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Introduction

● ML != Machine Learning in MLIR
● … but Machine Learning is one of first application domains
● And where MLIR started
● … but not what MLIR is limited to :)



Why a new compiler infrastructure?

The LLVM Ecosystem: Clang Compiler

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

                        are SSA IRs:
● Different levels of abstraction - operations and types are different
● Abstraction-specific optimization at both levels

Progressive lowering:
● Simpler lowering, reuse across other front/back ends

Green boxes



Azul Falcon JVM

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Java & JVM 
Languages Java BC

“Falcon: An Optimizing Java JIT” - LLVM Developer Meeting Oct’2017

Uses LLVM IR for high level domain specific optimization:
● Encodes information in lots of ways: IR Metadata, well known functions, intrinsics, …

● Reuses LLVM infrastructure: pass manager, passes like inliner, etc.

Swift Compiler

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

3-address SSA IR with Swift-specific operations and types:
● Domain specific optimizations: generic specialization, devirt, ref count optzns, library-specific optzns, etc

● Dataflow driven type checking passes: e.g. definitive initialization, “static analysis” checks

● Progressive lowering makes each edge simpler!

“Swift's High-Level IR” - LLVM Developer Meeting Oct’2015

https://llvm.org/devmtg/2017-10/#talk12
https://llvm.org/devmtg/2015-10/#talk7


A sad aside: Clang should have a CIL!

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

3-address SSA IR with Clang-specific operations and types:
● Optimizations for std::vector, std::shared_ptr, std::string, …
● Better IR for Clang Static Analyzer + Tooling
● Progressive lowering for better reuse

Anyway, back to the talk...

  CIL IR 

Rust and Julia have things similar to SIL

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

“Introducing MIR”: Rust Language Blog, “Julia SSA-form IR”: Julia docs

● Dataflow driven type checking - e.g. borrow checker
● Domain specific optimizations, progressive lowering

Clang AST
C, C++, ObjC, 

CUDA, OpenCL, ...   CIL IR 

Soon Fortran with 
FIR too! (talk later 
today)

https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html


TensorFlow XLA Compiler

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

XLA HLOTF GraphTensorFlow 
Ecosystem

“XLA Overview”: https://tensorflow.org/xla/overview (video overview)

● Domain specific optimizations, progressive lowering

Clang AST
C, C++, ObjC, 

CUDA, OpenCL, ...   CIL IR 

Great!
● High-level domain-specific optimizations
● Progressive lowering encourages reuse between levels
● Great location tracking enables flow-sensitive “type checking”

Domain Specific SSA-based IRs

Not great!
● Huge expense to build this infrastructure
● Reimplementation of all the same stuff: 

○ pass managers, location tracking, use-def chains, inlining, constant folding, CSE, testing tools, ….

● Innovations in one community don’t benefit the others

https://www.tensorflow.org/xla/overview
https://www.youtube.com/watch?v=2IOPpyyuLkc


The TensorFlow compiler ecosystem

TensorFlow 
Graph

LLVM IR

TPU IR

Several others
Tensor RT

nGraph

NNAPI

Many others

Core ML

Many “Graph” IRs, each with challenges:
● Similar-but-different proprietary technologies: not going away anytime soon

● Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes

● Duplication of infrastructure at all levels

Grappler
XLA HLO

TensorFlow Lite

SSA-based designs to generalize and improve ML “graphs”:
● Better side effect modeling and control flow representation
● Improve generality of the lowering passes
● Dramatically increase code reuse
● Fix location tracking and other pervasive issues for better user experience 

Goal: Global improvements to TensorFlow infrastructure

No reasonable existing answers!
● … and we refuse to copy and paste SSA-based optimizers 6 more times!

But HPC has similar 
needs so why stop 
there?



What is MLIR?

A collection of modular and reusable software components 
that enables the progressive lowering of operations, to 
efficiently target hardware in a common way

How is MLIR different?

