
1

Using MLIR to Optimize Tensor
Contractions

Rui Li*, Atanas Rountev+, Saday Sadayappan*

*University of Utah
+Ohio State University

2

Tiling Tensor Contractions: Huge Design Space
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
for (l=0; l<N; l++)
for (m=0; m<N; m++)
for (n=0; n<N; n++)
C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

��

Domain-Specific Optimization: Tensor Contractions

•  Tensor contraction is high-dimension analog of mat-mat product
•  Each loop index appears in exactly two tensors

•  “Contraction index” appear only in input (rhs) tensors: {m, n}
•  “External index”: in output and one input tensor: {i, k} and {j, l}

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 for (l=0; l<N; l++)
 for (m=0; m<N; m++)
 for (n=0; n<N; n++)
 C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

♦ Tensor contraction: high-dimension analog of matrix multiplication
§ Direct implementation as above loop code results in low performance

♦ Enormous space of loop permutation/tiling + tile size selection:
§ Fully permutable, i.e., 6! permutations
§ For two level memory hierarchy, 2 sets of tiling loops: (6!)3 choices
§ Consider 5 possible values for each tile-size: (512)* (6!)3 = 9.1*1016 choices

♦ Challenging for two-step iterative optimization with polyhedral compilers
1. Find tiled loop structure for assumed tilesizes, using linear cost model
2. Auto-tune for different tile size combinations

3

Domain-Specific Optimization: Tensor Contractions

• Enormous space of loop permutation/tiling + tile size selection: very
challenging nonlinear optimization problem

• Linear cost models in polyhedral compilers inadequate for effective selection
• Domain-specific optimizing compiler can overcome the problem

• Each loop indexes exactly two tensors – group into three sets: C, E1, E2
• “Contraction index” appears only in input (rhs) tensors: C {m, n}
• “External index”: appears in output tensor and one input tensor: E1 {i, k}, E2{j, l}

• DSL compiler can exploit a key property: Every index within a set is a reuse
direction for exactly one of the 3 tensors (the one it does not index)

• Model degree of reuse for each tensor as product of tile sizes along its reuse-set
• Very efficient and effective model-driven heuristic search to solve

permutation+tile-size-selection problem

for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
for (l=0; l<N; l++)
for (m=0; m<N; m++)
for (n=0; n<N; n++)
C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

��

Domain-Specific Optimization: Tensor Contractions

•  Tensor contraction is high-dimension analog of mat-mat product
•  Each loop index appears in exactly two tensors

•  “Contraction index” appear only in input (rhs) tensors: {m, n}
•  “External index”: in output and one input tensor: {i, k} and {j, l}

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 for (l=0; l<N; l++)
 for (m=0; m<N; m++)
 for (n=0; n<N; n++)
 C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

4

CCSD(T) Tensor Contractions: DSL vs. Gen-Purpose

§ CCSD(T) is an accurate
but extremely compute-
intensive method in
NWChem

§ TensorGen DSL
compiler (with PNNL)
achieves significantly
higher performance
than general-purpose
compilers

§ Question: Can
customized optimization
be incorporated in
compilers/frameworks
with broader use?

Here, the three-dimensional output tensor L is produced by
contracting three-dimensional tensor R1 and two-dimensional
tensor R2. Each dimension of the tensors is labeled so as
to match the dimensions of the output tensor with those of
the input tensors. To enable unique identification, no two
dimensions of any tensor share the same label. The dimen-
sions of the output tensor are referred to as external indices.
Each external index is in exactly one of the input tensors.
Non-external indices in the input tensors are referred to as
summation indices. Each summation index appears exactly one
in both input tensors of a tensor contraction expression.

In addition, some indices of the tensors exhibit permutation
symmetry (specifically anti-symmetry in our case):

A[i,j] = - A[j,i]

This property can be used to more compactly store these
tensors. Such symmetric indices are grouped and represented
as A[i<j]. When such a tensor is produced from unsymmetric
inputs, an explicit symmetrization is performed. For example,
tensor A[i<j] is produced from B[i] and C[j] as:

A[i<j] = A[i,j] - A[j,i] = B[i].C[j] - B[j].C[i]

These tensor contractions constitute the dominant calcula-
tions in Coupled Cluster methods, ab initio quantum chemistry
methods used in electronic structure calculations [4], [5].
These are a collection of increasingly expensive but accu-
rate methods that improve accuracy over Hartree-Fock by
accounting by multi-electron correlation. Of these, CCSD(T)
(Coupled Cluster Singles and Doubles with perturbative triples
correction) is considered the “gold standard” for accurate
electronic structure calculations. CCSD(T) combines iterative
CCSD with a one-time correction using perturbative triples
(T) to achieve much greater chemical accuracy than CCSD
while being much cheaper (O(N7)) as compared to CCSDT
(O(N8)).

