H 9(zi — zj)+

=1 j:lJ#i
| Y Vezi—z) [ 9z—2) (6.8)

=15 =15

where:

Vo(z) =V ER (6.9)
9 =Vr BT a i @y 2] |

At the material transitions there is a not a unique set of a values, howéavers, when
evaluting the 10 functions of the transitioning materials for a cell indicatortfan¢ the max
in Equation 6.1 requires an extension of Equation 6.7 to accomodate thasgaqum(maximal)

values:

n—1 n—1
max(F) = (K—11)2"K z; fi 1 ofi= 1) (6.10)

=1 j=1j#i

wheren is the number of materials ivi, F' is the set ofn — 1) indicator functions evaluated by
max in Equation 6.1, ands is the numer of materials in transition for a specific cell indicator
function. For the results in this chapter we usg, = 107°.

Using the approximation tmax given in Equation 6.10, we can derive an expression for the
lower-bound of the cell indicator functioi, and show that this bound goes to zero in the limit.
The value of the transitioning materials at the junction is defined, asd the largest value of the
nontransitioning materials at the juncton is defined@ad he difference between these two values
is(A—B) > 0. Using Equation 6.6, we define: = g(A— B), which is a number slightly smaller
than 2;5 = g(B — A), which is a number slightly larger than 0; apdd — A) = g¢(B— B) = 1.

The expression for the cell indicator function of a K-junction becomes:



104

2
J:}(14—CK_;ﬂnI(«KE—DAMPK+%n—IQBﬁK4) (6.11)

In this expression, as the difference betwetiand B gets large relative te,,.x, « — 2 and
£ — 0, which causeg — 0. This expression also shows that for the special case-efK we
haveJ = 0.

Notice that the cell indicator functions have the property that they arelyhe®ro on the
set of interesti(e., a material junction) and positive everywhere else. Because the sé¢sh
is locally minimal, the gradient is zero on the material junctions, and thus thesediektors,
unlike the 10 functions, do not directly provide the tangent spaces thatesrded to constrain the
motion of interacting particles. The cell indicators are constructed, howegen combinations
of implicit functions for the individual materials.¢., the 10 functions), and the gradients of these
IO functions give the local orientation of the cells. Thus the tangent spgtanes or lines in
3D) of the cells are reconstructed from a series of projection opertatrsely on gradients of
the corresponding IO functions.

For 2-cells, the gradients of the 10 functions that characterize the junailbbe approxi-
mately equal and opposite near the zero set. Thus we project a motion eket@article,v,

onto a tangent plane that is defined by the average (for numericatnelss} of these 10 function

gradients:
n= IV (6.12)
Vi = Vil
and update the motion vector as:
vevo<vn >n = (I —n @ng)v. (6.13)

On the 1-cells, particles must move along the tangent line of the zero-ggj, ofA tangent
line is computed as the summation of the cross products of each pair of thehiareeterizing

10 function normals, which all have zero-crossings along that set:
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\4 7 5 Vi Vi y Vi Vi Xvﬁ-

_ Vi . . L L i (6.14)
VL IVEL VAL IV IV VS

tijk

The particle motion vectors are then projected onto this normalized tangerddimstraining the

motions to the 1-cell:

v e < biji v> bijh (6.15)

tijkl”/ [tonl

The 0-cells, which are the first to be sampled, are isolated points, eactesanypa single

particle (see Section 6.6.2), thus, we do not need to define a projecticatape

6.4.3 Meshing Multimaterial Samples

Fundamental work in inferring correct topology from a set of unoiggh surface points
relies on a sampling criteria that link the density of points to the LFS of the suj@cin order to
guarantee topologically and geometrically correct surface reconstiacstate-of-the-art surface
sampling results require an infinite sampling density (in the limit) near sharp ésatsuch as
those formed by at the O-cells in a multimaterial dataset. The proof in Section Bdwéver,
shows that the LFS sampling constraint can be lifted around sharp featusample points
are placed explicitly on cells, allowing for the reconstruction of geometricaltiytapologically
correct tessellations of surfaces with sharp features using Deldas®d meshing schemes. The
proof guarantees this claim in 2D for a lower bound46f on the material angles formed by
the tangent lines of the 1-cells at the 0-cell where they meet. Results froeviiset literature
indicate that angles between 1-cells, defined by smooth indicators funciom$20° at the
0-cells [168], making th@0° lower bound a reasonable constraint for this work. We anticipate a
similar result, with a larger angle constraint, in 3D.

Based on this proof, we know that there exists a Delaunay-based metiadthreconstruct
topologically correct manifold surfaces of individual materials in multimateagsets from the
set of particles. These datasets contain additional information, thoughmelya material label
for almost ever point if” — that allows for a simple labeling algorithm to reliably extract the
manifold material surfaces, as well as the nonmanifold intersection sydfa8g¢ The labeling
algorithm first computes a Delaunay tetrahedralization of the the sets of pamigling the 0-,

1-, and 2-cells. Next, each tetrahedron is assigned a material labetdiyniténg the material
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type at the location of its circumsphere center. Finally, the algorithm gesexaterface mesh by

extracting all faces bounded by tetrahedra with different material labels.

6.5 Analysis and Correctness of Algorithm
6.5.1 Extension of Sampling Requirements to Include Sharp Fures

Individual materials in a multimaterial dataset can be constructed as a unjomations
that bound the material. For materials that have 3- and 4-junction boundsine features
appear around these boundaries at the nonmanifold material intersedtiwese sharp features
present a problem when considering the sampling constraints imposeddunBg-based surface
reconstruction algorithms. These constraints specify that the densityfatswsamples, which
form the vertices of the reconstructed tessellation, is inversely propartiothe distance to the
medial axis at those sample locations. This distance (the LFS) goes to aharpiedges where
the medial axis touches the discontinuous feature. Thus, the numbettiofgzathat sample a
material near a 3- or 4-junction must go to infinity to meet this constraint.

