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Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature



of a scalar field itself.
An exception is work in cartography that explores the efficacy of

using binned colormaps for encoding continuous values in choro-
pleth maps. This work suggests that bins increase speed and accu-
racy [16]. However, the tasks that a choropleth supports are different
from those of a 2D scalar field, making it unclear whether the results
hold more generally across continuous data types. Additional work
has focused on contouring 2D scalar fields, such as digital elevation
models (DEMs), which involves connecting points of equal value with
isolines. While pragmatic advice is offered for determining distances
between isolines [51], no empirical studies have evaluated the impact
of contouring on decision making.

The aim of this work was to test whether the decision to forgo the
expressiveness principle when visualizing 2D scalar fields influences
decision making across a broad spectrum of tasks. To this end, we
conducted a user study in which participants were provided with con-
tinuous or binned greyscale encodings of the same topographical 2D
scalar field, as shown in Figure 1. Then we tested participants’ abili-
ties to complete a range of increasingly complex tasks, in a geospatial
context. Our results demonstrate that decisions made with binned en-
codings, that did not conform to the expressiveness principle, were ei-
ther as accurate or better than those that followed the principle. These
findings suggest that strict adherence to the expressiveness principle is
not always advisable for visualizing 2D scalar fields.

In the rest of this paper, we lay out an overview of existing work on
continuous versus binned colormaps, a description of our study and
results, and a discussion of the findings and their implications for vi-
sualization. Section 2 includes discussions from cartography regard-
ing the decision to use continuous or segmented mappings, as well
as visualization work on encoding data using color and binning data
effectively. This is followed by a detailed description of the experi-
mental setup of our user study, along with results, in Section 3. We
then conclude in Section 4 with a discussion of the implications of the
findings and recommendations for future work.

2 RELATED WORK

Work in cartography and visualization offers inconsistent views on
binning continuous data. Modern approaches in cartography advo-
cate for binning the data, while visualization suggests that it should
be encoded with a continuous channel. Given the disagreement in the
literature, we detail research from both disciplines as motivation for
the present work.

2.1 Cartography
A prevalent assumption in cartography regarding choropleth maps is
that binned colormap encodings of quantitative data are more compre-
hensible than continuous encodings [16, 51]. This perspective started
a lively discussion in 1973 when Waldo Tobler developed a method
of creating continuous greyscales using a line plotter [47]. Employ-
ing Tobler’s method, cartographers had the option between continuous
greyscales or discrete tone encodings, and thus a heated debate en-
sued [43]. Jean-Claude Muller was a key advocate for the new contin-
uous method, conducting various studies demonstrating that on printed
maps generated using a facsimile method [34], users could discern
similar map features with continuous encodings that are discernable
by binned encodings [32, 33]. Muller’s and Tobler’s work was con-
tested notably by Michael Dobson in a series of commentaries [10, 9]
where he detailed a laundry list of grievances with continuous encod-
ings of choropleth maps, including but not limited to: increased time
to perform tasks, reduced ability to control the amount of informa-
tion presented, decreased pattern discrimination, and increased mental
workload [9]. While these specific findings may not necessarily gener-
alize directly to either 2D scalar field visualizations or modern display
technologies, the perspectives exemplify relevant considerations for
the trade-offs between the richness of presented data and usability.

Many of the tasks performed with choropleth maps are fundamen-
tally different from those performed with 2D scalar field visualiza-
tions, as the latter are often used to make judgments about continu-
ous features in the data. Thus, it is unclear to what extent standard

practices used for binning choropleth maps extend to 2D scalar fields.
Other work in cartography and GIS, however, has focused on specifi-
cations for contouring 2D scalar fields such as digital elevation mod-
els [51]. This work suggests that contouring aids in interpreting con-
tinuous features [20, 15]. Contouring involves defining spans between
isolines and, in the case of contour maps, encoding the span between
isolines with a discrete encoding such as color or greyscale. As the re-
sulting visualizations can be similar between contouring and discrete
binning, there is likely a relationship between tasks that both methods
support. Defining the appropriate relative distance between isolines
is domain specific and commonly a judgment call by the designer.
Watson recommends that, “By looking at the range of heights in your
dataset, you will get an idea of the levels that suit your data” [51].
More advanced techniques in GIS include methods for generating con-
tours for a given task based on classifications of data features such as
peaks or valleys (For a review see [15]). Various techniques for repre-
senting surface topology as graphs have also been proposed, notably
the Reeb graph [41] and the Morse-Smale complex [8]. These ap-
proaches represent the relationship of critical topological features as
nodes in a network visualization [23]. However to our knowledge,
no user studies in GIS have been conducted to assess the influence of
discretization techniques on decision making.

2.2 Visualization
An extensive body of research within the visualization literature con-
siders the role of color for encoding data (For a review see [54]). Here,
we summarize work concerning decisions and issues with encoding
continuous data with color.

Previous work in visualization concerning color encoding channels
primarily recommends a binned colormap for categorical and ordinal
data and a continuous one for quantitative data [2, 28, 48]. Much of the
work on discrete colormaps centers around Brewer’s perceptually opti-
mized colormaps [7, 16, 6]. These colormaps are widely adopted [54]
and have inspired guidelines [53] and generative systems [52]. Alter-
natively, Healey outlines a systematic method for generating effective
isoluminant color schemes with up to seven colors by controlling for
color distance, linear separation, and color category [18].