From graph representation 
through optimization to code 

generation

State of Art Compiler 
Technology

MLIR is NOT just a common 
graph serialization format nor is 

there anything like it

Modular & Extensible Not opinionated

Choose the level of 
representation that is right for 

your device

We want to enable 
whole new class of 
compiler research

New shared industry 
abstractions spanning 
languages ("OMP" 
dialect?)

Mix and match 
representations to fit 
problem space



A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of

● tree-based IRs (ASTs),   
● graph-based IRs (TF Graph, HLO),
● machine instructions (LLVM IR)

IR at the same time

While enabling

Common compiler infrastructure 

● location tracking
● richer type system
● common set of conversion passes

And much more

What about HPC?

Could talk about:

● reusing abstractions for parallelism (new parallelism constructs?),
● polyhedral code generations
● stencil abstractions

Instead:

● here to listen what are the problems domain specific abstractions during 
compilation could lead to much simpler/better world

● Improvements in one community benefiting others



Introduction: a Toy Language
(e.g., enough talking, let’s get to code)

Overview

Tour of MLIR by way of implementing basic toy language

● Define a Toy language
● Represent Toy using MLIR

○ Introducing dialect, operations, ODS, verifications

● Attaching semantics to custom operations
● High-level language specific optimizations

○ Pattern rewrite framework

● Writing passes for structure rather than ops
○ Op interfaces for the win

● Lowering to lower-level dialects
○ The road to LLVM IR

The full tutorial on the MLIRs GitHub

https://github.com/tensorflow/mlir/blob/master/g3doc/Tutorials/Toy/Ch-1.md


Let’s Build Our Toy Language

● Mix of scalar and array computations, as well as I/O
● Array shape Inference
● Generic functions
● Very limited set of operators (it’s just a Toy language!): 

def foo(a, b, c) {
  var c = a + b;
  print(transpose(c));
  var d<2, 4> = c * foo(c);
  return d;
}

Value-based semantics / SSA

Only 2 builtin functions: print and transpose

Array reshape through explicit variable declaration

"template<typename A, typename B, typename C>
auto foo(A a, B b, C c) { ... }"

Only float 64s

Existing Successful Model

LLVM IR Machine IRClang AST
C, C++, ObjC, 
CUDA, Sycl, 
OpenCL, ...

Asm

LLVM IR Machine IRSwift ASTSwift AsmSIL

LLVM IR Machine IRRust ASTRust AsmHIR MIR



The Toy Compiler: the “Simpler” Approach of Clang

LLVM IR Machine IRToy ASTToy Asm

Shape Inference
Function Specialization

(“TreeTransform”)

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?

The Toy Compiler: With Language Specific Optimizations

LLVM IR Machine IRToy ASTToy AsmTIR

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

For more optimizations: a custom IR.
Reimplement again all the LLVM infrastructure?

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?



Compilers in a Heterogenous World

LLVM IR Machine IRToy ASTToy AsmTIR

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?

For more optimizations: a custom IR.
Reimplement again all the LLVM infrastructure?

New HW: are we extensible
and future-proof? 

"Moore’s Law Is Real!"

It Is All About The Dialects!

LLVM IR Machine IRToy ASTToy Asm

Shape Inference
Function Specialization

(“TreeTransform”)
HW Accelerator 

(TPU, GPU, FPGA, ..)

MLIR

Implemented
as Dialect

Implemented
as Dialect

TIR

MLIR allows every level to be 
represented as a Dialect

High-Level 
Language Specific

Optimizations



Adjust Ambition to Our Budget (let’s fit the talk)

LLVM IR Machine IRToy 
AST

Toy AsmTIR (Toy IR)

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

MLIR

Implemented
as Dialect

Implemented
as Dialect

Limit ourselves to a single dialect for Toy IR: still flexible enough to perform shape 
inference and some high-level optimizations.