There is a way around the intractability of the sampling constraint near &wstipes, which
is to place sample poindirectly on these features. The following derivation shows that if the
angled between two double-junctions near a sharp feature is large enoughhanithe sharp
feature is explicitly sampled, then the sampling constraints do not apply in a egiahraround
the feature. The derivation states that in 2Dnust be larger tham5° — we anticipate a similar
result, with a larger angle constraint, in 3D. These proofs hold so longasathples nearest the
sharp features lie within a ball that contains subsets of the surface foh wte lower-bound on

the tangent-line angles is met.

6.5.1.1 Definitions

e A circle isemptyif its interior contains no points.

A circumcircleis a circle touching a set of points that is empty of those points.

Given three points, b, andc, the Voronoi vertexof these points is the center of the

circumcircle ofa, b, andc.

Given three pointa, b, andc, theVoronoi verte)of these points is at the intersection of the

perpendicular bisectors ab,bc, andca.

The edgeab is in the Delaunay triangulation of the set of points contairiramdb if there
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exists an empty circumcircle ferandb.

6.5.1.2 Delaunay Surface Reconstruction in 2D

Here we present a brief, high-level overview of the 2D Delaunayaserfeconstruction algo-
rithm CRUST [6], which builds on the fundamental LFS sampling requirem@iits.algorithm
begins by taking a set of point® = pq,---,p, that sample a curve, and computing their
corresponding Voronoi verticdg = v, ---,v,,. Next, a Delaunay triangulation d? U V' is
generated. From the set of all edges in the Delaunay triangulation, tke adgconnecting two
sample points inP are culled, leaving a set of edges called thest— in Figure 6.3 the crust
is shown by the bold lines. In their seminal work on this algorithm [6], Amentl. show that
if P is sufficiently dense with respect to the LFS of the curve dfustis guaranteed to contain
edges that connect only adjacent surface points, and to also be tmatiipgomeomorphic to

the original curve.

6.5.1.3 Derivation of of Material Angle Constraints
Given the set of points shown in Figure 6.4 that sample a curve with a disodptand a
material angle > 45°, this derivation shows that the edgegps will not exist in thecrustof the

points. There are several assumptions that we make:

Figure 6.3 When a curve is sampled densely enough ctiust exists as a subset of edges of a
Delaunay triangulation of the surface sample points and their Vornoi vefiibage used without
permission).
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p2 samples the discontinuity exactly

e [p1p2| = |P3DP2|
e |pipi| = [P5p3|
e |pip2| < [Pap1]

Given these assumptions, there are two cases to consider:
e 90° < 6 < 180°
e (0° <0 <90°

6.5.1.3.1 Case 1. For the first case, whef®° < § < 180°, we have the situation depicted
in Figure 6.5. The Voronoi vertex is at the center of the circumcirclg of pointsp,, p2, and
ps. In this situation the smallest circumcircle pfps that is empty ofp, is the circumcircleB.
By definition, v will lie at the center ofB. Thus, B will not be empty of points in®? U V, and
hencepp3 will not be an edge in the Delaunay triangulationfof) V.

6.5.1.3.2 Case 2. Forthe second case, whée< 6 < 90°, we have the situation depicted
in Figure 6.6. The Voronoi vertex; is at the intersection of the perpendicular bisectorsgiz,

P2pP3, andpsp1, and the Voronoi vertex is at the intersection of the perpendicular bisectors of

P4P1, P1P3, andpzps. The pointc lies onpips and is the center of the smallest circumcircle
of p; andps. In this situation, we want to know what is the largédfor which the smallest

circumcircle ofp; andps is empty ofvy andvs. The circumcircle ofp; and ps will not be

P>

0

P Ps

Py Ds

Figure 6.4. The sampling assumptions for the 2D proof. The peinexplicitly samples the tip
of the sharp featurépipz| = [Psp2|, [P+P1| = |[P5Psl, and|pip2| < [P4p1l-
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P Ps

Figure 6.5. The case wherg0°® < 6 < 180°.
empty when either:
1
o [c—Vvi| < 5|p1 — p3]
1
o [c— V3| < 5|p1 — P3|

To simplify the following discussion, we lép; — pa| = 1 without loss of generality, and let
v = %9.
We do not, however, need to consider the case wherevs| < %\pl — ps| because for
v > 0° |c — vi| < |c — va|. To see why this is true, Figure 6.7 shows the relationship between

v1, v, andc. The pointc falls halfway betweern; andvs whenpic is perpendicular t@1p2

P>

I v, Ps
[ ]
PN

Figure 6.6. The case where® < 6 < 90°.
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— this assumes thap; — p2| = |p4 — p1; if [P1 — p2| < |p4 — p1| the pointc will never fall
halfway between; andvsy. Thus, fory > 0°, |c — vi| < |c — va|. This means that we only
need to consider whew, is inside of the circumcircle gb; andps.

Finally, we determine whefe — v1| < 1|p1 — p3|. From Figure 6.8 we see that:

|c — vi| = z tan(90° — 2v) (6.16)

wherex = |c — p;|. This leaves us with the following inequality:

tan(90° — 2v) < 1. (6.17)

Thus,p1p3 exists in thecrustof the sample points wheth< 45°.

6.5.2 Angle of Multiple Materials
To empirically test the convergence of the 3D 10 function angles towi@s we generated

a dataset that consists of a material in the shape of wedge that is thenesdjbedveen two other

V)

Dy, A7 P

Figure 6.7. Shown here, the Voronoi vertex, will never be closer to the poirtthanv;.

P

L7
Cc y 'vl ' P

Figure 6.8 Ford < 45°, the Voronoi vertexv; will fall outside the smallest circumcircle of
P1Ps.
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materials inside of a box. By intersecting the reconstructed IO function ofvefigye material
with a circle oriented perpendicular to the sharp edge of the wedge, tie ainthe material
coming into the three-material boundary can be approximately computed.tisdfirst analytic
distance transforms of all three materials are computed, and the angle addige 8 varied from
10° to 120°. Figure 6.9 shows isosurface extractions of the distance transfoo¥se&s of each
material for thel0° and120° data sets. Second, each data set is smoothed via tightening with a
range ofr values. We then reestablish the material boundaries with Equation 6.1 adyaint
along the 3-junction. Around this point a circle of radiiss defined that is perpendicular to the
3-junction, and the two intersection points along the circle with the 10 functicin®fvedge
material are found using a root-finding scheme. Finally, to determine the ahtjie wedge
material near the three material junction the difference of the circle norméte attersection
points is computed.