For continuous colormaps, the literature largely focuses on prin-
ciples of colormap design, such as smart defaults [30] or domain-
specific recommendations [36]. However, it is generally accepted that
there is no one best color scale, and a variety factors dictate effective
color usage [38]. For example, Ware offers experimental evidence that
hue variation is better for extracting absolute values, while luminance
change enables enhanced form comprehension in continuous 2D scalar
fields [50]. Bergman et al. provide continuous colormap recommen-
dations based on data class, task, and spatial frequency [2]. Rheingans
outlines various design considerations for creating successful continu-
ous colormaps: goals, the nature of the data, the intended audience, the
visualization as a whole, and cultural connotations [38]. Additionally,
Tominski et al. [48] provide a formalized set of task-driven continuous
colormap recommendations based on characteristics of the data, tasks
and goals, the user, and the display.

Where principles for continuous colormap design have been gen-
eralized to corresponding binned colormaps, the discussion is lim-
ited to applying those colormaps to nominal or ordinal data [28, 48].
Bergman et al. [2] provide one of the only explicit discussions about
encoding continuous data discretely. They argue that using a binned
colormap on continuous data is useful for segmentation tasks, where
the goal is to explicitly show multiple features. There is, however, no
discussion of what effect a binned encoding might have on isomorphic
tasks, where the goal of the representation is to reflect the structure
in the data. Additionally, as Mittelstadt et al. point out, many of the
existing guidelines for creating effective colormaps are geared toward
a single elementary task, while real-world scenarios typically require
more complex, combined tasks [28]. The goal of our work is to look
at the influence of binned colormaps across a wide range of both seg-
mentation and isomorphic tasks for 2D scalar fields.

Work on visualizing continuous functions in three-dimensional
space using color largely focuses on techniques for volume visualiza-



tion. Transfer function (TF) design explores methods and techniques
to specify optical properties, including both color and opacity, for dif-
ferent portions of volumetric datasets. TFs are predominately used to
classify materials based upon features in a scalar field [12], which are
time-consuming to generate manually. As such, there have been a va-
riety of attempts to automate or optimize the data classification step
based on the underlying features of the data [22, 13, 49]. This classifi-
cation role closely resembles Bergman et al.’s notion of segmentation
tasks discussed above, where the goal is to elucidate features, as op-
posed to isomorphic tasks, which we are also interested in testing.

3 METHODS AND AIMS

Even though the expressiveness principle suggests that continuous
data should be encoded with a continuous channel, it is likely that
some visualization practitioners have discovered, through experience,
that binning continuous data types is beneficial in many situations. We
argue that violations of the expressiveness principle should be used to
calibrate efficacy. Visualization efficacy is domain specific, but can
generally be gauged by speed, accuracy, and confidence in task per-
formance. Focusing on the geospatial domain, we predict that forgo-
ing the expressiveness principle for the 2D scalar field data used in
the current study will likely increase accuracy and confidence in task
performance, which is consistent with work suggesting that binned
choropleth maps are preferable. However, binning may reduce speed,
showing a classic speed-accuracy trade-off.

To test our hypothesis, we employed a between-subjects design,
with five different groups of participants each performing tasks with
one of five different binning conditions. Each of the binning groups
was comprised of participants from Amazon’s Mechanical Turk with
participation criteria set to master-class workers in the US. The aver-
age screen size used by the population in this study was 1600 x 900 cm,
the median was 1280 x 1024 cm, and the mode was 1366 x 768 cm.
The five binning conditions, shown in Figure 1, include one percep-
tually linear continuous greyscale encoding, along with four different
approximately perceptually linear binned greyscale encodings. These
were based on binning intervals ranging from fine to coarse. Type of
task was a within-subject variable, with each participant completing
12 randomly ordered tasks ranging in complexity.

3.1 Stimuli Generation
All of the experimental stimuli were created from a DEM projected
into the continuous range [0, 100]. This range allowed us to start
with a dataset where the data range explicitly matched the range of
the lightness channel, L*, in the commonly used CIELAB color space.
CIELAB was designed to be perceptually uniform when evaluating
small color differences [44]. These differences are defined based on
a Euclidean distance metric, where one unit of Euclidean distance
(D E⇤

ab = 1) was designed to equal one just-noticeable color differ-
ence (JND). Other work, suggests that D E⇤

ab = 2.3 is a more ac-
curate benchmark for just-noticeable color differences in CIELAB
space [26]. While more accurate color difference spaces and color
appearance models exist [31], the simplicity of CIELAB has made it
the most practical choice for designers [45].

We generated the perceptually linear continuous greyscale encod-
ing by mapping the elevation data values to CIELAB lightness, L*,
while leaving a* = b* = 0. We utilized the Mahy et al. [26] bench-
mark of D E⇤

ab = 2.3 to create four binning conditions. The smallest
bin was nearly continuous (D E⇤

ab = 2.3), which resulted in a set of
bins approximately 1 JND apart, starting at the highest elevation. The
three coarser binnings were then generated by doubling (D E⇤

ab = 4.6),
tripling (D E⇤

ab = 6.9), and quadrupling (D E⇤
ab = 9.2) the initial bin

size. The resulting images are shown in Figure 1. As none of these
quantities neatly divide into the data range, the lowest elevation bins
were smaller and variable in size. Therefore, we specifically avoided
asking questions regarding the lower elevations as this inconsistency
could have influenced participants’ responses.

Greyscale is generally considered to have a limited perceived dy-
namic range and approximations for the number of JNDs varies [38].
The data range of our continuous encoding matches the theoretical

Fig. 2: An example of the continuous encoding for the Highest Point
in Region task.

maximum of 100 JNDs [38], and we base our finest binning on the
most conservative estimate of 43 JNDs [26].

It should be noted that we did not account for perceptual effects
such as simultaneous contrast that have been well documented for
greyscale [50]. Recent work by Mittelstädt et al. has proposed and
subsequently improved upon post-processing methods that counter
contrast effects [29]. However, prioritizations based on task are re-
quired. As such, we could not appropriately optimize a single image
for all tasks using this technique.