In most implementation of Coupled Cluster methods, the
dimensions of the tensors are tiled to store a tensor as a
collection of tiles [6], [7], [8], [9]. Due to the properties of
the tensors, some of the tiles of a tensor are zero or not stored
(because of anti-symmetry). Thus the tensors are effectively
block-sparse multi-dimensional arrays. The tile sizes are cho-
sen based on the available memory and to ensure efficient
communication, maximize computation efficiency throughout
the calculation, and enable dynamic load balancing. Each
tile of the output six-dimensional tensor can be computed in
parallel, allowing the perturbative triples correction to scale to
the largest supercomputers [1], [2], [3].

In this paper, we focus on optimizing the perturbative
triples (henceforth referred to as just triples correction) in
CCSD(T) methods for execution on NVIDIA GPUs. The
triples correction consumes significant fractions of supercom-
puting time and have motivated several optimization efforts.
Table I shows the O(N7) kernels that compute the triples
matrix t3[k>j>i,c>b>a]. The 9 kernels each in sd1 and sd2

Table I: Expressions of the eighteen sd1 and sd2 functions

sd1 1 t3[k, j, i, c, b, a]� = t2[l, a, b, i] ⇤ v2[k, j, c, l]
sd1 2 t3[k, j, i, c, b, a]+ = t2[l, a, b, j] ⇤ v2[k, i, c, l]
sd1 3 t3[k, j, i, c, b, a]� = t2[l, a, b, k] ⇤ v2[j, i, c, l]
sd1 4 t3[k, j, i, c, b, a]� = t2[l, b, c, i] ⇤ v2[k, j, a, l]
sd1 5 t3[k, j, i, c, b, a]+ = t2[l, b, c, j] ⇤ v2[k, i, a, l]
sd1 6 t3[k, j, i, c, b, a]� = t2[l, b, c, k] ⇤ v2[j, i, a, l]
sd1 7 t3[k, j, i, c, b, a]+ = t2[l, a, c, i] ⇤ v2[k, j, b, l]
sd1 8 t3[k, j, i, c, b, a]� = t2[l, a, c, j] ⇤ v2[k, i, b, l]
sd1 9 t3[k, j, i, c, b, a]+ = t2[l, a, c, k] ⇤ v2[j, i, b, l]

sd2 1 t3[k, j, i, c, b, a]� = t2[d, a, i, j] ⇤ v2[d, k, c, b]
sd2 2 t3[k, j, i, c, b, a]� = t2[d, a, j, k] ⇤ v2[d, i, c, b]
sd2 3 t3[k, j, i, c, b, a]+ = t2[d, a, i, k] ⇤ v2[d, j, c, b]
sd2 4 t3[k, j, i, c, b, a]+ = t2[d, b, i, j] ⇤ v2[d, k, c, a]
sd2 5 t3[k, j, i, c, b, a]+ = t2[d, b, j, k] ⇤ v2[d, i, c, a]
sd2 6 t3[k, j, i, c, b, a]� = t2[d, b, i, k] ⇤ v2[d, j, c, a]
sd2 7 t3[k, j, i, c, b, a]� = t2[d, c, i, j] ⇤ v2[d, k, b, a]
sd2 8 t3[k, j, i, c, b, a]� = t2[d, c, j, k] ⇤ v2[d, i, b, a]
sd2 9 t3[k, j, i, c, b, a]+ = t2[d, c, i, k] ⇤ v2[d, j, b, a]

arise from nine-way symmetrization operations to produce
the output with the desired anti-symmetry. These kernels are
executed for each tile of the six-dimensional output tensor.