In Figure 6.10 we present results of the experiments that vary the infegseacle radius
R, as well as the tightening radius The plot in Figure 6.10(a) shows the material angle for
a range of wedge angles as the radius of the intersecting circle is degtrese plot confirms
that the material angle increases as the three material junction is apprpoantdtat for even
small wedge angles, the resulting 10 function angles increase to valugs alfty. Round-
off errors prevent calculations any closer than 0.005 of the circle céntere 0.005 is in the
units of the voxel width). The plot shown in Figure 6.10(b) shows the I@&fion angle at the
smallest computed circle radius for a range of tightening radii. Again, thiscolofirms that

the reconstructed material angles tend toward values aliewith numerical precision errors

(a) (b)

Figure 6.9. Isosurface extractions of analytic distance transforms of a wedgsedata(a)10°,
and (b)120°.
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preventing accurate evaluations of the exact angle values near therthtegal junction.

We can show analytically that regardless of how small the initial angle of a imlategoing
into a 3-junction, the smallest possible angle at a 3-junction et the material has been
tightened and then reconstructed as an 10 functidf9s5°. The geometry we are discussing is
shown in Figure 6.11, where the untightened wedge with a material angls shown in blue,
the tightened wedge is shown in green (wheiis the tightening radius), and the reconstructed
10 function for the wedge is shown in yellow. To compute the angle of the r@tfan material
(yellow) we would like to characterize the polynomial that describes the rechid then find its
slope at the 3-junction poir}.

We consider the worst-case scenari®, when the material angkgoes to zero, to determine
the lower-bound on the material angle of the reconstructed 10 functioichwis illustrated in
Figure 6.12. Because the tightening algorithm results in a distance transfercgn compute
the exact location of the triple-junction poitit. The tightened wedge is again shown in green
with » = 1, while the tightened bottom and top materials are shown by the purple and e ha
marks. The center of the tightening circle is at the locafionl), which gives the following

equation for the distance transform of the wedge material near this circle:
dy(x) = Va2 +y2 -2y (6.18)
The distance transform of the bottom material is given as

dy(x) = y (6.19)

and for the top material as

di(x) =2 —y. (6.20)

The 3-junction point will be located wherg,(x) = dy(x) = di(x), which is the location that
the 10 functions for all three materials will evaluate to zero. To determine thagitog first they
coordinate is computed by settidg(x) = d;(x), which results iny = 1. Then,d,,(x) = dy(x)
is solved withy = 1, leavingz = /2. Thus, the 3-junction point is at the locatiog2, 1).

Next, the polynomial of the line shown in red is determined by settingc) = d;(x), giving

the equation
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Figure 6.10 Plots of the wedge experiment that indicate the IO function angles incesase
a three material point is approachedop) as the intersecting circle radiu® decreases, the
material angles for a range of wedge angles increase to valuesl@ver (botton) material
angles computed at a small intersecting circle tend to valueslovér regardless of the amount
of tightening used.
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Figure 6.11 The geometry for the wedge data, where blue is the original wedge with aiahate
angle off, green is the wedge tightened with a radius-pand yellow is the reconstructed 10
function.

Figure 6.12 The geometry for the wedge data, where blue is the original wedge with aiahate
angle off, green is the wedge tightened with a radius-pand yellow is the reconstructed IO
function.

y==x°. (6.21)

The derivative of Equation 6.21 i#s = z, which is then evaluated at the 3-junction point to get
the slope of the line tangent to the 10 function of the wedges /2. Computing2 arctan(/2)
provides a lower-bound of the angle of the IO function for the wedge mahte109.471221°.

6.6 System Overview

6.6.1 Preprocessing Data
Multimaterial data sets are often the result of a segmentation process apptieaystale
data from sources such as MRI or CT scanners. Automatic segmentatiarctaypputer is a
challenging research problem, and is thus often augmented with hand setareby a domain
expert. For example, in the multiple material torso data segmentation shown ire Bidi® the

heart material was hand segmented by a cardiologist, while the other matezralg@nerated
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semiautomatically using an expectation-maximization segmentation algorithm [147{ $&g-
mentations can capture small features and thin regions that can sometimeslaesifisd by a
segmentation algorithm. These hand segmented materials, however, cacoofizin interslice
artifacts where the material boundaries between slices are hard to didtindnigigure 6.14
(a) an isosurface of the hand segmented heart material shows someefttiéacts. Further-
more, these volumetric datasets are a discrete representation of somen@ig continuous
geometry, and the segmentation process makes binary decisions on vemat iis not, part of a
specific material. Thus, the process of scanning and labeling is inheresgly lout is necessary
for generating 3D geometry from discrete grids. The resolution of spesiifiulations is often
coarser than the resolution of the volume data, which further eliminates géoméirmation
about the original, underlying shape. For these reasons, prepingeax the volume data is
necessary to eliminate small features and to reduce segmentation artifactssedtion will
outline a variety of mechanisms that can be used to preprocess multiple meadéasgts.

Binary morphology can be used to reduce segmentation artifacts, as welledisninate
spurious pieces of material and close small gaps. The elimination of thesefsatalles is
important for generating geometry that reflects the resolution of the final gioruks efficiently
as possible. As discussed in Section 2.5.1, there are numerous choimegpbiblogy stencils,
and there are the different morphology operatiopgningand closing These operations are
applied to each material after they have been isolated into individual voluorastiie original,
multilabel data set. For the torso results presented throughout this chietestencils given

in Table 2.1 were used to preprocess the individual materials, with the expiariphology

Figure 6.13 The original multilabel torso dataset, where segmentations indicate (frdrasia
to lightest) air, torso tissue, lung, heart, and bone. In this data set, theAssahandsegmented
while all other materials were automatically segmented.
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Figure 6.14 Segmentation artifacts show up in an isosurface extraction of the heantiahate
(a). Binary morphology operations can eliminate many of the small featucegags (b), while
tighteningsmooths the surface by controlling the minimum feature size (c).

operations (and stencil size) listed in Table 6.1. In the isosurface extragttiovn in Figure
6.14 (b), the segmentation artifacts that appear in Figure 6.14 (a) atyygesluced after binary
morphology operations are applied to the raw data.

