Thoughts on LLVM in DOE/ECP and MLIR

Hal Finkel
Leadership Computing Facility
Argonne National Laboratory

MLIR4AHPC
10/21/2019

PROJECT

’-;\\\ _) EXAsSCALE

A role in exascale? Current/Future HPC vendors are already involved (plus many others).

-

® =

-<

\ EXASCALE
) COMPUTING
\ PROJECT

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]
First U.S. Exascale Systems

2012 2016 2018 2020 2021-2023

FRONTIER

ORNL
ORNL ORNL Cray/AMD/AMD

Cray/AMD/NVIDIA IBM/NVIDIA

ANL

Intel/Cray
IBM BG/Q
L1 L1
LBNL
Cray/AMD/NVIDIA
T CROSS(‘ROADS

IBM BG/Q LANL/SNL lBM"/,';I:fll'm i LANL/SNL
Cray/Intel Xeon/KNL TBD LLNL
TBD

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923 ASCAC-Helland-Barbara-Helland.pdf)

T —
\ J EXASCALE
H [) COMPUTING
\ PROJECT
—

ECP ST Projects Developing LLVM-Based Technology

SOLLVE: OpenMP (WBS 2.3.1.13)

0 Enhancing the implementation of OpenMP in LLVM:
* Developing support for unified memory (e.g., from NVIDIA),

kernel decomposition and pipelining, automated use of Iocal/

memory, and other enhancements for accelerators.

* Developing optimizations of OpenMP constructs to reduce
overheads (e.g., from thread startup and barriers).

* Building on LLVM parallel-IR work in collaboration with Intel.

0 Using LLVM, Clang, and Flang to prototype new OpenMP features for
standardization.

0 Developing an OpenMP test suite, and as a result, testing and
improving the quality of OpenMP in LLVM, Clang, and Flang.

Y-Tune: Autotuning (WBS 2.3.2.07)

0 Enhancing LLVM to better interface with autotuning tools.

0 Enhancing LLVM's polyhedral loop optimizations and the ability to drive
them using autotuning.

/

0 Using Clang, and potentially Flang, for parsing and semantic analysis. \

Kitsune: LANL ATDM Dev. Tools (WBS 2.3.2.02)

O Using parallel IR to replace template expansion in FleCSI, Kokkos, RAJA, etc.

O Enhanced parallel-IR optimizations and targeting of various
runtimes/architectures.

PROTEAS: Parallel IR & More (WBS 2.3.2.09)

0 Developing extensions to LLVM's intermediate representation (IR) to
represent parallelism.

* Strong collaboration with Intel and several academic groups.
* Parallel IR can target OpenMP's runtime library among others.

 Parallel IR can be targeted by OpenMP, OpenACC, and other
programming models in Clang, Flang, and other frontends.

* Building optimizations on parallel IR to reduce overheads (e.g.,
merging parallel regions and removing redundant barriers).

0 Developing support for OpenACC in Clang, prototyping non-volatile
memory features, and integration with Tau performance tools.

O Flang evaluation, testing, and Legion integration, plus other programming-model
enhancements.

O ByFl: Instrumentation-based performance counters using LLVM. \

Flang: LLVM Fortran Frontend (WBS 2.3.5.06)

O Working with NVIDIA (PGI), ARM, and others to develop an open-
source, production-quality LLVM Fortran frontend.

* Can target parallel IR to support OpenMP (including OpenMP

/

B
—p

offloading) and OpenACC.

Note: The proxy-apps project (WBS 2.2.6.01) is also enhancing LLVM's test suite.

EXAsSCALE
COMPUTING

PROJECT

=P

And Even in Quantum Computing

& GitHub, Inc. [US] | https://github.com/epiqc/ScaffCC

What Is ScaffCC?

ScaffCC is a compiler and scheduler for the Scaffold programing language. It is written using the LLVM open-source
infrastructure. It is for the purpose of writing and analyzing code for quantum computing applications.