The construction of the six-dimensional output tensor from
four-dimensional input tensors provides significant opportuni-
ties for optimization. A key challenge to efficient execution
of these methods is to limit the data movement for the six-
dimensional tensor while efficiently executing the highly rect-
angular tensor contractions. Ma et al. demonstrated pipelined
execution of each kernel on the NVIDIA Tesla GPUs [10].
They further optimized it for the Fermi GPUs by retaining
each tile of the six-dimensional tensor on the GPU until all
its updates are performed [11]. Despite these optimizations,
the triples correction has only been shown to achieve a small
fraction of the peak floating point performance available on
GPUs.

We address the following challenges in optmizing the triples
correction:

• How can we further improve data movement across the
memory hierarchy?

• Can we exploit the reuse each output tensor tile among
the nine symmetrization variants each in sd1 and sd2
functions?

III. MAPPING OF COMPUTATION TO THREAD BLOCKS

We begin describing our algorithm with the mapping of the
computation to each thread block. In this and the following
sections, we will use the following kernel, the first sd2 kernel
listed in the Table I, for illustration:

t3[k, j, i, c, b, a] -= t2[d, a, i, j] * v2[d, k, c, b] (1)

Because the problem size can vary and is not known at
compile-time, we assume that each thread block deals with a
part of the output t3. However, simply partitioning the output t3
among the thread blocks by linearizing t3’s indices would lead
to expensive index calculation overhead. Instead, the output
tensor’s dimensions are partitioned by each index’s tile for

0

200

400

600

800

1000

1200

PPCG

KOKKOS:MDRange

OpenACC

KOKKOS:Lineariz
ed

TensorGen DSL

Performance (GFLOPs, Volta V100)

0

20

40

60

80

100

120

140

KOKKOS OpenMP DSL

Performance (GFLOPs, 28-core Intel Xeon E5-
2680 v4 @ 2.40GHz)

5

Domain-Specific Compilers: Strengths & Weaknesses
♦ Multi-target DSLs achieve performance, portability and productivity:

§ Domain-specific internal representation (IR) that facilitates efficient and
effective choice of mapping/scheduling of computation/data

§ Separation of high-level target-independent decisions from low-level
platform-specific choices

§ Platform-specific code-schema driven by key performance factors
♦ But each DSL (compiler or library) today is a stand-alone system: no

reuse; redundant re-implementation of shared functionality

DSL1 DSL2 DSLm

AVX PTX VHDLCUDA…

6

High-Level Transformations in MLIR
♦ Layered transformation/optimization

§ DSLs perform domain-specific transformations and invoke pattern-centric optimizers
§ MLIR passes for coarse-grained mapping/scheduling of computations/data-movement

using abstracted architectural parameters (e.g., capacities/bandwidths in mem. hierarchy)
§ LLVM for lower-level target-platform-specific code generators generate API-specific code

LLVM-CodeGen1 LLVM-CodeGent…

MLIR-Opt1 MLIR-Optp…

DSF1 DSFfDSF2 …
App1 App2 Appn…

GPU FPGA…Multicores

7

Using MLIR for Optimizing Tensor Contraction
♦ Efficient tiled execution of tensor contractions

§ Use BLIS microkernel at the lowest level for “panel-panel” outer-product

§ Exploit property that loop indices map into one of three groups: contraction-
indices, left-external indices, and right-external indices

§ Tile the space of 3 macro-indexes: contraction, ext-left and ext-right; tile
sizes determined by solving non-convex tile-size optimization problem

8

for (jm=0; jm<N; jm+=Nc)
for (km=0; km<K; km+=Kc)
{ Pack B[km:km+Kc,jm:jm+Nc] => Bbuf[Kc,Nc];

for (im=0; im<M; im+=Mc)
{ Pack A[im:im+Mc,km:km+Kc] => Abuf[Nc,Kc]
for (jc=jm; jc<jm+Nc; jc+=Nr)
for (ic=im; ic<im+Mc; ic+=Mr)
BLIS_Kernel(Abuf, Bbuf, @C[ic,jc],Kr);

}
}

BLIS Schema for Multi-Level Tiled Mat-Mult

A

B

Ci

k

k

j
Reg-tile

L1-tile

9

for (jm=0; jm<N; jm+=Nc)
for (km=0; km<K; km+=Kc)
{ Pack B[km:km+Kc,jm:jm+Nc] => Bbuf[Kc,Nc];

for (im=0; im<M; im+=Mc)
{ Pack A[im:im+Mc,km:km+Kc] => Abuf[Nc,Kc]
for (jc=jm; jc<jm+Nc; jc+=Nr)
for (ic=im; ic<im+Mc; ic+=Mr)
BLIS_Kernel(Abuf, Bbuf, @C[ic,jc],Kr);

