Workshop on MLIR for HPC

October 21, 2019, Georgia Institute of Technology, Atlanta, GA
Rooms 1123 and 1116, Klaus Advanced Computing Building

Held in conjunction with International Workshop on Languages and Compilers for Parallel Computing (LCPC 2019)

Organizing Committee:
Uday Bondhugula, Indian Institute of Science
Albert Cohen, Google
Tobias Grosser, ETH
Mary Hall, University of Utah
Santosh Pande, Georgia Tech
P. Sadayappan, University of Utah
Vivek Sarkar, Georgia Tech
Michelle Strout, University of Arizona
Reid Tatge, Google
Current State of HPC Compilers

Proprietary
- Robust
- High-quality implementations for supported architectures
- Support HPC community
- Code not performance portable across systems
- Often conservative

Open Source
- Research compilers
 - State-of-the-art
 - Experimental, untrusted
 - Difficult to track language changes
 - Gaps, such as Fortran frontend
- LLVM and gcc
 - Gaps in HPC support
 - Conservative
Current State of HPC Compilers, cont.

Challenges:
• HPC market not large enough to drive significant change to open source or even proprietary compilers
• Meanwhile, research systems not sufficiently robust for production codes

Impact:
• Productivity improvements for HPC not being exploited
• Heterogeneity will make this a bigger concern
Convolutional Neural Network Forward Layer Code (in C)

```c
for (n=0; n<N; n++) { // minibatch size
    for (k=0; k<K; k++) { // output feature map
        for (c=0; c<C; c++) { // input feature map
            for (p=0; p<P; p++) { // output height
                ij = p * u; // input height
                for (q =0; q<Q; q++) { // output width
                    ii = q * v; // input width
                    for (r=0; r<R; r++) { // filter height
                        for (s =0; s<S; s++) { // filter width
                            output_seq[n][k][p][q] +=
                                input [n][c][ij+r][ii+s] * weight[k][c][r][s];
                        }
                    }
                }
            }
        }
    }
}
```
Goal: HPC Support in Open Source Compilers

Short-term
(ECP time frame)
Extend LLVM
• Parallel IR
• Loop transformations
• OpenMP/OpenACC
• Autotuning
• Fortran frontend

Potential longer term
(But need to start now)
Collaborate on MLIR
• Higher level of abstraction
• Composability of different views (parallelism?)
• Built-in polyhedral transformations and code generation
• Multiple backends via LLVM
• Missing frontends
Sign up for breakout session interests, and we will group into four topics.