ScaffCC enables researchers to compile quantum applications written in Scaffold to a low-level quantum assembly format
(QASM), apply error correction, and generate time and area metrics. It is written to be scalable up to problem sizes in which
guantum algorithms outperform classical ones, and as such provide valuable insight into the overheads involved and possible
optimizations for a realistic implementation on a future device technology:.

If you use ScaffCC in your publications, please cite this work as follows:

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic Chong and Margaret Martonosi,

ScaffCC: A Framework for Compilation and Analysis of Quantum Computing Programs, ACM International Conference on
Computing Frontiers (CF 2014), Cagliari, Iltaly, May 2014

This is work by Fred Chong at UChicago (and collaborators).

-~ —
\\ EXAsSCALE
) COMPUTING
5 \ PROJECT
~

Composition of Transformations

Order is Important

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

#pragma omp unroll factor(2)
#pragma omp reverse
for (int 1 = 0; 1 < 128; i+=1)

Stmt (1) ;

#pragma omp unroll factor(2)
for (int 1 = 127; 1 >= 0; i-=1)

Stmt (i) ;

for (int 1 = 127; 1 >= 0; i-=1) {
Stmt (i) ;
Stmt (i-1);

+

#pragma omp Teverse
#pragma omp unroll factor(2)
for (int i = 0; i < 128; i+=1)

Stmt (i) ;
#pragma omp reverse

for (int i = 0; i < 128; i+=2) {
Stmt (1) ;
Stmt (i+1);

}

e

for (int i = 126; 1 >= 0; i-=2) {
Stmt (i) ;
Stmt (i+1);

+

=P

EXAsSCALE
COMPUTING
FPROJECT

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

Matrix-Matrix Multiplication

void matmul (int M, int N, int K,
double C[const restrict static M] [N],
double A[const restrict static M] [K],
double B[const restrict static K][N]) {
#pragma clang loop(j2) pack array(4)
#pragma clang loop(i1) pack array(B)
#pragma clang loop(tl, j1,k1,42,72) interchange |\
permutation(j1,ki, 1,452, 12)
#pragma clang loop(i,7,k) tile sizes(96,2048,256) \
pit_ids(il,51,k1) tile_ids(i2, j2,k2)
#pragma clang loop td(7)
for (int i = 0; i < M; i += 1)
#pragma clang loop <d(7)
for (int j = 0; j < N; j += 1)
#pragma clang loop td(k)
for (int ¥k = 0; k < K; k += 1)
C[il[j] += A[i][x] = B[k][j];

B \N
\ EXASCALE
COMPUTING
\ PROJECT
—

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

Matrix-Matrix Multiplication

After Transformation

double Packed_B[256]) [2048];
double Packed_A[96] [256];
if (runtime check) {
if (M »>= 1)
for (int c0 = 0; c0 <= floord(N - 1, 2048); cO += 1) /7 Loop 41
for (int ¢l = 0; ¢l <= floord(K - 1, 256); cl += 1) { // Loop kI

A4 Copy—in: B -> Packed_ B
for (int c4 = 0; cd <= min(2047, N - 2048 # c0 - 1); cd4 += 1)
for (int c5 = 0; c5 <= min(285, K - 256 # cl - 1);: c& += 1)
Packed Bl[cd4]l [c5] = B[256 = cl + cB5]1[2048 # c0 + c4];

for (int ¢2 = 0; c2 <= floord(M - 1, 96); 2 += 1) { // Loop il

A4 Copy-in: A -> Packed_d
for (int c6 = 0; cB <= min(9&, M - 96 #* c2 - 1); cB += 1)
for (int 7 = 0; c7 <= min(285, K - 256 # cl - 1}; <7 += 1)
Packed_A[cB] [c7] = A[96 * c2 4+ cB][266 = cl 4 c7];

for (int ¢3 = 0; ¢3 <= min(2047, N - 2048 # c0 - 1); 3 += 1) // Loop 72

for (int c4 = 0; c4 <= min(96, M - 96 = c2 - 1); cd += 1) S/ Loep 42

for (int ¢5 = 0; ¢b <= min(255, K - 256 * ¢l - 1); cb += 1) // Loop k2
C[96 #= c2 + c4][2048 *= c0 + 3] += Packed_A[c4] [c5] * Packed B[c3] [c5];