The CIELAB pixel values were converted to sRGB to create the
images used in the study. The sRGB color space is non-linear stan-
dardized RGB specification, which is widely accepted as the default
RGB specification in web-imaging [44]. Given that we ran the study
online, sRGB was a logical choice. 1

For those stimuli requiring defined regions, the regions were layered
on the sRGB images via post-processing (e.g., Figure 2). Additionally,
to ensure that our visual stimuli more accurately matched the nature of
our questions, we linearly scaled the legend values such that D E⇤

ab =
2.3 equates to a 10-meter difference in elevation. The five binning
techniques or test conditions are named based on this scale (10m n
= 100, 20m n = 99, 30m n = 99, 40m n = 100, and Continuous n
= 101). From the participants’ point of view, our questions regarded
topographical data spanning a range of [75, 510] meters. We collected
responses using this range and for appropriate tasks transformed the
response values back to the original [0, 100] range for analysis.

3.2 Tasks
This study examines how visualization techniques that forgo (i.e.
binned encodings) and conform (i.e. continuous encoding) to the ex-
pressiveness principle influence the general public’s interpretations of
data. Brehmer and Munzner [5] provide a thorough typology of vi-
sualization tasks that we selected from to test this aim. We focused
on discovery-based tasks, which involve generating predictions and
testing theories in the data. This categorization of tasks incorporates
search and query. Search tasks can be categorized as lookup (when
both the target and location are known), browse (when the target is un-
known, but the location is known), locate (when the target is known,
but the location is unknown) and explore (when neither the target or
the location are known). When the target or set of targets has been lo-
cated, then a query step is performed, where the participants identify,
compare or summarize the targets. We did not address the how and
what sections of Brehmer and Munzner’s [5] typology since these are
most relevant to interactivity, which falls outside of the scope of the
current work. Further, we were interested in assessing performance
on both elementary (on single values) and synoptic (on sets of val-
ues) tasks [48, 1]. As such, we utilized comparisons, rankings, and

1Alternative methods include Szafir et al.’s parametric color difference
model [45], which was designed to incorporate the real-world perceptions of
target populations like Amazon Mechanical Turk.



summarizations of regions to this aim.
In an extensive initial pilot study, we tested six tasks that were cho-

sen to represent a broad spectrum of possible visualization tasks rang-
ing in complexity. We were particularly interested in including tasks
that included the integration of multiple features, since we had ob-
served users attempting this in applied settings in our previous work
[37]. In the simplest task, participants were instructed to click on the
highest location on a map, which was intended to test the participants’
ability to locate relevant values with the different binning techniques.
Prior work has found that participants are quite accurate at mouse cur-
sor location precision with errors ranging from 2%-3% [3], making
mouse clicks a reasonable choice of response type. In the most com-
plex task, participants were asked to rank locations according to flood
risk, which involved integrating both elevation information and dis-
tance from a river. This task was both complex and modeled after real-
world scenarios. While our pilot study was informative, the problem
was that glyphs were placed on the visualizations to indicate specific
points, which occluded relevant values. The present study addressed
this issue by asking participants to make relative judgments about re-
gions rather than occluded points. Additionally, the present work uses
mouse-click responses and comparisons because they were the most
successful task types in the pilot study. We further expanded the spec-
trum of tasks to include previously untested variants of the aforemen-
tioned tasks along with asking participants to summarize fields of data.

For all of the tasks, participants were shown one topographical map
with a single binning technique. Time to complete each task was
recorded along with a subjective measure of confidence in task per-
formance. After each task, participants were presented with a 1-7
Likert scale to measure their confidence (1 = not at all confident, 7
= very confident). Additionally, we asked participants questions about
monitor display capacities, included black level, white saturation, and
gradient banding. Screenshots of each task and the display questions
are available in the supplementary materials.

3.2.1 Locate or Explore and Identify Tasks
Depending on a participant’s approach, the following tasks could be
completed by either a locate or explore strategy followed by an identi-
fication step, according to Brehmer and Munzner [5]. For example, if
a participant identified a relevant value on the legend (e.g., the highest
elevation) and then looked for that value, this would be a locate task
— seeking for a known target in an unknown location. If instead the
participant searched for characteristics in the data which are unknown
targets (e.g., relative height or slope), this would be an exploration
task [5]. Participants then identified the target via mouse click.

Highest Point. Participants were asked to “Click on the highest point
in the image.”

Highest Point in Region. Participants were asked to “Click on the
highest point inside box A.” This task was intended to be a more com-
plex version of the former task, by prohibiting participants from dis-
tinguishing the highest elevation on the legend and then identifying
that location on the map. Instead, participants had to locate the high-
est point within a region, which was outlined in red and overlaid on
the map (See Figure 2). All of the tasks that required responses in re-
gions used the same type of red outlined overlay. While participants
could have looked up values in the legend, this task did not require this
strategy and likely primarily depended on participants’ ability to make
relative comparisons between elevations within the region.

Locate 275m. Participants were asked to “Click on any point in the
image that has an elevation of 275 m.” This task was intended to re-
quire participants to use the legend then search in the visualization for
the relevant value.

3.2.2 Locate or Explore and Compare Tasks
For these tasks, participants could use either a locate or explore strat-
egy, followed by a comparison of targets.

Compare Heights. Participants were asked to “Find the highest point
in each box. Comparing these locations, which box contains the higher

location?” This question was a comparison task that could be imple-
mented without occluding the relevant locations on the map (which
would have occurred if specific points were overlaid on the map).
Although allowing participants to interactively remove and display a
glyph would have been one solution to the occlusion issue, we felt
that it was important to limit the scope of these tasks to static images.
Thus, we created a task requiring participants first to identify the high-
est location in two regions and then to compare those values.