For many types of biomedical applications, the numerical complexity of the simmsatio
require a relatively course geometry compared with the resolution of thecdatang from
the scanning device. Thus, downsampling the data to meet the needs ofahgirfinlation
can reduce the size of the simulation geometry without incurring a loss ofaagycaf the final
result. The goal of the simulation which necessitated the generation of tleed@iis presented
in this chapter is one such example. Thus each material was downsampidti@fteorphology
operations were performed. One consequence of this downsampling isntipsy voids may
appear when the materials are concatenated back together, shown ie Eigfor To remedy
this, avotingalgorithm fills voids based on neighborhood information around empty ndtes
each grid node that is determined to be empty, the local 6-point neighlibibieearched, with

the empty node taking on the value of the most prevalent neighborhood rhatduie. When

Table 6.1 The binary morphology operations used to preprocess that torsoréatnped in this
chapter. The stencils used correspond to those presented in Table 2.1.
material  morphology operations  stencil size

air closethenopen 4and?2
torso tissue closthenopen 4and?2
bone operthenclose 2andl
lung closethenopen 4and1

heart closeéhenopen 4and1
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there is more than one prevalent value, a heuristic determines the valuesohpitye node — for
results in this chapter, the smallest of the prevalent values is chosen. tidtempty regions
of the recombined data have been filled, the materials are again isolated iniduatimaterial
volumes.

The segmentation, binary morphology, and downsampling process catirses\@roduce
physically implausible artifacts in the data. An example is shown in Figure 6.16renthe
automatic segmentation algorithm failed to identify a region of torso material, reguftian
undesirable bone-air boundary. These types of artifacts are ofécto doe challenges of identify-
ing and maintaining thin material boundaries throughout the preprocedsppgy 8y identifying
implausible material boundaries in the segmented data, the data can be dobyeet#ding or
removing material using a tool such as a 3D paint program.

Figure 6.17 presents the original and processed multilabel data for thelunalimaterials for
the torso data set. Although the processed materials shown in column (bincdeataires of a

size that correspond with the resolution of the motivating simulation, they aradeguate for

(b)

Figure 6.15 The multilabel torso dataset after binary morphology is performed on tiheédndl
materials, followed by a downsampling. The materials are recombined in (ap wine black
pixels indicate an empty region where no materials are specified. The dowieshdata after
voting (b) which applies heuristics to fill in empty regions.

(@) (b)

Figure 6.16 Segmentation and/or binary morphology can create unrealistic materiaddes
(a), such as the bone/air boundary circled in red. To remedy this, tineesegtion can be fixed
by hand (b).
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generating high-quality geometry — these volumes must be smoothed to eliminatzaten
artifacts that would otherwise cause a stair-stepping effect in the fimmhey. Using the
curvature flow-based morphology operattayrhtening described in Section 2.5.2, the individual
materials are smoothed such that the resulting zeroset surfaces hanedaexbminimum feature
size. The results of smoothing each material with a tightening radius-ef1 are shown in
column (c) of Figure 6.17. Differentiable, smooth surfaces can then tvactad from these
volumes using continuous reconstruction kernels.

In the process of tightening a surface to ensure a specific minimum radous\afture, thin
regions of the surface can be altered drastically by the algorithm. An exarihlis is shown in

Figure 6.18, where a thin wall of the heart is noticeably eroded during tigige To remedy this

(@) (b) (©)

Figure 6.17. The torso data set at various stages of preprocessing, where vehitetés material
and black indicates nonmaterial. The materials from top to bottom are the outs®®tissue,
bone, lung, and heart: (a) the original data after each material haveigglated from the
multilabeled volume; (b) the downsampled materials after performing binary rolmgph on

each material; (c) the final, tightened materials which become the iingiigaitor functions
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undesirable effect, a smaller tightening radius can be used, at the dessamoothing of the
overall surface. However, due to the numerics of the levelset frankawavhich the tightening
algorithm is implemented, subvoxel tightening is not possible. Instead, theiahatdume can
be upsampled to a higher resolution grid, over which a smaller tightening raaiuthen be
applied. For the torso results presented in this chapter, the heart magsithds over a higher
resolution grid then the other materials, and was tightenedm#th).6 (where the units of are
given in the units of the courser grid).

The output of the algorithm is a grayscale volume that stores the signedogisteatightened
material surface, where positive values indicate material. We reconsatnhuous, differ-
entiable f; from the tightened volumes of each material usggparable convolutignwhich
convolves a 1D continuous kernel with grid points along each separat@fa volume (see
Section 2.4). For the results presented in this chapter, we use an interpdfa@atmull-Rom
spline as the continuous kernel. The reconstructed implicit functions arértpet to the system

as the set of indicator functiors.

6.6.2 Distributing Particles on Junctions
The proposed system builds from the particle system framework frompt€ha for placing
points along each material junction. This framework ussiiag fieldthat informs particles of
how far they should be from their neighbors to meet LFS sampling requitsmesizing field
volume for a multimaterial dataset is generated by computing the LFS of eacmt@dn {.e.,
the f;). At each grid point in the sizing field volume the minimum LFS for the set evaiuattthe

(b)

Figure 6.18 When materials have thin regionghteningcan remove a large amount of material
to obtain the required minimum radius of curvature. In (a), an isosurfateeobinary heart
volume is shown for a thin region of the material. After tightening wits 1 (b), a large portion
of the heart wall is eroded. In these situations it can be useful to tighten tlesiahat a higher
resolution (c) with a smaller tightening radius=€ 0.6 in this image).
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grid point location is stored. Along sharp features, however, the LFSyaitb zero, causing an
infinite sampling requirement. Because we are explicit sampling these sladupef® the strict
LFS requirements near 0-cells and 1-cells are violated by placing a lowedban the sizing
field. This lower bound is determined by the tightening radisee the previous section) that
drives the tightening algorithm when smoothing the material volumes. This i® @rwalytical
results in 2D, and empirically in 3D) a good estimate of the size of the ball withinhwh&angle
constraint (from Section 6.4.3) holds. For surfaces in 3D, the prepsing (tightening) does not
guarantee a lower bound on the principle curvatures in hyperbolic rggidrich could lead to
problems in obtaining sampling densities that ensure the angle-constraiift-razal 1-cells. In
practice, this appears to be very rare, and we have not observedadbiem in the results shown
in this chapter, despite the complexity of the datasets.