}
}

BLIS Schema using MLIR

%Abuf : buffer<589824> %A = view %Abuf[%i4,%i3,%i2,%i1,%i0,%k4,%k3,%k2,%k1]
%Bbuf : buffer<589824> %B = view %Bbuf[%j4,%j3,%j2,%j1,%j0,%k4,%k3,%k2,%k1]
%Cbuf : buffer<589824> %C = view %Cbuf[%i4,%i3,%i2,%i1,%i0,%j4,%j3,%j2,%j1,%j0]
%i0 = range 0:6:1 for %i4it in %i4, %j4it in %j4, %k4it in %k4 {
%j0 = range 0:16:1 %Aslice = slice %A[%i4it,%i3,%i2,%i1,%i0,%k4it,%k3,%k2,%k1]
%i1 = range 0:2:1 %AbufL3 = alloc_buffer(49152)
%j1 = range 0:1:1 %AL3 = view %AbufL3[%k3,%i3,%k2,%i2,%i1,%k1,%i0]
%k1 = range 0:256:1 copy(%Aslice, %AL3) { outputPermutation =
%i2 = range 0:16:1 (a3,a2,a1,a0,b3,b2,b1) -> (b3,a3,b2,a2,a1,b1,a0) }
%j2 = range 0:1:1 // Similarly for %Bslice, %BbufL3, %BL3
%k2 = range 0:1:1 for %i3it in %i3, %j3it in %j3, %k3it in %k3, %i2it in %i2,
%i3 = range 0:1:1 %j2it in %j2, %k2it in %k2, %i1it in %i1, %j1it in %j1 {
%j3 = range 0:48:1 %Aker = slice %AL3[%k3it,%i3it,%k2it,%i2it,%i1it,%k1,%i0]
%k3 = range 0:1:1 %Bker = slice %BL3[%k3it,%j3it,%k2it,%j2it,%j1it,%k1,%j0]
%i4 = range 0:4:1 %Cker = slice %C[%i4it,%i3it,%i2it,%i1it,%i0,
%j4 = range 0:1:1 %j4it,%j3it,%j2it,%j1it,%j0]
%k4 = range 0:3:1 blis_kernel(%Aker,%Bker,%Cker) } }

Figure 4: MLIR Example
that will be directly useful for higher-level domain-specific languages and frameworks built on top of MLIR,
(2) demonstration of these optimizations on important operators from TensorFlow and PyTorch, and (3)
developing MLIR building blocks that benefit other compiler researchers using MLIR. Our collaboration
with key MLIR team members provides a unique opportunity to have immediate impact.
Example To illustrate MLIR features and to highlight challenges, we will use an example of multi-level-
tiled matrix-matrix multiplication employing the BLIS micro-kernel [59, 113]. As described earlier, our
preliminary work [50] developed techniques for generating similar implementations for arbitrary tensor con-
tractions. While that work produced low-level C code, here we express the result in MLIR. Our discussion
only focuses on core MLIR primitives needed for high-performance schemes for tensor operations.

The example uses two input matrices A and B and an output matrix C. Figure 4 shows textually the
MLIR representation for this operation. A number of non-essential details have been omitted or simplified.
The three matrices are considered to be buffers with 589824 = 768⇥ 768 elements. An MLIR view allows
one to impose a multi-dimensional index space over a buffer. Such views are built with the help of ranges.
Operation range p : q : r creates a representation of the index set {p, p + r, p + 2r, . . . , } with q as upper
bound. In the definition of views %A, %B, and %C, various ranges are used to achieve multi-level tiling.