Rank Heights. Participants were asked to “Find the highest elevation
in each box. Then rank each box according to the elevation of its high-
est location.” This task was intended to increase complexity from the
Compare Heights task. Rather than comparing the highest locations in
two regions, the participants were instructed to rank the highest loca-
tions in three regions.

3.2.3 Explore and Identify Task
Exclusively explore tasks required participants to make judgments us-
ing characteristics of the data rather than known targets.

Steepest. These are one of the most difficult and rarely employed tasks
with the general public. We tested whether participants could identify
the relationship between points by using the colloquial understanding
of slope. Participants were provided the following description of slope,
“Terrain is steeper where there is a larger change in elevation between
adjacent points.” In this task, participants were asked to “Click on the
steepest point in the map.”

3.2.4 Lookup and Identify Task
Lookup. Lookup tasks are characterized by both the target and loca-
tion being known. Participants were asked to identify the height value
of the steepest point they selected in the previous question. This ques-
tion was presented on the same page as the Steepest task, and asked,
“What are the highest and lowest elevations adjacent to the point you
clicked on?”

3.2.5 Explore and Compare Task
Steepness Compare. This question was intended to assess partici-
pants’ ability to compare relationships in the data through exploration,
using the “steepest point” task described above. Participants were pro-
vided with the instructions, “In each box, find the steepest point. Com-
paring these locations, which box contains the steepest point?”

Steepness Rank. This was one of the most difficult tasks that we
tested. Participants were given the instructions, “Inside each box, find
the steepest point. Rank each box according to their steepest points.”

3.2.6 Browse and Summarize
Browse tasks are characterized by the location being known and the
target being unknown. The following browse tasks used specific re-
gions with in which the participants were asked to determine charac-
teristics about the region.

Average Height. This task was intended to test participants’ ability to
integrate a large set of relationships in the data. We asked participants
to provide a summary statistic from a specified region. Participants
were asked, “What is the average elevation of the area in box A?”
All participants were screened at the start of the experiment for a basic
understanding of how to calculate an average from a string of numbers.
While calculating numeric averages is fundamentally different than
visual spatial aggregation, we wanted to ensure that participants were
familiar with the term average and related concepts.

3.2.7 Browse and Compare
Continuous. In this task, participants summarized two regions and
then compared the regions. Participants were provided with the in-
structions, “Find the average elevation in each box. Comparing these
locations, which box contains the higher average elevation?”
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Fig. 3: Highest Point Task. Error bars (95% CI)

3.2.8 Combination Task
The final combination task involved a multistep iterative process that
could include all or a subset of the previously defined processes in any
order, depending on a participant’s strategy.

Steepest at 355. This question was intended to increase complexity
and relevance by combining a locate task and a browse task. Many
tasks that are performed in real-world scenarios require combinations
of tasks. Participants were asked to “Click on the steepest point in the
map at an elevation of 355 m.”

3.3 Analysis
3.3.1 Overview of Results
As an overview, there were no cases where there was a clear advan-
tage in terms of accuracy with the continuous encoding.The results
described in more detail below show that for some tasks there was
no difference in accuracy between binned and continuous encoding
(e.g., Compare Heights and Rank Heights tasks), but in other tasks,
binned encodings showed higher accuracy than continuous (e.g., High-
est Point and Lookup tasks). Interestingly, we found that, generally,
participants were faster to complete the tasks with the continuous en-
coding than with some of the binned encodings. These findings sug-
gest that while participants with continuous encodings appear to com-
plete tasks more quickly, continuous encodings did not improve accu-
racy. The following sections will detail the analyses and results for
each task.

For all of the following ANOVA analyses, post hoc Tukey HSD
comparisons were used to test significant differences between binning
techniques for each task, correcting for multiple comparisons. In ad-
dition, all analyses controlled for effects of display parameters. (See
supplementary material for full output.) The task accuracy analyses
and results are presented for each task separately, since the nature of
the task determined the analyses used (Sections 3.3.2 - 3.3.9). Analy-
ses and results for task completion time and confidence ratings, sum-
marized across tasks, are reported in Sections 3.3.10 and 3.3.11.

3.3.2 Locate or Explore and Identify Tasks
1. Highest Point. Participants were more accurate when using the
40m binning display compared to the continuous display. This re-
sult was revealed by a one-way between-subjects ANOVA testing the
effect of binning technique on accuracy of click location. Click accu-
racy was calculated by subtracting the L value at the clicked location
from the L value of the highest location (100), creating an error score
in CIELAB space distance. Outliers that were two standard devia-
tions (SD) above the mean were removed (6% of trials). The analysis
revealed there was a significant effect of binning technique on click
location accuracy, F(4,463) = 2.634, p = .033,h2

p = .021. The mean
error score for continuous (M = 4.93,SD = 4.55) was significantly
higher than 40m (M = 3.25,SD = 3.06) at a p < .05 criterion (See
Figure 3).

2. Highest Point in Region. Participants were more accurate us-
ing the 20m binning technique, specifically, when compared to the
30m binning. This result was revealed by a one-way between-subjects
ANOVA testing the effect of binning technique on accuracy of click
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Task. Error bars (95% CI)

16
18

20
22

24
26

M
ea

n 
Er

ro
r (

LA
B 

di
sta

nc
e)

●

●
●

●

●

Con 10 20 30 40

Fig. 5: Locate 275m Task. Error
bars (95% CI)

location within a region. Click accuracy was calculated by subtracting
the L value at the clicked location from the L value of the highest lo-
cation in the region (22.40), creating an error score in CIELAB space
distance. Outliers 2SD > mean were removed (3.8 % of trials). The
analysis revealed there was a significant effect of binning technique on
click location accuracy, F(4,472) = 2.744, p = .028,h2

p = .023. The
mean error score for 20m (M = 2.10,SD = 2.04) was significantly
lower than 30m (M = 2.86,SD = 1.89) binning, p < .05 (See Figure
4).