MLIR Primer



Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of 

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location

Example

Yes: this is a fully valid textual IR module: try round-tripping with mlir-opt!

func @some_func(%arg0: !random_dialect<"custom_type">) ->
    !another_dialect<"other_type"> {
  %result = "custom.operation"(%arg0) :
      (!random_dialect<"custom_type">) -> !another_dialect<"other_type">
  return %result : !another_dialect<"other_type">
}



Yes: this is also fully valid textual IR module!

It is not valid though! Broken on many aspects:

● the toy.print builtin is not a terminator,
● it should take an operand
● it shouldn’t return any value

The “Catch”

func @main() {
  %0 = "toy.print"() : () -> tensor<10xi1>
}

JSON of compiler IR ?!?

Dialects: Abstractions, Rules and Semantics for the IR

A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each its C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants (e.g. toy.print must have a single operand)

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Possibly custom parser and assembly printer

● Passes: analysis, transformations, and dialect conversions.



Dialects are powerful enough that you can wrap LLVM IR within an MLIR Dialect

%13 = llvm.alloca %arg0 x !llvm<"double"> : (!llvm<"i32">) -> !llvm<"double*">
%14 = llvm.getelementptr %13[%arg0, %arg0] :
        (!llvm<"double*">, !llvm<"i32">, !llvm<"i32">) -> !llvm<"double*">
%15 = llvm.load %14 : !llvm<"double*">
llvm.store %15, %13 : !llvm<"double*">
%16 = llvm.bitcast %13 : !llvm<"double*"> to !llvm<"i64*">
%17 = llvm.call @foo(%arg0) : (!llvm<"i32">) -> !llvm<"{ i32, double, i32 }">
%18 = llvm.extractvalue %17[0] : !llvm<"{ i32, double, i32 }">
%19 = llvm.insertvalue %18, %17[2] : !llvm<"{ i32, double, i32 }">
%20 = llvm.constant(@foo : (!llvm<"i32">) -> !llvm<"{ i32, double, i32 }">) :
        !llvm<"{ i32, double, i32 } (i32)*">
%21 = llvm.call %20(%arg0) : (!llvm<"i32">) -> !llvm<"{ i32, double, i32 }">

Look Ma, Something Familiar There...

● Regions are list of basic blocks nested alongside an operation.
● Opaque to passes by default, not part of the CFG.
● Similar to a function call but can reference SSA value defined outside.
● SSA value defined inside region don’t escape

Operations: Regions are Powerful

 %res:2 = "mydialect.morph"(%input#3) ({                      }, {                      })
    { some.attribute = true, other_attribute = 1.5 } :
        (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
        loc(callsite("foo" at "mysource.cc":10:8))

Region A Region B



Affine Dialect: Simplified Polyhedral Form

● Multidimensional loop nests with affine loops/conditionals/memory references
● Goal: Easier to perform loop transforms (skewing, interchange etc.)

○ See presentation later today!

● Originally baked into the core
○ But not all codegen can use this form, so why not make optional?

● Expanded MLIR core so that it could become "just" a dialect
○ Regions in operations enabled moving it

Region Example: Affine Dialect

func @test() {
  affine.for %k = 0 to 10 {
    affine.for %l = 0 to 10 {
      affine.if (d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0) (%k) {
        // Dead code, because no multiple of 8 lies between 4 and 7.
        "foo"(%k) : (index) -> ()
      }
    }
  }
  return
}

https://github.com/tensorflow/mlir/blob/master/g3doc/Dialects/Affine.md

With custom parsing/printing: affine.for operations 
with an attached region feels like a regular for!

Extra semantics constraints in this dialect: the if condition is 
an affine relationship on the enclosing loop indices.

https://github.com/tensorflow/mlir/blob/master/g3doc/Dialects/Affine.md


A Toy Dialect

● Dialect & custom types defined in C++
● Dialect can define hooks for

○ type printing and printing
○ constant folding
○ ...