In this particular scheme, the outermost tiles for %A and %B are selected to fit in L3 cache. The tiles
are obtained via a slice operation which produces new lower-dimensional views %Aslice and %Bslice.
Note that the same buffer in memory could have several associated views (e.g., %Abuf has views %A and
%Aslice), which enables convenient specification of various ”patches” of the same underlying data. The
slices are copied into separate buffers %AbufL3 and %BbufL3 in order to allow data layout transforma-
tions, needed to enable the use of the BLIS micro-kernel. These transformation are performed by a copy
operation, whose specification defines a permutation of the dimensions in the data space. The resulting
buffers can then be accessed in a multi-dimensional tiling manner via slice operations, to obtain innermost
tiles %Aker and %Bker, which together with the output tile %Cker are processed using the micro-kernel.
Challenges With the help of our MLIR collaborators, we have identified the following challenges for imple-
menting high-performance tensor operations in MLIR. First, existing primitives in MLIR need to be more
efficient. We have identified copy operations with data layout transformations as the key primitive that re-
quires a new, more efficient implementation. Second, new MLIR primitives are needed. Based on our work
on tensor contractions [50], we have identified index merging and index splitting as these missing primitives.
Index merging creates a new view by merging two or more indices in a given view into a single “macro-
index”, which can then be used for tiling. This approach has important benefits for performance—for exam-
ple, reducing the number of partial tiles. Index splitting re-maps an index into two or more “micro-indices”.
Proposed work Based on our preliminary work, we propose to pursue the following research objectives.
- Objective 2.1: Develop efficient implementations of MLIR copy operations: In the implementation of multi-
level tiling schemes, one typically needs to “stack” several view and slice operations on top of the same data,
before subjecting it to a copy operation that reshapes the data (via a layout transformation) into a new region
of memory. In our preliminary work [50] we have observed that the cost of such copies can become a

9

%Abuf : buffer<589824> %A = view %Abuf[%i4,%i3,%i2,%i1,%i0,%k4,%k3,%k2,%k1]
%Bbuf : buffer<589824> %B = view %Bbuf[%j4,%j3,%j2,%j1,%j0,%k4,%k3,%k2,%k1]
%Cbuf : buffer<589824> %C = view %Cbuf[%i4,%i3,%i2,%i1,%i0,%j4,%j3,%j2,%j1,%j0]
%i0 = range 0:6:1 for %i4it in %i4, %j4it in %j4, %k4it in %k4 {
%j0 = range 0:16:1 %Aslice = slice %A[%i4it,%i3,%i2,%i1,%i0,%k4it,%k3,%k2,%k1]
%i1 = range 0:2:1 %AbufL3 = alloc_buffer(49152)
%j1 = range 0:1:1 %AL3 = view %AbufL3[%k3,%i3,%k2,%i2,%i1,%k1,%i0]
%k1 = range 0:256:1 copy(%Aslice, %AL3) { outputPermutation =
%i2 = range 0:16:1 (a3,a2,a1,a0,b3,b2,b1) -> (b3,a3,b2,a2,a1,b1,a0) }
%j2 = range 0:1:1 // Similarly for %Bslice, %BbufL3, %BL3
%k2 = range 0:1:1 for %i3it in %i3, %j3it in %j3, %k3it in %k3, %i2it in %i2,
%i3 = range 0:1:1 %j2it in %j2, %k2it in %k2, %i1it in %i1, %j1it in %j1 {
%j3 = range 0:48:1 %Aker = slice %AL3[%k3it,%i3it,%k2it,%i2it,%i1it,%k1,%i0]
%k3 = range 0:1:1 %Bker = slice %BL3[%k3it,%j3it,%k2it,%j2it,%j1it,%k1,%j0]
%i4 = range 0:4:1 %Cker = slice %C[%i4it,%i3it,%i2it,%i1it,%i0,
%j4 = range 0:1:1 %j4it,%j3it,%j2it,%j1it,%j0]
%k4 = range 0:3:1 blis_kernel(%Aker,%Bker,%Cker) } }

Figure 4: MLIR Example
that will be directly useful for higher-level domain-specific languages and frameworks built on top of MLIR,
(2) demonstration of these optimizations on important operators from TensorFlow and PyTorch, and (3)
developing MLIR building blocks that benefit other compiler researchers using MLIR. Our collaboration
with key MLIR team members provides a unique opportunity to have immediate impact.
Example To illustrate MLIR features and to highlight challenges, we will use an example of multi-level-
tiled matrix-matrix multiplication employing the BLIS micro-kernel [59, 113]. As described earlier, our
preliminary work [50] developed techniques for generating similar implementations for arbitrary tensor con-
tractions. While that work produced low-level C code, here we express the result in MLIR. Our discussion
only focuses on core MLIR primitives needed for high-performance schemes for tensor operations.