Using an ordered sampling scheme for distributing sets of particle systens;dieen first
samples each 0-cell with a single particle, which remains fixed in place. Nexdystem samples
1-cells with particle systems that interact with these 0-cell particles. Similarl{L-tedl particles
are allowed to converge to a steady state and are then fixed in place. Fpaligles are

distributed on the various 2-cells that interact with 0- and 1-cell particles.

6.6.3 Meshing the Surface

We use Tetgehto generate a tetrahedralization of the convex hull of the set of particles.
Each tetrahedral element is labeled according to the material in which its ctdbing sphere
center lies. The watertight, nonmanifold mesh of the material interfaces is lisetsof faces
that are bounded by tetrahedra of different material types. Faceketloat the convex hull are
labeled as having a second bounding tetrahedra of the outside materialltyipanonmanifold
mesh can then be used to generate volume filling elements that conform to thef tR&
boundary (see Section 6.7). Manifold meshes of each individual matarialso be extracted in
a similar fashion, with the shared boundaries of surface meshes havisgtemt triangulations
by construction.

We have experimented with other Delaunay-based surface reconstradgiorithms, such
as TightCocone [44], that are designed to infer topology from an @zgdrset of points with-
out knowledge of the underlying surface/solid. Our experiments shdhesk methods can
sometimes fail, and thus we advocate the use of a simpler labeling algorithm, stich @ane

described in this paper, that includes information about the underlying multialatelume

'tetgen.berlios.de
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which gaurantees conformal, watertight surfaces. In Figure 6.19&gept an example of a poor

triangluation from TIGHT COCONE that is correctly meshed in Figure 6.20guia proposed
labeling algorithm.

6.6.4 Implementation
This particle system implementation is an extension of the version found in Se&:8on
Changes to the basic particle system implementation dvelth and free parameters introduced
in this chapter are presented in Tables 6.6.4 and 6.6.4, where we alsotphesiee parameters

from Chapter 3 that were used in the multimaterial implementation. Note that almoétlatise
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Figure 6.19 A poor triangulation from TIGHT COCONE of the torso tissue material.
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parameters use the same values as previously discussed implementations.

Prior to distributing the patrticles, the segmented, multilabel volumes under gticsighpre-
processing to produce smooth surfaces that are designed specificdlg heeds of a particular
application. First, each material is isolated from the original volume and sntbatieg binary
morphology operations and any other necessary segmentation enhatseNext, appropriate
resolutions are selected for each material, and the materials undergo tightegémgrate smooth
representations — interpolating Catmull-Rom spline kernels (discussed fiorS2ct are then
used to reconstruct continuous represents of the tightened materialefoertainder of the
pipeline. The tightening is followed by a generation of sizing fields for e&Huinctional
representation of the materials, described in Section 5.3.2 ewtld.5, § = 0.4, andhgnin =er
wherer is the tightening radius. Then, marching cubes meshes are generateaclot
function, the vertices of which are used to initialize the particle systems. Findltiie possible
combinations of materials are computed and initialized with a marching cubes nreshefo
of the junction materials by projecting the vertices onto the junction for 10 itesatighny
particle system with zero particles on the junction after the initial projectionsrisidered to
be nonexistent in the data and removed from the set. The remaining sysedistabuted using

the following steps:
1. For each quad-junction, cull all but one particle for each surfacepoint location.

2. For each remaining junction, starting with the triple-junctions follo wed by the double-

junctions:

(@) Add all (n + 1)-junctions and (n + 2)-junctions, if they exist, to the particle sys-
tem’s neighborhood, wheren is the number of materials at this particle system'’s

junction.
(b) For each particle:

i. ComputeE;, and computev; with Equation 3.4where the interparticle dis-
tances are scaled by they;; given in Equation 5.5, using the minimumh(x;)

value over all of the materials’ sizing fields.

ii. Computev®? = \;v;.

iii. Compute the new particle positiatj™ by solving Equation 3.11ising the pro-
jections operators defined in Section 6.4.@ith v}V, followed by a reprojection

to the surface by solving Equation 3.12.
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iv. Compute the new energy valug}“", at the new particle locatior}“", as well
as the new implicit function valug;*".

v. If B}V > E; or |x; — xPV| > s or F"Y > ep, and)\; > Ayin, decrease,; by a
factor of 10 and go back to Step 2(b)ii.Xf < A\nin, do not move the particle and

skip to the next particle in the list.

vi. If BV < E;, updatex; = x}°V. Increase)\; by a factor of 10 if this is the first

time through Step 2b.

(c) Decide whether the system is at a steady state. There are numeroigs toedieter-
mine steady state, and we have chosen to use the difference of the systgm (¢he
sum of the energy at all the particles) from one iteration to the next. Whesygtem
energy difference is less than a small fraction of the total energy (we.5&6 for the
results presented in this dissertation, although a range of values wodlagersimilar
results), we deduce that particles have reached a steady state. Otheepéeat Step
2b. For poor initializations, we have found it can be useful to skip to Stegv@d/ 50

iterations instead of waiting for the system to reach a steady state.

(d) Check whether the configuration of particles is desirable. We conggateparticle’s
energy against an ideal energyd®!, which is defined in Section 3.5.1 with a value
of n = 2 for triple-junctions, and n = 6 for double-junctions. We biasFE; with
a random value on the intervdl, 1] to eliminate mass splitting or dying, then split
particles withE; < 0.35F9°! and delete particles with; > 1.75E'9°?! for double-
junctions. Or, for triple-junctions, split particles with E; < 0.25E'9°! and delete
particles with E; > 2.5 Fideal,

(e) If the energy of the particles is acceptable, stop iterating.

(f) Write out the particle positions for input to a meshing algorithm.