3. Locate 275m. Participants were more accurate using the 40m bin-
ning technique, specifically when compared to the 30m binning. This
result was revealed by a one-way between-subjects ANOVA testing
the effect of binning technique on accuracy of clicking a location at an
elevation of 275 m. Click accuracy was calculated by subtracting the
L value at the clicked location from the L value corresponding to an
elevation of 275 m (45.95), creating an error score in CIELAB space
distance. The analysis revealed that there was a significant effect of
binning technique on click location accuracy, F(4,491) = 2.763, p =
.027,h2

p = .021. Mean error score for 40m (M = 18.77,SD = 12.46)
was significantly lower than 30m (M = 24.12,SD = 12.87) binning,
p < .05 (See Figure 5).

3.3.3 Locate or Explore and Compare Task
4. Compare Heights. A binomial logistic regression found that there
was no significant effect of binning technique on a height compari-
son, c2(d f = 7) = 7.189, p = .40. While participants were overall
more likely to correctly choose the higher elevation (73% responded
correctly), this did not vary across binning condition.

5. Rank Heights. An ordinal logistic regression was used to test the
effect of binning technique on rankings of regions by height. Partic-
ipants responded to this question by entering rankings of 1-3 (three
indicating the highest region and one the lowest) for regions A, B,
and C. The ordinal logistic regression equation did not significantly
predict rankings when using binning technique and region as predic-
tors, c2(d f = 9) = 10.63, p= 0.30. In general, participants performed
poorly on this task: 35% correctly ranked B as the highest, 52% cor-
rectly ranked A second, and 35% correctly ranked C as lowest, which
makes it difficult to compare the binning conditions.

3.3.4 Explore and Identify Task
6. Steepest. Preliminary diagnostic checks of the data revealed that
participants predominantly clicked in three separate areas (See Figure
6a). We assessed steepness by looking at the DEM’s gradient, which
we approximated using a Sobel operator. The point with the great-
est gradient magnitude (44.33), was located in Area A. However, this
point was located proximal to a low elevation depression in the map.
The vast majority of clicks were in Area B, which was proximal to a
peak feature. This pattern of responses suggests that participants’ click
decisions may have been influenced by an assumption about the rela-
tionship between steepness and peaks. Because of this initial pattern,
we decided to provide a qualitative description of the number of clicks
per binning condition in each area separately. As shown in Figure 6b,
there are different proportions of total clicks in regions A and C across
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(a) Click locations overlaid on the continu-
ous encoding, showing three main regions.
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(b) Number of clicks per region by binning
technique.

Fig. 6: Steepest Task

Fig. 7: A visualization of the spatial frequency of the DEM used in
this study.

binning conditions. We can speculate that different binning techniques
influenced some participants’ incorrect assumptions relating elevation
and steepness; however, future studies are needed to fully understand
these effects.

An additional complicating factor when asking participants to make
judgments of steepness comes from the high spatial frequency of the
gradient magnitude (See Figure 7). In the areas with the greatest gra-
dient magnitude, relatively close points (i.e., only a few pixels apart)
could have vastly different gradient magnitude values. While beyond
the scope of this study, future work should investigate strategies to
account for this.

3.3.5 Lookup and Identify Task
7. Lookup. This task followed the Steepest Point task and asked
participants to report the lowest and highest values adjacent to their
click; thus, accuracy of lowest and highest points were analyzed sep-
arately. For the lowest value, participants were the least accurate us-
ing the continuous encoding, specifically when compared to the 30m
and 40m binnings. Accuracy was calculated by subtracting the re-
ported lower adjacent elevation from the actual lower adjacent ele-
vation, creating an error score in CIELAB space distance. Outliers
> 2SD above the mean were removed (7.8% of trials). A one-way
between-subjects ANOVA, (controlling for reported higher adjacent
elevation), showed there was a significant effect of binning technique,
F(4,451) = 4.418, p = .001,h2

p = .057. The mean error score for
the continuous encoding (M = 134.91,SD= 105.20) was significantly
less accurate than the 30m binning (M = 94.33,SD = 87.21) and 40m
binning (M = 86.20,SD = 82.88), p < .05 (See Figure 8a).

A similar analysis was performed on the reported upper adjacent
elevation. Outliers > 2SD above the mean were removed (2% of tri-
als). There was a significant effect of binning technique on reporting
the upper adjacent elevation, F(4,479) = 2.602, p = .03,h2

p = .044.
However, post hoc Tukey HSD comparisons did not reveal signif-
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Fig. 8: Lookup Task. Error bars (95% CI)

Fig. 9: An example portion of the continuous encoding from the Steep-
ness Compare task, showing Area A and Area B.

icant differences between the conditions at the p < .05 level when
accounting for multiple comparisons. To understand the main ef-
fect of binning, planned contrast codes were generated which com-
pared the continuous encoding to the binned encodings. Similar to the
lower elevation analysis above, we found that the continuous encoding
(M = 128.60,SD = 100.90) was less accurate than binned encoding
(M = 107.36,SD = 97.16), F(1,490) = 7.79, p = 0.005 (See Figure
8b).

3.3.6 Explore and Compare Task

8. Steepness Compare. A binomial logistic regression found that
there was no significant effect of binning technique on a steepness
comparison, c2(d f = 7) = 1.35, p = .98. Area A contained the steep-
est point with a magnitude gradient of 44.33, and Area B contained
the second steepest point with a magnitude gradient of 41.65 (See
Figure 9). 62% of participants incorrectly selected Area B as con-
taining the steeper point. Similar to the Steepest task, these findings
suggest that participants’ prior understanding of topography and an as-
sumption about a connection between steepness and peaks could have
biased incorrect responses. Additionally, these findings may be influ-
enced by the issues related to the high spatial frequency of the gradient
magnitude noted in Section 3.3.4.