The example uses two input matrices A and B and an output matrix C. Figure 4 shows textually the
MLIR representation for this operation. A number of non-essential details have been omitted or simplified.
The three matrices are considered to be buffers with 589824 = 768⇥ 768 elements. An MLIR view allows
one to impose a multi-dimensional index space over a buffer. Such views are built with the help of ranges.
Operation range p : q : r creates a representation of the index set {p, p + r, p + 2r, . . . , } with q as upper
bound. In the definition of views %A, %B, and %C, various ranges are used to achieve multi-level tiling.

In this particular scheme, the outermost tiles for %A and %B are selected to fit in L3 cache. The tiles
are obtained via a slice operation which produces new lower-dimensional views %Aslice and %Bslice.
Note that the same buffer in memory could have several associated views (e.g., %Abuf has views %A and
%Aslice), which enables convenient specification of various ”patches” of the same underlying data. The
slices are copied into separate buffers %AbufL3 and %BbufL3 in order to allow data layout transforma-
tions, needed to enable the use of the BLIS micro-kernel. These transformation are performed by a copy
operation, whose specification defines a permutation of the dimensions in the data space. The resulting
buffers can then be accessed in a multi-dimensional tiling manner via slice operations, to obtain innermost
tiles %Aker and %Bker, which together with the output tile %Cker are processed using the micro-kernel.
Challenges With the help of our MLIR collaborators, we have identified the following challenges for imple-
menting high-performance tensor operations in MLIR. First, existing primitives in MLIR need to be more
efficient. We have identified copy operations with data layout transformations as the key primitive that re-
quires a new, more efficient implementation. Second, new MLIR primitives are needed. Based on our work
on tensor contractions [50], we have identified index merging and index splitting as these missing primitives.
Index merging creates a new view by merging two or more indices in a given view into a single “macro-
index”, which can then be used for tiling. This approach has important benefits for performance—for exam-
ple, reducing the number of partial tiles. Index splitting re-maps an index into two or more “micro-indices”.
Proposed work Based on our preliminary work, we propose to pursue the following research objectives.
- Objective 2.1: Develop efficient implementations of MLIR copy operations: In the implementation of multi-
level tiling schemes, one typically needs to “stack” several view and slice operations on top of the same data,
before subjecting it to a copy operation that reshapes the data (via a layout transformation) into a new region
of memory. In our preliminary work [50] we have observed that the cost of such copies can become a

9

%Abuf : buffer<589824> %A = view %Abuf[%i4,%i3,%i2,%i1,%i0,%k4,%k3,%k2,%k1]
%Bbuf : buffer<589824> %B = view %Bbuf[%j4,%j3,%j2,%j1,%j0,%k4,%k3,%k2,%k1]
%Cbuf : buffer<589824> %C = view %Cbuf[%i4,%i3,%i2,%i1,%i0,%j4,%j3,%j2,%j1,%j0]
%i0 = range 0:6:1 for %i4it in %i4, %j4it in %j4, %k4it in %k4 {
%j0 = range 0:16:1 %Aslice = slice %A[%i4it,%i3,%i2,%i1,%i0,%k4it,%k3,%k2,%k1]
%i1 = range 0:2:1 %AbufL3 = alloc_buffer(49152)
%j1 = range 0:1:1 %AL3 = view %AbufL3[%k3,%i3,%k2,%i2,%i1,%k1,%i0]
%k1 = range 0:256:1 copy(%Aslice, %AL3) { outputPermutation =
%i2 = range 0:16:1 (a3,a2,a1,a0,b3,b2,b1) -> (b3,a3,b2,a2,a1,b1,a0) }
%j2 = range 0:1:1 // Similarly for %Bslice, %BbufL3, %BL3
%k2 = range 0:1:1 for %i3it in %i3, %j3it in %j3, %k3it in %k3, %i2it in %i2,
%i3 = range 0:1:1 %j2it in %j2, %k2it in %k2, %i1it in %i1, %j1it in %j1 {
%j3 = range 0:48:1 %Aker = slice %AL3[%k3it,%i3it,%k2it,%i2it,%i1it,%k1,%i0]
%k3 = range 0:1:1 %Bker = slice %BL3[%k3it,%j3it,%k2it,%j2it,%j1it,%k1,%j0]
%i4 = range 0:4:1 %Cker = slice %C[%i4it,%i3it,%i2it,%i1it,%i0,
%j4 = range 0:1:1 %j4it,%j3it,%j2it,%j1it,%j0]
%k4 = range 0:3:1 blis_kernel(%Aker,%Bker,%Cker) } }