}
} else {
J* original code #/

}

- —
\\ EXASCALE
) COMPUTING
\ PROJECT
—

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

Matrix-Matrix Multiplication

Execution Speed

theoretical peak — 0.53s

Intel MKL 2018.3 - 10.59s (89%)
OpenBLAS - | 0.64s (83%)
ATLAS - 10.9s (60%)
Polly MatMul - 1.25s (42%)
OpenBLAS* | | 1.27s (42%)
#pragma clang loop NG 2 2s (24%)
ATLAS* | | 2.2s (24%)
manual replication | 3.9s (14%)
Netlib CBLAS* {] 33.5s (1.6%)
-O3 -march=native F 74.9s (0.7%)

0 10 20 30 40 50 60 70 80 90 100
Double precsion FP operations per time unit

* Pre-compiled from Ubuntu repository

T —
\ J EXASCALE
H [COMPUTING
\ PROJECT
—

What To Do With OpenACC Code?

Clacc: OpenACC Support for Clang and LLVM

Who
e Joel E. Denny (ORNL)
e Seyong Lee (ORNL)
e Jeffrey S. Vetter (ORNL)

Where
e Clacc: Translating OpenACC to OpenMP in Clang, Joel E. Denny, Seyong Lee, and
Jeffrey S. Vetter, 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in
HPC (LLVM-HPC), Dallas, TX, USA, (2018).
e htips://ft.ornl.gov/research/clacc
e Clacc Poster (Wed at ECP AHM)

What
e Develop production-quality, standard-conforming traditional OpenACC compiler and
runtime support by extending Clang and LLVM

e Enable research and development of source-level OpenACC tools
o Design compiler to leverage Clang/LLVM ecosystem extensibility
o E.g., Pretty printers, analyzers, lint tools, and debugger and editor extensions

e As matures, contribute OpenACC support to upstream Clang and LLVM

e Throughout development
o Actively contribute upstream all mutually beneficial Clang and LLVM improvements
o Actively contribute to the OpenACC specification

10

OpenACC source

l

parser

}

‘ OpenACC AST

/. \achump

OpenMP AST ‘

/

codegen codegen

LLVM IR

LLVM

}

executable

OpenACC runtime

OpenMP runtime ‘

\
EXAsSCALE
\ I—) COMPUTING

PROJECT

S

11

Optimization of Parallel Programs (OpenMP and Similar) (POC: Johannes Doerfert, ANL)

Optimizing Parallel Programs with LLVM

v
©
=
o
L
7]
0
=
v
£
5

Jsrad_v2 2048 2048 0127 01271 0.520 ./pathfinder 40000 40000

1242.085 1178.4027 1100.8303 1109.2209 1218.0285 1134.7849 1036.8596 1025.9927
1.077 2.626

million cycles
= — —
= [} (V)
o 9 o
S o O

, 55| Penalty caused by
! (seq. execution of) an

2.00{ OpenMP parallel loop.

1.7’5J . . .

‘ Performance is recovered by RCUE-RESTor-|ETul oo o Il New “parallel” optimizations
barrier elimination
parallel region expansion
parallelism aware code motion

1.501 native compiler optimizations constant propagation
argument promotion

1.257 attribute deduction

1.004 v , i ,
base.s base.p attr_argp.p

See our IWOMP'18 & LCPC’18 papers, as well as the LLVMDev’'18 talk/video!

PROJECT

’-;\\\ _) EXAsSCALE

Acknowledgments

Thanks to ALCF, ANL, ECP, DOE, and the LLVM community!
ALCF is supported by DOE/SC under contract DE-AC02-06CH11357.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem,
iIncluding software, applications, hardware, advanced system engineering, and early testbed platforms,
In support of the nation’s exascale computing imperative.

12 PROJECT

’-;\\\ _) EXAsSCALE

	Slide 1
	Slide 2
	Slide 3
	ECP ST Projects Developing LLVM-Based Technology
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