9. Steepness Rank. An ordinal logistic regression was used to test the
effect of binning technique on rankings of the greatest gradient mag-
nitude between regions. Participants responded to this question by
entering rankings of 1-3 (three indicating the greatest gradient magni-
tude region and one the least) for regions A, B, and C. Each of these
regions were selected because they contained the 3rd, 4th, and 5th
steepest points (See Figure 10). The ordinal logistic regression equa-
tion did significantly predict rankings when using binning technique
and regions as predictors c2(d f = 9) = 137.79, p < .00, but binning
technique did not effect gradient magnitude rankings. Both the regions
and the order of rankings were significant predictors of rankings.

This task and the prior tasks relating to steepness judgments suggest
that a number of different factors likely influenced a reduced effect
of binning, such as prior assumptions about how elevation peaks and
slopes relate and variable gradient magnitudes.



Fig. 10: An example of the continuous encoding in the Steepness Rank
Task.
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Fig. 11: Proportion of correct and incorrect responses in the Average
Height Compare Task for each encoding condition.

3.3.7 Browse and Summarize
10. Average Height. A one-way between-subjects ANOVA, testing
the effect of binning technique on reported average height in a region,
while controlling for the display parameters, found no effect of binning
on response accuracy F(4,474) = 1.241, p= .293, after removing out-
liers > 2SD above the mean error score (3.4% of trials). The finding
may be due to the large magnitude of errors in all of the binning con-
ditions (M = 101.105,SD = 47.44).

3.3.8 Browse and Compare
11. Average Height Comparison. Participants were least accurate
using the 40m binning technique. This result was revealed by a logistic
mixed model, testing the effect of binning technique on a comparison
of steepness. Comparison accuracy was calculated by coding correct
responses as 1 and incorrect rankings as 0. The analysis revealed that
the 40m binning displayed a significantly lower proportion of accurate
responses (63%) compared to the 10m (82%), 20m (79%), 30m (87%)
binnings and the continuous encoding (86%). The model accounted
for a significant proportion of variance compared to a baseline model
with no predictors, c2(d f = 7) = 22.80, p = .001 (See Figure 11).

3.3.9 Combination task
12. Steepest at 355. Preliminary diagnostic checks of the data re-
vealed that the majority of participants were clicking at elevations
much lower than 355m as instructed (See Figure 12). We defined re-
gions based on relative proximity in elevation to 355m, making three
groups (below 255, 255–455, above 455) and qualitatively assessed
the frequency of clicks in each region by binning condition. It is clear
that many participants did not correctly identify the 355 elevation, as
the greatest number of clicks fell in the ”low” category. Overall, the
wide distribution of click responses makes it difficult to assess differ-
ences between the binning conditions and suggests that the task was
difficult for users.

3.3.10 Task Completion Time
Eight of the 12 tasks showed significant differences in task comple-
tion time between binning techniques, with the continuous encoding
displaying consistently faster performance than some of the binnings.

10m 20m 30m 40mCon

Low 255m - 455m High

Fig. 12: Distribution of click locations for low, middle, and high ele-
vation groups, for the Steepest a 355m Task.

These results were revealed by one-way between-subjects ANOVAs
computed for each task, examining the effect of binning condition
on task completion time. Table 1 includes mean, standard deviation
statistics, and Tukey HSD post hoc tests of significant differences ac-
counting for multiple comparisons for each binning technique in all
12 tasks.2 Figure 13 shows mean time for each task that demonstrated
significant differences between binning techniques.

3.3.11 Task Confidence
Four tasks showed significant differences in task confidence between
binning techniques. However, no consistent relationship between bin-
ning and confidence was observed (See Table 2 and Figure 1 in the
supplementary material). Further, overall confidence ratings were rel-
atively consistent between tasks. These results were revealed by one-
way between-subjects ANOVAs computed for each task, examining
the effect of binning condition on task confidence ranking. These re-
sults suggest that confidence ratings were not a very sensitive measure
of differences in encoding conditions and future work might use other
subjective ratings such as preference or ease of task.

3.3.12 Discussion of Results
Significant differences in accuracy of decision making, response
speed, and response confidence were found between continuous and
binned encodings. The results were task-specific, but overall, our find-
ings suggest that the continuous encoding increased speed but rarely
accuracy in many tasks. The largest differences among binning con-
ditions were found in the Highest Point and Lookup tasks, suggesting
that the continuous encoding technique was the least effective in those
situations. Our findings suggest that the choice of binning versus con-
tinuous encoding of 2D scalar fields is important to consider as an
influence on user task performance.

More specifically, we found that for the Locate or Explore and Iden-
tify Tasks (Section 3.3.2), the binning technique influenced task per-
formance. For example, those with the continuous encoding had worse
performance than those with the 40m binning in the Highest Point task,
which may have been due to a pop-out effect that the 40m binning pro-
duced (See Figure 14 for comparisons). The other Locate or Explore
and Identify tasks varied based on binning interval.

Responses for all tasks that utilized a steepness judgment (e.g., Ex-
plore and Identify task (Section 3.3.4), Explore and Compare tasks
(Section 3.3.6) and the Combination task (Section 3.3.9)) appear to
be highly influenced by prior assumptions about the relationship be-
tween elevation peaks and slopes and variable gradient magnitudes as
described in Section 3.3.4.

In the Lookup and Identify Task (Section 3.3.5), those with the
continuous encoding also performed the worst. This effect may have
been due to the difficulty of locating values on the continuous legend.
Work by Brewer [7, 17, 6] suggests that identifying relevant values

2For the first task, binning technique significantly affected time. However,
post hoc comparisons did not reveal significant differences between the con-
ditions at the p < .05 level when accounting for multiple comparisons. To
understand the main effect of binning, contrast codes were generated which
compared the continuous encoding to the binned encodings, which is shown in
the first row of the table.