● Custom ops can be defined
○ Programmatically (in C++)
○ Using Op Definition Spec ->
○ Custom printing, parsing, folding,

canonicalization, verification
○ Documentation

def TF_LeakyReluOp : TF_UnaryOp<"LeakyRelu",
                     [NoSideEffect, SameValueType]>,
                     Results<(outs TF_Tensor:$output)> {
  let arguments = (ins
    TF_FloatTensor:$value,
    DefaultValuedAttr<F32Attr, "0.2">:$alpha
  );

  let summary = "Leaky ReLU operator";
  let description = [{
    The Leaky ReLU operation takes a tensor and returns
    a new tensor element-wise as follows:
      LeakyRelu(x) = x         if x >= 0
                   = alpha*x   else
  }];

  let constantFolding = ...;
  let canonicalizer = ...;
}

A (Robust) Toy Dialect

After registration, operations are now fully checked

$ cat test/Examples/Toy/Ch3/invalid.mlir 

func @main() {

  "toy.print"()  : () -> ()

}

$ build/bin/toyc-ch3 test/Examples/Toy/Ch3/invalid.mlir -emit=mlir

invalid.mlir:8:8: error: 'toy.print' op requires zero results                                         

  %0 = "toy.print"()  : () -> tensor<2x3xf64>

       ^



Toy High-Level Transformations

Interfaces



Motivation

● Decouple transformations from dialect and operation definitions

● Apply transformations across dialects

● Design passes to operate on attributes/structure rather than specific ops

● Prevent code duplication

● Easily extend to new dialects/ops

Interfaces

1. Create an interface

2. Write a pass using the interface

3. Implement interface methods in participating dialects/ops



Types of Interfaces

● Dialect Interfaces: information across operations of a dialect
○ e.g. Inlining

● Operation Interfaces: information specific to operations
○ e.g. Shape Inference

Creating an Inliner Dialect Interface

Create a new Inliner Interface

class InlinerInterface
    : public DialectInterfaceCollection<DialectInlinerInterface>
{
public:
  virtual bool isLegalToInline(...) const;
  virtual void handleTerminator(...) const;
}



Writing an Opaque Inliner Pass

Create a new Inliner Pass using interface collections

● Use interface collections to obtain a handle to the dialect-specific interface hook 
to opaquely query interface methods

● Collect all function calls and inline if legal. Also handle block terminators.

bool InlinerInterface::isLegalToInline(
    Operation *op, Region *dest, BlockAndValueMapping &valueMapping) const {
  auto *handler = getInterfaceFor(op);
  return handler ? handler->isLegalToInline(op, dest, valueMapping) : false;
}

Inlining in Toy

Inherit DialectInlinerInterface within Toy and specialize methods

struct ToyInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;
  bool isLegalToInline(Operation *, Region *,
                       BlockAndValueMapping &) const final {
    return true;
  }
  void handleTerminator(Operation *op,
                        ArrayRef<Value *> valuesToRepl) const final {
    // Only "toy.return" needs to be handled here.
    auto returnOp = cast<ReturnOp>(op);

    // Replace the values directly with the return operands.
    assert(returnOp.getNumOperands() == valuesToRepl.size());
    for (const auto &it : llvm::enumerate(returnOp.getOperands()))
      valuesToRepl[it.index()]->replaceAllUsesWith(it.value());
  }
};



Inlining in Toy

Add the new interface to Toy Dialect

ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
    ...
    addInterfaces<ToyInlinerInterface>();
}

Add Inliner Pass to Toy’s pass manager

mlir::LogicalResult optimize(mlir::ModuleOp module) {
    mlir::PassManager pm(module.getContext());
    ...
    pm.addPass(mlir::createInlinerPass());
    ...
}

Operation Interfaces: Shape Inference

● We'll use Shape Inference as an example application of operation interfaces

● We define the following rules for shape inference in Toy

● A = B + C // A.shape = B.shape = C.shape

● A = B * C // A.shape = B.rows, C.cols

● A = transpose(B) // A.shape = B.cols, B.rows



Creating a Shape Inference Interface

Create a ShapeInference OpInterface:

