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Abstract 
Visualization is now a vital component of the 
biological discovery process. In this article I pre-
sent visualization design studies as a promising 
process for creating effective, visualization tools 
for biological data. 
 
The field of biology has been trans-
formed over the last decade with the 
rapidly decreasing cost of data. Today, 
the focus is on combining huge ge-
nomics databases with large amounts of 
molecular data, and then augmenting 
this data with long-term clinical out-
comes across large populations of peo-
ple. Biologists believe that embedded in 
these complex, massive datasets are 
scientific goldmines like a cure for can-
cer. But how do you combine data that 
spans from the molecular level up to the 
population level in a meaningful way? 

Visualization has emerged as an im-
portant way to make sense of this data. 
Lying at the intersection of computer 
science, design, and biology, visualiza-
tion of biological data enables scientists 
to understand data by encoding meaning 
through images and supporting explora-
tion through human-computer interac-
tions. My research shows that producing 
agile visualizations by matching the rate 
of software development to the biolo-
gists’ rate of experimentation produces 
tools that not only support scientists, but 
also influence them as they tackle com-
plex questions. 

A recent trend in the visualization 
community is to develop influential 
tools by conducting design studies in 
close collaboration with scientists and 
other expert end users. In this paper I 
describe a methodology for conducting 
design studies, and illustrate their effec-
tiveness with an example from my own 
work. 

Visualization Design Studies 
A design study is a “project in which 
visualization researchers analyze a spe-
cific real-world problem faced by do-
main experts, design a visualization 
system that supports solving this prob-
lem, validate the design, and reflect 
about lessons learned in order to refine 
visualization design guidelines”[1]. 

Design studies are often highly col-
laborative projects that, at their heart, 
rely on a visualization practitioner ac-
quiring a deep understanding of a prob-
lem and exploring the broad space of 
design solutions. Through progressively 
refining prototypes based on feedback 
from the target end-users, effective visu-
alization tools emerge for solving a real-
world analysis problem. 

The nine-stage framework [1] lays out 
a practical process for conducting design 
studies, shown in Figure 1. This frame-
work contains three precondition stages 
that focus on learning the space of visu-
alization techniques and establishing 
synergistic collaborations. The inner 
four core stages describe the process for 
characterizing a real-world problem 
followed by the design, implementation, 
and evaluation of a visualization solu-
tion. The final two analysis stages de-
scribe steps for analyzing lessons-
learned during the project and com-
municating those findings to the visuali-
zation research community. The entire 
process is iterative and practitioners 
often jump backwards to earlier stages 
when refining ideas.  

Pathline: A Design Study 
To illustrate how the nine-stage frame-
work applies to a real-world, visualiza-
tion design problem, I’ll discuss the 
process of creating the tool Pathline [2], 
a visualization system for exploring 
molecular biology data. 

In this project we collaborated with a 
group of biologists at the Broad Institute 
of Harvard and MIT who are studying 
how the same sets of genes can facilitate 
different kinds of cellular functions in 
related species. Our collaborators specif-
ically study metabolism in yeast, and 
they spent several years conducting ex-
periments and collecting data for many 
different genes in fourteen species of 
yeast. Their goal is to understand pat-
terns and trends in this data in the con-
text of known information about 

chemical reactions that occur in cells. 
The problem they faced at the onset of 
our collaboration was that existing tools 
could only look at a subset of this data at 
a time. 

During the discover stage of the pro-
ject we conducted weekly meetings with 
the group of 7 biologists over the course 
of 3 months to learn about their scien-
tific questions, data analysis needs, and 
existing visualization tools.  

From these meetings we came to un-
derstand that the group was working 
with four kinds of data: several dozen 
graphs that describe cellular reactions 
that are catalyzed by genes; a large table 
of quantitative values that describe 
how much each gene in each species is 
on or off over time during an experi-
ment; a tree depicting the evolutionary 
relationship of the fourteen species of 
yeast; and quantitative correlation 
values that describe how similar the 
temporal values are for a specific gene 
across the species. 