Table 1: Task completion time, with ** = p < .000, * = p < .05. Outliers refers to the percent of outliers two standard deviations beyond the
mean that were removed.

Task Continuous Binned Encodings F p outliers figure
µ s µ s

1 10.90* 5.75 13.95* 10.54 7.79 .005** 1.4 a
Task Continuous 10m 20m 30m 40m F p outliers figure

µ s µ s µ s µ s µ s
2 11.99* 6.83 13.35* 7.14 11.81* 6.71 15.74* 10.20 16.87* 9.0 7.679 .000** 2 b
3 19.10* 10.96 20.84 10.76 19.95* 11.30 20.16* 9.48 25.00* 12.50 7.679 .000** 4.4 c
4 16.56* 9.88 17.14* 10.00 16.54* 10.25 21.63* 11.17 20.49 12.24 4.88 .000** 2.4 d
5 29.24* 15.85 30.43 17.34 29.71* 22.10 37.94* 21.16 36.75 22.10 4.652 .001** 3.2 e
6 44.83* 23.32 53.42 32.57 48.37 28.41 56.41* 31.31 53.87 29.72 2.522 .04* 2.4 f
8 20.35 15.25 19.16 11.78 20.17 12.43 23.17 16.00 22.82 15.52 1.462 .213 2.6
9 31.71 14.81 32.01 16.86 29.56 16.02 36.32 18.64 33.86 18.72 1.5 .201 2.8

10 21.34* 11.81 22.72* 12.63 24.81 16.86 28.60* 17.04 26.38 15.33 3.629 .006** 3.6 g
11 16.66* 9.57 18.81 12.18 16.15 9.36 17.90 10.34 20.82* 11.09 2.977 .019* 3.4 h
12 23.72 15.44 27.93 17.60 25.20 15.59 26.87 16.60 30.03 19.07 2.011 .09 3.9
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Fig. 13: Mean Time (s). Error bars (95% CI)

(a) Continuous (b) 40m

Fig. 14: An example of the highest portions of the continuous and 40m
encodings.
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Fig. 15: An example of portions of the continuous and 40m encodings
for the Average Height Comparison Task.

on a choropleth map legend with many bins (over 12) is difficult. In-
discernibility of specific values on the continuous legend may have
contributed to the inefficacy of this encoding.

For the Browse tasks (Sections 3.3.7–3.3.8), task difficulty likely
led to large errors when participants were asked to report the average
elevation of a region. However, participants were reasonably effective
at comparing the average height of two regions and those with the 40m
binning were the least effective at this comparison. This may have
been due to the 40m binning’s lack of relevant encodings for making
average height comparisons (See Figure 15 for comparisons).

The response time data was the most consistent across tasks. Over-
all, these results show that the continuous encoding was significantly

faster than some of the binning techniques for many tasks. This finding
is not consistent with work that suggests that binning data facilitates
task completion speed [16, 51, 10, 9].

While significant differences in task confidence were observed,
confidence ratings did not consistently vary across binning conditions.

4 DISCUSSION AND FUTURE WORK

While the expressiveness principle implies that encoding continuous
data continuously is advantageous, some domains have strong conven-
tions that advocate for a discretized encoding of continuous data. The
existing literature lacks systematic evaluation of the effects of binning
2D scalar fields on human performance. Our goal in this work was to
directly compare performance using several different binning intervals
and a continuous encoding, across a range of tasks for 2D scalar fields.
Consistent with our initial hypothesis, we found that accuracy in per-
formance was superior using binning in some tasks. Although in other
tasks we did not show differences between binning and continuous
representations, there were no tasks that showed a clear advantage for
continuous encoding. This result stands in contrast to one of the domi-
nant principles in visualization and is a finding that should be pursued
further in both controlled laboratory studies and real-world contexts.

Our findings on task completion time are also notable. In contrast
to assertions in cartography, the current study reveals that a binned
encoding does not facilitate faster task completion times, compared
to a continuous encoding. Rather, we found that performance on the
continuous encoding condition was the fastest, across a majority of
the tasks, even when accuracy was worse. One possible explanation
for this speed-accuracy trade-off is that tasks which require more ef-
fort can activate a slower and more deliberative cognitive process [19].
Judgments made using fast cognitive processes are more error prone
and subject to cognitive biases than judgments made using slower
more contemplative cognitive processes [21]. The continuous encod-
ing may have produced quick responses that did not allow for careful
inspection of the visualization or thoughtful consideration of the task.

Additionally, one of the aims of this study was to create a method-
ology for testing increasingly complex and ecologically valid tasks,
which are traditionally difficult to assess and as such rarely utilized.



Table 2: Task confidence, with ** = p < .000, * = p < .05

Task Continuous 10m 20m 30m 40m F p figure

µ s µ s µ s µ s µ s
1 5.68 1.35 5.95 1.28 5.76 1.31 5.87 1.21 6.12 1.36 1.66 .15
2 5.01 1.34 4.87 1.45 4.92 1.49 5.17 1.27 4.90 1.52 0.73 .57
3 4.12 1.55 3.78* 1.42 4.06 1.49 4.62* 1.32 4.59* 1.63 5.91 .000** a
4 4.99* 1.45 4.89* 1.43 4.85* 1.49 4.57 1.67 3.98* 1.63 7.05 .000** b
5 4.52 1.49 4.42 1.47 4.25 1.58 4.50 1.47 4.04 1.68 1.72 .14
6 4.36 1.73 4.49 1.74 4.67 1.52 5.01 1.48 4.55 1.71 2.22 .06
7 3.89 1.57 3.93 1.49 4.00 1.47 4.11 1.56 4.02 1.72 0.29 .88
8 4.85* 1.47 5.26 1.58 5.39* 1.57 5.53* 1.41 5.33 1.67 2.77 .02* c
9 4.61 1.46 4.53 1.52 4.66 1.53 4.86 1.34 4.97 1.58 1.5 .20