6.7 Results
We present results from several real-world datasets generatedMiRingcans. The dimen-
sions of each dataset are given in Table 6.7, along with the number of nsatand sample
points. We also provide theand¢ values used to smooth the sizing fields, and note that these
values were constant over all of the data sets. The torso and braietdatsese sampled on a

P4 3.2GHz CPU with 2GB of memory in approximaté® hours and3 hours, respectively. The
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Table 6.2 Table of free parameters.

Parameter Value Description Comments
€r 1077 added to interparticle distances tesystem is insensitive to values
avoid infinite energy values near machine precision
o 1.0 effective particle radius constant for all results in this dis-
sertation
Ao 1.0 initial stepsize value system is insensitive to this value
Amin 10~ 14 minimum stepsize value system is insensitive to this value
as long as it is sufficiently small
€F 107* — —107° surface threshold values af)—* were used for 4-
junctions, otherwise, value€)—>
were used
5-50 number of initial projections of asystem is insensitive to this value
particle as long as particles get to within

er of the surface, however, more
iterations were used for increas-
ing numbers of interacting mate-

rials
0.15% system energy difference fromvalue must be small enough such
previous iteration that indicates athat the particle distribution con-
steady state verges to an even packing
50 number of iterations when systemvalue must be large enough such

automatically checks for a desir-that local particle neighbors can
able configuration (Step 2d) be established

0.35 percentage of’;4.,1 that indicates values with approximately0% of
a particle should be split this value produce visually simil-
iar results with different conver-
gence times



125

Table 6.3 Table of free parametersont

Parameter Value Description Comments
1.75 percentage of4., that indicates values with approximatel0% of
a particle should be deleted this value produce visually simil-
iar results with different conver-
gence times
5 number of iterations when parti-values< 10 maintain stability in

cle neighbor lists are updated  the system

r user-defined  tightening radius value should be chosen based
on application specific needs

hivin er minimum sizing field value other than hyperbolic regions,
this is the minimum feature size
after tightening, which can be
lowered to reduce the incidence
of mistriangulations at the ex-
pense of more (and smaller) tri-

angles
10 number of initial particle pro- must be large enough to ensure
jections that the initial set of particles
get to withiner of the junction
surface

Table 6.4 The dimensions and number of materials of each datasetpthi®n andé values
used to smooth the sizing fields, and the number of particles used to sample thelijusigtions.

Dataset Source \Volume €, # Particles
(# Materials) Dimensions )

torso (5) MRI 260x121x169 0.5,0.4 394k

frog (5) MRI 260x245x150 0.5,0.4 186k
low-res frog (5) MRI 160x151x94 0.5,0.4 31k

brain (3) MRI 149x188x148 0.5,0.4 161k

two spheres (3) synthetic 128x128x128 0.5,0.4 1214
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Figure 6.20. Multimaterial surfaces of a torso extracted from an MRI scan, with closet
meshes generated using dynamic particle systems.
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Figure 6.21 Meshes of the white matter and cerebral spinal fluid (CSF) of a brairsetata
generated from an MRI scan.

frog, low-res frog, and spheres datasets were sampled on a laptop Gélereon 1.4GHz CPU
and 1GB of memory in approximately 5 hours, 1 hour, and 4 minutes, resglgcti
A driving application for this work is the simulation of cardiac defibrillation in cteld. The

goal is to generate a pipeline that will acquire a MRI scan of a child, genpatient-specific ge-
ometry from the scanned data, and to then determine an ideal placemenéafdiac defibrillator
through FEM simulation. The torso dataset shown in Figure 6.20 was gedé&m@m a segmented
MRI volume in this study, and consists of five materials: the torso tissue, bawgg Haart, and air.
Although other materials exist in the original MRI scan, decisions on whiclctadie in the final
simulation must be made to keep the number of elements manageable. For exachdéngn
the thin layers of fluid that exist between different organs would indxcessive numbers of
elements as the feature size of this material layer is very small. Both the brafrogrithtasets

shown in Figures 6.21 and 6.22 were also generated from MRI scansatidieen segmented
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into multilabel volumes. The low-resolution frog in Figure 6.23 was downsamipted the
segmented frog dataset in Figure 6.22 and then processed using mgsptmkdiminate small
features. The synthetic two-sphere example in Figure 6.24 was genexated grid from the
difference of two analytically represented spheres.

For many FEM simulations used in biomedical computing,dbedition numberi.e,, , the
value that describes how numerically well-behaved a simulation will be, istljireddated to
the most poorly-shaped element in a tessellation. A metric that is commonly usedritfy
the quality of surface meshes for FEM is the ratio of the inscribed circle toitbenescribing
circle of a triangle2r;, /r.ir.. A ratio of one indicates an equilateral triangle, and a ratio of zero
indicates a triangle that has collapsed down to an edge. In Table 6.7 venpstatics for the
tessellations generated with the proposed method, including the ratio of thgpowokt shaped
triangle for each mesh. These statistics indicate that not only are the bulk ofghgles nearly
regular, but also that the worst shaped triangle is of consistently higlibguThis latter result
is important for eliminating the time-consuming, and common, chore of hand tweakésh
elements to make them suitable for simulations.

The results from the proposed system are compared against a geidi+battimaterial mesh-

Table 6.5 Statistics about each mesh and their quality.

Material Number of Min/Avg
Triangles Radius Ratio
torso tissue 673k 0.39/0.94
torso bone 460k 0.31/0.94
torso lung 215k 0.32/0.93
torso heart 140k 0.38/0.93
frog tissue 367k 0.30/0.94
frog bone 197k 0.37/0.94
frog guts 46k 0.30/0.94
frog brain 8k 0.52/0.94
low-res frog tissue 202k 0.39/0.94
low-res frog bone 114k 0.39/0.94
low-res frog guts 25k 0.49/0.94
low-res frog brain 5k 0.52/0.93
brain white matter 255k 0.39/0.94
brain csf 92k 0.42/0.94
spheres top 1544 0.51/0.92

spheres bottom 1506 0.52/0.92
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Figure 6.22 Meshes of the frog dataset generated from an MRI scan.
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Figure 6.23 Screen shots from a point-based physics simulation. In the top row, #ileof
materials were assigned the same material properties, while in the bottom rdwgrtee and
internal organs were assigned stiffer properties.
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Figure 6.24 A synthetic example of two intersecting spheres, illustrating the consisténiog o
meshes along the shared boundary.
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ing scheme using the VTK softwdre Common to these approaches is a pipeline that first
extracts a nonmanifold mesh from a discrete, multilabel volume, followed by athing step

