
1

Thoughts on LLVM in DOE/ECP and MLIR

Hal Finkel
Leadership Computing Facility
Argonne National Laboratory

MLIR4HPC
10/21/2019



2

A role in exascale? Current/Future HPC vendors are already involved (plus many others)...

LLVM

Apple + Google
(Many millions invested annually)
+ many others (Qualcomm, Sony,

Microsoft, Facebook, Ericcson, etc.)

Intel

Cray

ARM

IBM

NVIDIA
(and PGI)

AMD

Academia, Labs, etc.



3

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf)



4

ECP ST Projects Developing LLVM-Based Technology

SOLLVE: OpenMP (WBS 2.3.1.13) 

Flang: LLVM Fortran Frontend (WBS 2.3.5.06)

Y-Tune: Autotuning (WBS 2.3.2.07)
o Enhancing the implementation of OpenMP in LLVM:

 Developing support for unified memory (e.g., from NVIDIA), 
kernel decomposition and pipelining, automated use of local 
memory, and other enhancements for accelerators.

 Developing optimizations of OpenMP constructs to reduce 
overheads (e.g., from thread startup and barriers).
 Building on LLVM parallel-IR work in collaboration with Intel.

o Using LLVM, Clang, and Flang to prototype new OpenMP features for 
standardization.

o Developing an OpenMP test suite, and as a result, testing and 
improving the quality of OpenMP in LLVM, Clang, and Flang.

Note: The proxy-apps project (WBS 2.2.6.01) is also enhancing LLVM's test suite.

o Developing extensions to LLVM's intermediate representation (IR) to 
represent parallelism.

 Strong collaboration with Intel and several academic groups.
 Parallel IR can target OpenMP's runtime library among others.
 Parallel IR can be targeted by OpenMP, OpenACC, and other 

programming models in Clang, Flang, and other frontends.
 Building optimizations on parallel IR to reduce overheads (e.g., 

merging parallel regions and removing redundant barriers).
o Developing support for OpenACC in Clang, prototyping non-volatile 

memory features, and integration with Tau performance tools.

o Working with NVIDIA (PGI), ARM, and others to develop an open-
source, production-quality LLVM Fortran frontend.

 Can target parallel IR to support OpenMP (including OpenMP 
offloading) and OpenACC.

o Enhancing LLVM to better interface with autotuning tools.
o Enhancing LLVM's polyhedral loop optimizations and the ability to drive 

them using autotuning.
o Using Clang, and potentially Flang, for parsing and semantic analysis.

Kitsune: LANL ATDM Dev. Tools (WBS 2.3.2.02)

o Using parallel IR to replace template expansion in FleCSI, Kokkos, RAJA, etc.
o Enhanced parallel-IR optimizations and targeting of various 

runtimes/architectures.
o Flang evaluation, testing, and Legion integration, plus other programming-model 

enhancements.
o ByFl: Instrumentation-based performance counters using LLVM.PROTEAS: Parallel IR & More (WBS 2.3.2.09)



5

And Even in Quantum Computing

This is work by Fred Chong at UChicago (and collaborators).



6

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



7

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



8

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



9

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



10

What To Do With OpenACC Code?



11

Optimization of Parallel Programs (OpenMP and Similar) (POC: Johannes Doerfert, ANL)



12

Acknowledgments

Thanks to ALCF, ANL, ECP, DOE, and the LLVM community!

ALCF is supported by DOE/SC under contract DE-AC02-06CH11357.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort 
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security 
Administration) responsible for the planning and preparation of a capable exascale ecosystem, 
including software, applications, hardware, advanced system engineering, and early testbed platforms, 
in support of the nation’s exascale computing imperative.


	Slide 1
	Slide 2
	Slide 3
	ECP ST Projects Developing LLVM-Based Technology
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

