
MLIR for Fortran

Vivek Sarkar * (Georgia Tech)
Nelson Amaral (U.Alberta)

Kit Barton (IBM)
Wang Chen (IBM)

* Disclaimer: opinions in this talk are those of the
presenter, and do not reflect the official opinions of IBM!

Overview
• New research project planned for 2020 across

Georgia Tech, U.Alberta, IBM
• Motivated by past work at IBM on ASTI optimizer

for Fortran, and recent MLIR work at IBM with
U.Alberta

• Goal is to leverage past experiences with ASTI’s
High-level Intermediate Representation (HIR) to
evaluate the design space for an MLIR dialect for
optimization of Fortran codes
– Special focus on array statements, loops, array accesses
– Such an MLIR dialect could be useful for optimization of

HPC codes in other languages as well
• Complementary to ECP Flang project
• All feedback and suggestions are most welcome! 2

Background: ASTI Optimizer
(Analyzer, Scalarizer, Transformer, Interprocedural optimizer)

3

4

Scalarization example

136 Vivek Sarkar

(a) Example loop containing an array assignment statement:

--

do k = 1, n

A(1:n,1:n) = A(1:n,1:n) + spread(B(1:n,k),2,n) *

spread(C(k,1:n),1,n)

end do

(b) After unoptimized scalarization:

do k = 1, n

do i1 = 1, n ! parallelizable loop

T1(i1) = B(i1,k)

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T2(i1,i2) = T1(i1)

end do

end do

do i1 = 1, n ! parallelizable loop

T3(i1) = C(k,i1)

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T4(i1,i2) = T3(i2)

end do

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T5(i1,i2) = A(i1,i2) + T2(i1,i2) * T4(i1,i2)

end do

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

A(i1,i2) = T5(i1,i2)

end do

end do

end do

Fig. 3. Matrix multiply example

Optimized Execution of Fortran 90 137

(c) After optimized scalarization:

do k = 1, n

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

A(i1,i2) = A(i1,i2) + B(i1,k) * C(k,i2)

end do

end do

end do

(d) After collective transformation of loop nest (c):

do bb$_i2=1,n,b$_i2 ! parallelizable loop

do bb$_i1=1,n,b$_i1 ! parallelizable loop

do bb$_k =1,n,b$_k

do i2=max(1,bb$_i2),min(n,bb$_i2+b$_i2-1)

do i1=max(1,bb$_i1),min(n,bb$_i1+b$_i1-1)

do k=max(1,bb$_k),min(n,bb$_k+b$_k-1),1

A(i1,i2) = A(i1,i2) + B(i1,k) * C(k,i2)

end do

end do

end do

end do

end do

end do

Fig. 4. Matrix multiply example (contd.)

||0

|30

|60

|90

|120

|150

|180

|210

|240

|270

 W
al

lc
lo

ck
 e

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

Separate

(1 proc.)

Separate

(4 procs.)

Combined

(1 proc.)

Combined

(4 procs.)

(261.2)

(85.0)

(29.9)

(7.0)

Fig. 5. Performance measurements for matrix multiply example

5

Structure of ASTI Transformer
[LCPC 1991, PLDI 1992, CASCON 1994, ICPP 1995, IBM JRD 1997, ICPP 1997,

SPAA 1997, LCR 1998, LCPC 1998, ISPASS 2000, ICS 2000, IJPP 2001]

ASTI transformations include:
• Loop transformations: distribution, fusion
unimodular, tiling, unrolling, coalescing,
parallelization, array language scalarization
• Data transformations: scalar replacement,
alignment, padding

Loop Structure Graph and
Dependence Analysis foundations
derived from prior work in PTRAN
project

Demand-driven
incremental analyses

Analyze IR

Transform IR

Build IR

START

END

Traditional Optimizer Structure

6

Loop Structure
Tree

~ o o p structure tree for matrix multiply-transpose example.

Loop-level control flow graphs for matrix multiply-transpose
example.

computed on demand for any loop body, when the
transformer has to enumerate its control and data
dependences. Together, the LST and the individual
LCFGs, input/output lists, and LDGs comprise the LSG
representation introduced in this paper. As a whole, the
LSG is initialized from the information provided by the

240 ASTI analyzer component (control flow graph, intervals,

V. SARKAR

SSA, constant propagation, value numbering, induction
variable analysis), but subsequent transformations of the
LSG update only the LSG without reinvoking any of the
analysis algorithms.

The program’s loop structure is self-evident in the
hierarchical structure of the LSG. In contrast to the
forward control dependence graph [23-251, the LSG
avoids the creation of pseudo-control-flow edges that can
potentially weaken analysis by representing control flow
paths that cannot be executed in the original program. An
important strength of the LSG is its robust handling of
irreducible regions [3]. An irreducible region is merged,
with the smallest single-entry region in which it is
contained, into a single-loop node, thus isolating it from
other (containing, contained, or unrelated) loops in the
LST which remain eligible for all transformations and
optimizations.