to eliminate voxelization artifacts, and finally a decimation of the mesh to decreaseithber

of triangles [12, 46]. Our implementation uses thkDiscreteMarchingCubedass to extract a
mesh of the interfaces, thekWindowedSincPolyDataFiltéo smooth the voxelization artifacts,
and thevtkQuadricDecimatiomo reduce the number of triangles. We generated meshes using this
pipeline of the two-sphere and frog examples with approximately the same nofip@ngles

as the analogous particle system-based examples. The minimum and ageiageatios for the
spheres are 0.014 and 0.79, respectively, and for the frog 0.0 addréspectively. Not only

is the quality of these meshes significantly lower than for our particle systegdhmaeshes, but
the size of the triangles does not adapt to the underlying geometry. Addpémgulations are
important for efficiently capturing the geometry of an object with as few elésnas possible.
We present a visual comparison of these results in Figure 6.25.

The particle-based method is also well-suited for generating volumetric saciptedtima-
terial datasets. We have extended the particle system framework fangagheres inside of
sampled multimaterial interfaces. The spheres are distributed using the samgefisizl that
guides the surface samples, which is smoothed away from the surfdcéhatitarger values are
on the inside of materials. The spheres are distributed as an additionalt stepeand of the
ordered distribution process. These volume samples can be used tatgar@ahedral meshes
that conform to the material interfaces and respect the LFS of the boesdsee Chapter 7), as
well as for point-based physics simulations. In these simulations, reseasckhown that both
physical and geometric complexity are highly correlated [2], and that tidistaand accuracy
of the simulation is directly related to the ability of the surface and volume samplagtiare the
LFS of the material boundaries.

To test our results, we have implemented a point-based physics algorithsmtia¢dtes elastic
materials [97] , extending the algorithm to handle multimaterial objects by assigiffegent
physical properties to volume samples of different material types. Surfazshes generated
from the particles sampling the multimaterial interfaces are used to include coltisiection
between materials of different types [75], as well as for rendering ithelation results. In
Figure 6.23 we present screenshots from a simulation of the frog digpppio a flat surface. In
Figure 6.23 {op row) all volume samples were assigned the same material type, while in Figure

6.23 pottom rowy, volume samples in the bones and internal organs were assigned stiféeiaina

2vtk.org
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Figure 6.25 Comparisons of multimaterial meshes generated using a grid-based apfiaz
and our particle system-based approach (bottom). The left column is thepivare example,
and the right column is a closeup from the frog example.
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properties than the surrounding frog tissue. By assigning differemtgpties to each material in
the frog, more complex, and realistic simulations can be achieved, includifrgestfwithin the
head and body due to the rigid bone structure. This example illustratesipohemmportance of
modeling multiple materials of objects for increasingly realistic simulations, but sdquatitential

for automatically generating complex digital models from scanned, real-wbjttts.

6.8 Discussion
The high-quality results of the proposed method come at the cost of longutatigm times.
Most of that time is spent in preprocessing the multilabel data and distributisgthef particles.
The number of materials in the dataset also adds to the overall computation time rasxth
function must evaluate everfy that exists in the set. However, the quality of the meshes from our
particle-based scheme is so high that we can avoid the usually time-consuteqmd s1eticulous

hand-editing of mesh vertices to ensure well-shaped elements.



CHAPTER 7

EXTENSIONS AND FUTURE WORK

During the course of this dissertation work we experimented with numerdaasans and
applications of the particle system framework. In this section we will preseme preliminary
results of a few of these ideas, and provide some future directionsseaneh.

The low-energy hexagonal packings of the particle systems’ distribudomsnirrored in
the natural world, such as those found in many simple crystalline structliieste are also
low-energy states in crystals that form quadrilateral patterns, and weeimiégued with the idea
of finding adaptivity metrics that would cause the particles to settle into quadailgtackings.
In nature, quad-packings often occur when different materials intefiiteach other. Thus, we
modified the particle system framework to accommodate particles of diffenees tyy differen-
tiating between the adaptivity metric for like-particle interactions and that fokesparticles.
Specifically, thex;; in Equation 3.14 is multiplied by/2 for interactions of like-particles, while
remaining unchanged for interactions between unlike-particles. In Fifytira quad-packing of
particles is shown that was generated using this scheme.

A system with different classifications of particles is sensitive to a unifoeterogeneity
of the particle types. We found that the initialization of the system such thataftelps are
relatively uniformly mixed helped to keep regions of like-particles from fogmiwhich would
otherwise create mostly hexagonal packings of points. We are interestaxdking into effective
techniques for initializing the particles, as well as for maintaining uniformly bggmeous
distributions throughout the convergence process. Well-distributed&gtsad-packings could
be used to create quad-meshes through a Delaunay triangulation andefiesment scheme
that removes all the edges associated with one of the particle types.

The particle system framework is naturally extendible to any dimension. As suehave
experimented with representing particles as volumetric spheres, and gdkispherical par-
ticles into a volume. The natural low-energy state of the system occurs @demsphere has
approximately 12 neighbors, forming a regular dodecahedron sh&pe [Hhus, the particle

system framework is modified to drive the system towards this neighborretsity by changing
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Figure 7.1 A particle system that generates quad-packings of points.

the value ofn in the ideal energy measurgv;q..; from 6 to 12, and also eliminating the surface
constraint i.e., the projection of a particle’s motion vector).

Specifically, we are interested in generating volumetric, boundary aoirigrmeshes that
are well-suited for simulations. Using the volumetric particle system, sphexgsaked inside
of a volume after the boundary of the volume is sampled with a surface parny&gtens. The
spherical particles interact with the frozen surface samples (whiclsaresgppresented as spheres)
and distributed inside of the sampled boundary — Figure 7.2 shows theswsdanples for the
heart material from Chapter 6, along with the spherical particles packateinFor well-shaped
tetrahedral elements, the volumetric sampling should be related to the LFS ecarfice [4].
Inside of the volume, however, larger tetrahedral elements are oftgedléx efficient simula-
tions. Thus, the sizing field used in Chapters 5 and 6 is smoothly increasgdram the surface
using the gradient limiting algorithm (see Section 5.3.2), and drives the sanu@irgity of the

spherical particles.
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Figure 7.2 Surface samples of the heart material, along with the spherical partiatgésca
within.