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {
  let methods = [
    InterfaceMethod<"Infer output shape for the current operation.",
                    "void", "inferShapes", (ins), []>
  ];
}

Writing an Opaque Shape Inference Pass

Thanks to operation interfaces, we can write an opaque ShapeInference Pass:

  
while (!opWorklist.empty()) {
    ...
    op = ...
    // Use inferShape if `op` implements the Shape Inference interface
    if (auto shapeOp = dyn_cast<ShapeInference>(op)) {
        shapeOp.inferShapes();
    }
    ...
}



Shape Inference in Toy

Specialize interface methods in Toy’s op definitions:

def AddOp : Toy_Op<"add", [NoSideEffect]> {
  ...
  void inferShapes() {
    getResult()->setType(getOperand(0)->getType());
    return;
  }
}

And then add ShapeInference pass to Toy’s pass manager.

Pattern-Match and Rewrite



Language Specific Optimizations

def no_op(b) {
  return transpose(transpose(b));
}

#define N 100
#define M 100

void sink(void *);
void double_transpose(int A[N][M]) {
  int B[M][N];
  for(int i = 0; i < N; ++i) {
    for(int j = 0; j < M; ++j) {
       B[j][i] = A[i][j];
    }
  }
  for(int i = 0; i < N; ++i) {
    for(int j = 0; j < M; ++j) {
       A[i][j] = B[j][i];
    }
  }
  sink(A);
}

Clang can’t optimize away these loops:

Generic DAG Rewriter

- Graph-to-graph rewrites
- Decouple pattern definition and transformation
- Greedy worklist combiner

Generic DAG 
Rewriter

Input 
Pattern

Replacement 
Pattern

Optimized 
Code

Benefit



Pattern Match and Rewrite

transpose(transpose(x)) => x

Two ways:

● C++ style using RewritePattern

● Table-driven using DRR

C++ Style using RewritePattern

https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.cpp#L40-L65
https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.cpp#L74

transpose(transpose(x)) => x

Register Pattern with Canonicalization Framework

void TransposeOp::getCanonicalizationPatterns(...) {
    results.insert<SimplifyRedundantTranspose>(context);
}

Override matchAndRewrite(op):

input = op.getOperand();
if (input->getDefiningOp() == TransposeOp)
    x = op->getOperand();
rewriter.replaceOp(op, {x});

https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.cpp#L40-L65
https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.cpp#L74


Declarative, rule-based pattern-match and rewrite

transpose(transpose(x)) => x

See another example in the repo with Reshape(Reshape(x)):
https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.td#L43-L44

// Transpose(Transpose(x)) = x
def TransposeTransposeOptPattern : Pat<
  (TransposeOp(TransposeOp $arg)),
  (replaceWithValue $arg)>;

class Pattern<
  dag sourcePattern, 
  list<dag> resultPatterns,
  list<dag> additionalConstraints = [],
  dag benefitsAdded = (addBenefit 0)
>;

Declarative, rule-based pattern-match and rewrite

Transformation:

def ReshapeOptPattern : Pat<(ReshapeOp:$res $arg), (replaceWithValue $arg),\
                                 [(TypesAreIdentical $res, $arg)]>;

https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.td#L67-L71

Adding Constraints:

def TypesAreIdentical : Constraint<CPred<"$0->getType() == $1->getType()">>;

Conditional pattern match:

Reshape(x) = x, if input and output shapes are identical

https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.td#L43-L44
https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch4/mlir/ToyCombine.td#L67-L71


Declarative, rule-based pattern-match and rewrite

Transformation:

def ConstantReshapeOptPattern : Pat<(ReshapeOp:$res (ConstantOp $arg)), \
                          (ConstantOp (ReshapeConstant $arg, $res))>;

Native Code Call:

def ReshapeConstant : 
NativeCodeCall<"$0.reshape(($1->getType()).cast<ShapedType>())">;

Complex Transformation:

Reshape(Constant(x)) = x', where x’ is Reshape(x)

Dialect Lowering
All the way to LLVM!