We preformed a similar analysis on 
the questions our collaborators were 
asking and translated them into a list of 
data analysis tasks. We characterized 
these tasks as operating at four different 
levels. Briefly, those tasks, starting at 
the lowest level, are: 

1.  Study the gene data over time to 
observe dynamic trends in the data. 

2.  Compare a limited number of time 
series, such as those corresponding to a 
specific gene across all the species, to 
characterize meaningful differences. 

3.  Compare the correlation values 
across one or more of the reaction 
graphs to understand where the genes 
behave the same, and differently, in the 
species. 

4.  Compare multiple correlation val-
ues to validate which correlation metric 
is the most informative for the specific 
analysis needs of the group. 

This data and task abstraction [3] 
served as the input for the design stage. 
In this stage we focused our designs 

Fig. 1. This nine-stage framework [1] provides practical guidance for designing visualization 
tools that focus on solving specific, real-world problems. Copyright Miriah Meyer, 2012. 

 



around the idea of encoding quantitative 
values with a spatial encoding channel 
instead of other, less effective channels 
such as color [4].  This means that in-
stead of using a node-link diagram to 
visualize the reaction graphs which re-
lies on spatial position to show topology 
[5], we instead linearize the graphs and 
use position to layer on the correlation 
values. We also use spatial encoding to 
show the temporal gene data using a 
matrix layout of line charts, called a 
curvemap, as opposed to the widely used 
color encoding of the heatmap display 
[6]. The linearized graph representation 
and the curvemap display are shown in 
the left and right of Figure 2 respective-
ly. This figure is a screenshot of the 
Pathline visualization interface.  

These two views are linked together 
by interaction. A user selects genes of 
interest on-the-fly in the linearized rep-
resentation which populates the 
curvemap display by adding columns of 
temporal gene data. Thus, the linearized 
representation serves as an overview of 
the data, guiding the user to select inter-
esting genes for more detailed analysis 
in the curvemap display [7]. 

During the implement stage of the de-
sign study process we used an iterative 
refinement scheme over the course of 
two months. We created numerous low-
fidelity prototypes using illustration 
software, followed by rudimentary inter-
active prototypes using the Processing 
programming language [8]. Each proto-
type was refined based on feedback from 
our collaborators. Source code, executa-
bles, and example data for the final ver-
sion of Pathline can be found at 
http://www.pathline.org. 

In the deploy stage we released the fi-
nal version of Pathline to our collabora-
tors – it is now one of the primary 
analysis tools used by the group. The 
biologists verified that Pathline shows 
known information more clearly than 
could be seen with their previous visual-
ization tools, and they directly attributed 
new insights into their data to the use of 
Pathline.  

We complied a series of case studies 
[9] that illustrate how the biologists use 
Pathline and what types of analysis they 
are able to perform. These case studies 
decribe how, using Pathline, the biolo-
gists were able to: discover a bias in 
their data processing pipeline that pro-
duced missing data; confirm known 
findings orders of magnitude faster than 
using conventional visualization tools; 
develop numerous hypotheses, one of 
which led to a follow-up experiment and 

the discovery of a previously unknown 
evolutionary event.  

The design study project that under-
lies Pathline has several visualization 
research contributions, including a de-
tailed characterization of this subdomain 
in biology, the invention and validation 
of new visualization representations, and 
the creation of the first visualization tool 
to combine all four kinds of biological 
data used by the group.  

Conclusions 
Today, biological data holds the promise 
of explaining the origins of life, curing 
human disease, and helping us to live 
healthy and happier lives. Reaching the-
se goals, however, relies on making 
sense of vast amounts of biological data. 
This challenge has placed visualization 
directly within the scientific discovery 
process.  

Based on close collaborations between 
visualization practitioners and domain 
experts, design studies are a visualiza-
tion method for creating tools that sup-
port complex, real-world, data analysis 
problems. Design studies have proven to 
be a powerful method for designing 
effective visualization tools –this trend 
is expected to continue as the flood of 
biological data continues to grow.  
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Fig. 2. Pathline is a tool for exploring molecular biology data [2]. The view on the left is a 
linearized representation of graphs that describe cellular reactions. The view on the right 
is a curvemap display showing time-series data for several user-selected genes across 
related species. Copyright Miriah Meyer, 2012. 


