
1

Thoughts on LLVM in DOE/ECP and MLIR

Hal Finkel
Leadership Computing Facility
Argonne National Laboratory

MLIR4HPC
10/21/2019



2

A role in exascale? Current/Future HPC vendors are already involved (plus many others)...

LLVM

Apple + Google
(Many millions invested annually)
+ many others (Qualcomm, Sony,

Microsoft, Facebook, Ericcson, etc.)

Intel

Cray

ARM

IBM

NVIDIA
(and PGI)

AMD

Academia, Labs, etc.



3

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf)



4

ECP ST Projects Developing LLVM-Based Technology

SOLLVE: OpenMP (WBS 2.3.1.13) 

Flang: LLVM Fortran Frontend (WBS 2.3.5.06)

Y-Tune: Autotuning (WBS 2.3.2.07)
o Enhancing the implementation of OpenMP in LLVM:

 Developing support for unified memory (e.g., from NVIDIA), 
kernel decomposition and pipelining, automated use of local 
memory, and other enhancements for accelerators.

 Developing optimizations of OpenMP constructs to reduce 
overheads (e.g., from thread startup and barriers).
 Building on LLVM parallel-IR work in collaboration with Intel.

o Using LLVM, Clang, and Flang to prototype new OpenMP features for 
standardization.

o Developing an OpenMP test suite, and as a result, testing and 
improving the quality of OpenMP in LLVM, Clang, and Flang.

Note: The proxy-apps project (WBS 2.2.6.01) is also enhancing LLVM's test suite.

o Developing extensions to LLVM's intermediate representation (IR) to 
represent parallelism.

 Strong collaboration with Intel and several academic groups.
 Parallel IR can target OpenMP's runtime library among others.
 Parallel IR can be targeted by OpenMP, OpenACC, and other 

programming models in Clang, Flang, and other frontends.
 Building optimizations on parallel IR to reduce overheads (e.g., 

merging parallel regions and removing redundant barriers).
o Developing support for OpenACC in Clang, prototyping non-volatile 

memory features, and integration with Tau performance tools.

o Working with NVIDIA (PGI), ARM, and others to develop an open-
source, production-quality LLVM Fortran frontend.

 Can target parallel IR to support OpenMP (including OpenMP 
offloading) and OpenACC.

o Enhancing LLVM to better interface with autotuning tools.
o Enhancing LLVM's polyhedral loop optimizations and the ability to drive 

them using autotuning.
o Using Clang, and potentially Flang, for parsing and semantic analysis.

Kitsune: LANL ATDM Dev. Tools (WBS 2.3.2.02)

o Using parallel IR to replace template expansion in FleCSI, Kokkos, RAJA, etc.
o Enhanced parallel-IR optimizations and targeting of various 

runtimes/architectures.
o Flang evaluation, testing, and Legion integration, plus other programming-model 

enhancements.
o ByFl: Instrumentation-based performance counters using LLVM.PROTEAS: Parallel IR & More (WBS 2.3.2.09)



5

And Even in Quantum Computing

This is work by Fred Chong at UChicago (and collaborators).



6

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



7

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



8

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



9

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)



10

What To Do With OpenACC Code?



11

Optimization of Parallel Programs (OpenMP and Similar) (POC: Johannes Doerfert, ANL)



12

Acknowledgments

Thanks to ALCF, ANL, ECP, DOE, and the LLVM community!

ALCF is supported by DOE/SC under contract DE-AC02-06CH11357.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort 
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security 
Administration) responsible for the planning and preparation of a capable exascale ecosystem, 
including software, applications, hardware, advanced system engineering, and early testbed platforms, 
in support of the nation’s exascale computing imperative.


	Slide 1
	Slide 2
	Slide 3
	ECP ST Projects Developing LLVM-Based Technology
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