Lowering

● Goal: Translating source dialect into one or more target dialects

● Full or Partial

● Procedure:
○ Provide target dialects
○ Operation Conversion
○ Type Conversion

DialectConversion framework

Components of the Framework:

● Conversion Target: Which dialects/ops are legal after lowering?

● Rewrite Patterns: Convert illegal ops to legal ops

● Type Convertor: Convert types

Goal: Transform illegal operations to legal ones



Conversion Targets

● Legal Dialects (target dialects)
target.addLegalDialect<mlir::AffineOpsDialect, mlir::StandardOpsDialect>();

● Illegal Dialects (fail if not converted)
target.addIllegalDialect<ToyDialect>();

● Legal and Illegal Ops
target.addLegalOp<PrintOp>(); // preserve toy.print
target.addIllegalOp<BranchOp>(); // must convert

● Dynamically Legal Ops/Dialects (legality constraints such as operand type)
target.addDynamicallyLegalOp<ReturnOp>();

Operation Conversion using ConversionPattern Rewriter

Convert illegal ops into legal ops using a pattern match and rewrite

Transitive conversion:  [bar.add -> baz.add, baz.add -> foo.add]

ConversionPattern rewriter vs PatternMatch rewriter:
● Additional operands parameter to specify newly rewritten values
● No N->1 or N->M conversions
● Roll-back on failure



Conceptually: Graph Of Lowering

A->B->C lowering

Lowering Graph:
● Nodes: Dialects/Ops
● Edges: Conversion
● Open Problem: Finding optimal* route

TOY

Affine

Standard LLVM

Affine loops

print

Affine to LLVM

● Now let’s generate some executable code
● Same conversion as before but with Type conversion
● Full Lowering

Populate the Lowering Graph:
mlir::OwningRewritePatternList patterns;

mlir::populateAffineToStdConversionPatterns(patterns, &getContext());

mlir::populateLoopToStdConversionPatterns(patterns, &getContext());

mlir::populateStdToLLVMConversionPatterns(typeConverter, patterns);



MLIR LLVM dialect to LLVM IR

Mapping from LLVM Dialect ops to LLVM IR:
auto llvmModule = mlir::translateModuleToLLVMIR(module);

LLVM Dialect:
%223 = llvm.mlir.constant(2 : index) : !llvm.i64
%224 = llvm.mul %214, %223 : !llvm.i64

LLVM IR:
%104 = mul i64 %96, 2

Conclusion



MLIR : Reusable Compiler Abstraction Toolbox

No forced IR impedance 
mismatch

Fresh look at problems

IR design involves multiple tradeoffs
● Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
● Dialect-to-dialect lowering is easy
● Ops from different dialects can mix in same IR

○ Lowering from “A” to “D” may skip “B” and “C” 
● Avoid lowering too early and losing information

○ Help define hard analyses away

Not shown today

● Heterogeneous compilation
● MLIR also includes GPU dialect 

to target 
○ CUDA,
○ RocM, and
○ SPIR-V/Vulkan

● New converters to
○ TFLite
○ XLA

CPU

GPU

TPU



Recap

MLIR is a great infrastructure for higher-level compilation
● Gradual and partial lowerings to mixed dialects 

○ All the way to LLVMIR and execution

● Reduce impedance mismatch at each level

MLIR provides all the infrastructure to build dialects and transformations
● At each level it is the same infrastructure

Demonstrated this on a Toy language
● Tutorial available on github

Getting Involved



MLIR is Open Source!

Visit us at github.com/tensorflow/mlir:
● Code, documentation, examples

○ Core moving to LLVM repo soon

● Developer mailing list at: mlir@tensorflow.org
● Open design meetings every Thursday
● Contributions welcome!

We are hiring!
mlir-hiring@google.com

Thank you to the team!

Questions?

https://github.com/tensorflow/mlir
mailto:mlir@tensorflow.org