Figure 4: MLIR Example
that will be directly useful for higher-level domain-specific languages and frameworks built on top of MLIR,
(2) demonstration of these optimizations on important operators from TensorFlow and PyTorch, and (3)
developing MLIR building blocks that benefit other compiler researchers using MLIR. Our collaboration
with key MLIR team members provides a unique opportunity to have immediate impact.
Example To illustrate MLIR features and to highlight challenges, we will use an example of multi-level-
tiled matrix-matrix multiplication employing the BLIS micro-kernel [59, 113]. As described earlier, our
preliminary work [50] developed techniques for generating similar implementations for arbitrary tensor con-
tractions. While that work produced low-level C code, here we express the result in MLIR. Our discussion
only focuses on core MLIR primitives needed for high-performance schemes for tensor operations.

The example uses two input matrices A and B and an output matrix C. Figure 4 shows textually the
MLIR representation for this operation. A number of non-essential details have been omitted or simplified.
The three matrices are considered to be buffers with 589824 = 768⇥ 768 elements. An MLIR view allows
one to impose a multi-dimensional index space over a buffer. Such views are built with the help of ranges.
Operation range p : q : r creates a representation of the index set {p, p + r, p + 2r, . . . , } with q as upper
bound. In the definition of views %A, %B, and %C, various ranges are used to achieve multi-level tiling.

In this particular scheme, the outermost tiles for %A and %B are selected to fit in L3 cache. The tiles
are obtained via a slice operation which produces new lower-dimensional views %Aslice and %Bslice.
Note that the same buffer in memory could have several associated views (e.g., %Abuf has views %A and
%Aslice), which enables convenient specification of various ”patches” of the same underlying data. The
slices are copied into separate buffers %AbufL3 and %BbufL3 in order to allow data layout transforma-
tions, needed to enable the use of the BLIS micro-kernel. These transformation are performed by a copy
operation, whose specification defines a permutation of the dimensions in the data space. The resulting
buffers can then be accessed in a multi-dimensional tiling manner via slice operations, to obtain innermost
tiles %Aker and %Bker, which together with the output tile %Cker are processed using the micro-kernel.
Challenges With the help of our MLIR collaborators, we have identified the following challenges for imple-
menting high-performance tensor operations in MLIR. First, existing primitives in MLIR need to be more
efficient. We have identified copy operations with data layout transformations as the key primitive that re-
quires a new, more efficient implementation. Second, new MLIR primitives are needed. Based on our work
on tensor contractions [50], we have identified index merging and index splitting as these missing primitives.
Index merging creates a new view by merging two or more indices in a given view into a single “macro-
index”, which can then be used for tiling. This approach has important benefits for performance—for exam-
ple, reducing the number of partial tiles. Index splitting re-maps an index into two or more “micro-indices”.
Proposed work Based on our preliminary work, we propose to pursue the following research objectives.
- Objective 2.1: Develop efficient implementations of MLIR copy operations: In the implementation of multi-
level tiling schemes, one typically needs to “stack” several view and slice operations on top of the same data,
before subjecting it to a copy operation that reshapes the data (via a layout transformation) into a new region
of memory. In our preliminary work [50] we have observed that the cost of such copies can become a

9

10

Ongoing Work
♦ Extend data-packing from mat-mult to tensor contractions

§ Exploit property that loop indices map into one of three groups: contraction-
indices, left-external indices, and right-external indices

§ Tiling is in the space of 3 macro-indexes: contraction, ext-left and ext-right
§ Need to pack data corresponding to multi-level tile into buffer for contiguous

access within each tile
§ Challenge is that data footprints in tiled macro-index space are not regular

sections in tensor’s index space

for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
for (l=0; l<N; l++)
for (m=0; m<N; m++)
for (n=0; n<N; n++)
C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

EL = {i,k} ER = {j,l} CI = {m,n}