10 3.83 1.37 3.59 1.27 3.61 1.43 3.98 1.28 3.93 1.44 1.75 .13
11 4.66 1.54 4.78 1.26 4.67 1.49 5.17* 1.39 4.40* 1.63 3.59 .006** d
12 3.85 1.47 3.81 1.68 3.67 1.56 4.11 1.57 4.23 1.71 2.00 .09

We chose to increase task complexity by having participants make
judgments concerning features and summary statistics in addition to
points and values, increasing the number of comparisons, and re-
quiring multistep judgments. Multistep visual comparison tasks are
highly dependent on spatial working memory (SWM), and differences
in SWM may account for the inconsistent performance observed. In
particular, we suspect that ranking tasks may not be appropriate for
spatial decision making as this type of task may be confounded by lim-
its on participants’ SWM. Further work is needed to disambiguate the
demands on SWM from the increased task complexity. Another issue
is found in the multistep judgment tasks (i.e., Steepest at 355m task),
where it is unclear how to disambiguate participants’ strategies from
the influence of the binning technique. The inconsistent findings of the
Steepest at 355m task may have resulted from participants prioritizing
clicking on the correct elevation or on a steepest location rather than a
combination of the two. Each strategy would produce vastly different
responses, which may have influenced the uninterpretable variability
in the current findings.

As discussed briefly in Sections 3.3.4 and 3.3.6, interpretations of
the questions that involved steepness were difficult. We believe that
this is, in part, because the image gradient we used as the basis for
steepness had high spatial frequency information. Gradient approxi-
mations are generally known to be sensitive to high frequency infor-
mation such as noise [12, 14]. While there are a variety of gradient
estimation methods we could have pursued, we chose to use the Sobel
operator, which includes a smoothing component [12, 14]. Smoothing
obfuscates more of the data and the influence of smoothing on deci-
sion making requires further study. Given that our results also left
open the possibility of other factors influencing the results, such as the
conflation of steepness with height, it was not clear what amount of
smoothing would have been appropriate. While our findings are spe-
cific to 2D scalar fields embedded in R2, we suspect that our results
are also relevant for 2D scalar fields embedded in R3, such as those in
bioengineering [25]. This study provides motivation for future work
aimed at assessing the influence of individual components of spatial
data, such as spatial frequency, and determining appropriate smooth-
ing for specific conditions.

As we were interested in performance across a spectrum of tasks,
we did not attempt to compare an optimized binning technique. There
are a variety of data-informed optimization strategies for binning
within the visualization literature [46, 40, 11]. Additionally, standard-
ized binning approaches for choropleth maps from cartography [42]
might also be generalizable. However, it is not clear how these various
optimizations interact with tasks. Given that existing research suggests
that binning strategies that are highly effective for a particular task are
likely inadequate for a larger set of tasks [28], optimizing binning for
a variety of tasks remains an open problem. We believe a particularly
fruitful area of inquiry would be investigating the effects of interactive
interfaces for helping a user customize bins according to evolving task
demands. In such a system, to what extent does the act of binning,
itself, become a vehicle for exploration of the data? What sorts of de-
fault settings are desirable? A number of potential avenues for future

work exist in this space.
The primary implications of this work are for topographical analy-

sis, geography, cartography and meteorology, suggesting that design-
ers should consider selectively employing the expressiveness principle
to promote accuracy or speed. If accuracy is the main objective of the
visualization, then binning may be more effective. If speed is of inter-
est, then following the expressiveness principle using continuous en-
coding may be desirable. In many cases, designers will want to strike
a balance between speed and accuracy, requiring a fine tuning of the
binning intervals based on task demands and data. Further, the tasks
developed in this study should be applicable to any domain using 2D
scalar fields. While not tested here, designers should also consider the
influence of both legend labels [27] and even coarser bins (e.g., three
or five) that are commonly used with choropleth maps [16]. Previously
studied labeling effects may interact with very coarse binnings, adding
to cognitive load. The possible influences of varying spatial frequen-
cies and topological characteristics in the underlying data also warrant
future study.

A secondary implication for this work involves the use of rainbow
colormaps. Rainbow colormaps have been marked as a poor choice
for encoding data in part because they are not perceptually continu-
ous, resulting in perceptual bands that hide details [4, 39, 30] (cf.[6]).
Even though large portions of the visualization community reject this
technique, rainbow colormaps are still widely used, even as defaults.
Our results call into question the extent to which the natural discretiza-
tion produced by rainbow colormaps should truly be considered a defi-
ciency. Possible future directions for work include comparing contin-
uous to binned rainbow colormaps to understand if the appeal of this
approach comes from a general preference for discretization.

In sum, contrary to the expressiveness principle, no cases were
found in which a continuous encoding of 2D scalar field data was
advantageous for task accuracy, and for some tasks, specific binned
encodings facilitated accuracy. Furthermore, we found support for
the counterintuitive finding that decisions with binned encoding were
slower than those made with continuous encoding. Given this apparent
trade-off between accuracy and speed of performance, it is important
to consider specific task-goals when deciding whether to adhere to the
expressiveness principle. In addition, we developed and tested several
different tasks that ranged in complexity and relevance to real-world
problems and offer insights on types of tasks and data characteristics to
avoid. Our approach and findings contribute to a greater understanding
of the use of binning for 2D scalar data and lead to many possibilities
for future research.
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