For generating tetrahedral meshes, we have experimented with Tetgest, a boundary
(surface) mesh is created (see Chapters 5 and 6), which is input tonTdtgey with the set of
volumetric particles. The output is a constrained Delaunay tetrahedralizatidrigure 7.3, a
tetrahedralization is shown of the sample points from Figure 7.2. Figure Gwssitetrahedral-
ization of the spiny dendrite dataset from Chapter 5, while Figure 7.5messtrahedralizations
of the frog and two-sphere examples from Chapter 6.

Although well-distributed points generate well-shaped trianglé&irthis does not extend to
tetrahedral elements iR? [141]. The problem arises when four points are nearly coplanar and
tessellated as gliver tetrahedron — these slivers can have nearly equal length edges (fwhich
triangles indicates a well-shaped element) , but are very flat. The flatntsssefelements gives
them poor numerical characteristics in simulations. Slivers are problemmdory volumetric
meshing algorithms [4], and especially for 3D Delaunay methods [49]., Haignificant amount
of research focuses on algorithms for refining tetrahedralizations to etengtigers, such as
sliver exudatiorf30] andlattice refinemenfi81]. The meshes created from the volumetric particle
system also contain a small number of these poorly-shaped elements. édpthevregularity

of the majority of the tetrahedra is encouraging. We are interested in pgrstrategies for

tetgen.berlios.de
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removing slivers, such as point insertion or grid refinement.

Similar in spirit to the field of artificial intelligence, the particles are, at their mssea
collection of agents governed by a few simple rules that, when interactiodupe complicated
distributions. When these systems are applied to the surface sampling préiderasult is a
well-distributed set of point samples over arbitrarily complex surfacegn@ng the rules that
direct how particles interact with each other creates adaptive distributiahsneet a specific
sampling constraint, whether that constraint is for ensuring geometricallyate meshes, or for
parameterizing a set of shapes [28]. This latter example illustrates a neaaapgor sampling
ensemble®f shapes using dynamic particle systems for studying and computing the satistic
of a set of surfaces. In this work, a a set of particles sample eacle simpracting with not
only neighboring particles on the surface, but ateorespondingparticles across the entire set
of surfaces. These complex interactions result in sets of point samplebataace an even
distribution of points across any one surface with a similar parameterizatieacbf surface in
the set.

The flexibility of dynamic particle systems comes at the cost of long computation times
compared to other sampling schemes, such as grid-based approdohsystem requires many
iterations to converge, and each particle update can be long if the distrilmtigghly adaptive
or if the particle-particle interactions are complex. Parallelization of the syistant straightfor-
ward due to the nonlocal propagation of the local particle behaviersgach particle movement
effects a neighborhood of other particles’ movements. Multigrid methodd ¢ an effective
numerical scheme for solving these types of global optimization problemspantie extendible
to dynamic particle systems. Also, the GPU has been used to simulate systemsténaating
particles, and may be applicable for simulating interacting particles as well.

This dissertation provides an empirical analysis of the behavior of dynaamiicle systems,
and we believe that a rigorous, theoretical analysis is possible forathamng the system’s
general behaviors. However, even without a theoretical descripti®have demonstrated that in
practice, dynamic particle systems are an effective mechanism for appnrgaaumerous, current
research problems. As further study into the behavior of this dynamicrsysteurs, we expect

its applicability to extend broadly.



APPENDIX A

This appendix provides a brief outline of the software used in Chaptensl % & generate
meshes from patrticles. Included are the algorithms and sources of cedeautables for each

step of the pipelines.

Chapter 5
e Downsampling and padding volumes:The teent software provided by Gordon Kindl-

mann.

e Binary morphology for eliminating small features: Personal implementation of the op-

erationserode dilate, open andclose as defined by Gonzalez and Woods [54].

e Greyscale morphology for volume smoothing:mplementation by Ross Whitaker of the

tighteningalgorithm of Williams and Rossignac [160].

e Medial axis: Implementation by Ross Whitaker of an unpublished algorithm based on

footpoints(see Section 5.3.1).

e Initial sizing field (LFS): Personal implementation of an adaptive octree for quering dis-

tances to closests points.

e Smoothing of sizing field: Personal implementation of tlgradient limitingalgorthim of
Persson [113].

e Initialization of particle system: Personal implementation of thearching cubeslgo-

rithm of Lorensen and Cline [90].

e Particle system: Personal implementation of the system described throughout this disser-

tation.

!'teem.sourceforge.net
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e Meshing particles: Executable provided by Tamal D&ypased on the algorithm of Dey

and Goswami [44].

Chapter 6
e Downsampling and padding volumes:The teent software provided by Gordon Kindl-

mann.

e Binary morphology for eliminating small features: Personal implementation of the op-

erationserode dilate, open andclose as defined by Gonzalez and Woods [54].

e Filing voids after morphology: Personal implementation of the voting algorithm described
in Section 6.6.1.

e Greyscale morphology for volume smoothingimplementation by Ross Whitaker of the

tighteningalgorithm of Williams and Rossignac [160].

e Medial axis: Implementation by Ross Whitaker of an unpublished algorithm based on

footpoints(see Section 5.3.1).

e Initial sizing field (LFS): Personal implementation of an adaptive octree for quering dis-

tances to closests points.

e Smoothing of sizing field: Personal implementation of tiggadient limitingalgorthim of
Persson [113].

e Initialization of particle system: Personal implementation of thearching cubeslgo-

rithm of Lorensen and Cline [90].

e Particle system: Personal implementation of the system described throughout this disser-

tation.

e Tetrahedralization of particles: The Tetgeri software provided by Hang Si.

2www.cse.ohio-state.edu/ tamaldey/cocone.html
3teem.sourceforge.net

‘tetgen.berlios.de
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e Extraction of surface mesh(es):Personal implementation of the labeling algorithm de-

scribed in Section 6.4.3.
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