The following sections describe the four major data
structures in the LSG: the loop structure tree, the loop-
level control flow graph, the inputloutput lists, and the
loop-level dependence graph.

Loop structure tree (LST)
The loop structure tree represents the loop-nesting
structure of the input program. It is derived from the
interval structure used in the modified interval analysis
formulated by Schwartz and Sharir [19]. If the flow graph
contains an irreducible region (a strongly connected
region with multiple entries), we include that irreducible
region within its smallest containing single-entry region
(which we refer to as a loop) and mark that loop as
irreducible. An irreducible loop is not eligible for any loop
transformation, but all other loops are eligible for loop
transformations. Thus, each interior node of the interval
structure tree represents a single-entry loop, and each leaf
node of the interval structure tree corresponds to a node
in the control flow graph. Usually, a node in the control
flow graph is a basic block which may contain multiple
statements. Since many program transformations are based
on single statements, we expand each basic block into its
individual statements when constructing the loop structure
tree. Thus, each interior node (I-node) of the LST
represents a (structured or unstructured) loop, and each
leaf node (S-node) of the LST represents a statement.

related to its loop. For example, the loop-level control
flow graph (LCFG), input/output lists, loop dependence
graph (LDG), loop-carried dependence vectors, and the
transformation sequence are all anchored in the I-node
for the appropriate loop.

Figure 6 shows the loop structure tree built for the
matrix multiply-transpose example program in Figure 4.
For convenience, we create a special I-node, Z.0, that
represents the entire subroutine as a dummy loop. Z.0 is

The I-node serves as a useful anchor for all information

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Loop-Level Control
Flow Graphs

~ o o p structure tree for matrix multiply-transpose example.

Loop-level control flow graphs for matrix multiply-transpose
example.

computed on demand for any loop body, when the
transformer has to enumerate its control and data
dependences. Together, the LST and the individual
LCFGs, input/output lists, and LDGs comprise the LSG
representation introduced in this paper. As a whole, the
LSG is initialized from the information provided by the

240 ASTI analyzer component (control flow graph, intervals,

V. SARKAR

SSA, constant propagation, value numbering, induction
variable analysis), but subsequent transformations of the
LSG update only the LSG without reinvoking any of the
analysis algorithms.

The program’s loop structure is self-evident in the
hierarchical structure of the LSG. In contrast to the
forward control dependence graph [23-251, the LSG
avoids the creation of pseudo-control-flow edges that can
potentially weaken analysis by representing control flow
paths that cannot be executed in the original program. An
important strength of the LSG is its robust handling of
irreducible regions [3]. An irreducible region is merged,
with the smallest single-entry region in which it is
contained, into a single-loop node, thus isolating it from
other (containing, contained, or unrelated) loops in the
LST which remain eligible for all transformations and
optimizations.

The following sections describe the four major data
structures in the LSG: the loop structure tree, the loop-
level control flow graph, the inputloutput lists, and the
loop-level dependence graph.

Loop structure tree (LST)
The loop structure tree represents the loop-nesting
structure of the input program. It is derived from the
interval structure used in the modified interval analysis
formulated by Schwartz and Sharir [19]. If the flow graph
contains an irreducible region (a strongly connected
region with multiple entries), we include that irreducible
region within its smallest containing single-entry region
(which we refer to as a loop) and mark that loop as
irreducible. An irreducible loop is not eligible for any loop
transformation, but all other loops are eligible for loop
transformations. Thus, each interior node of the interval
structure tree represents a single-entry loop, and each leaf
node of the interval structure tree corresponds to a node
in the control flow graph. Usually, a node in the control
flow graph is a basic block which may contain multiple
statements. Since many program transformations are based
on single statements, we expand each basic block into its
individual statements when constructing the loop structure
tree. Thus, each interior node (I-node) of the LST
represents a (structured or unstructured) loop, and each
leaf node (S-node) of the LST represents a statement.

related to its loop. For example, the loop-level control
flow graph (LCFG), input/output lists, loop dependence
graph (LDG), loop-carried dependence vectors, and the
transformation sequence are all anchored in the I-node
for the appropriate loop.

Figure 6 shows the loop structure tree built for the
matrix multiply-transpose example program in Figure 4.
For convenience, we create a special I-node, Z.0, that
represents the entire subroutine as a dummy loop. Z.0 is

The I-node serves as a useful anchor for all information

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

7

Structure of a Single Optimization Pass

Analysis

Transformation

IR

Optimized IR

Analysis
information

Analysis Transformation
Value
numbering

Common
subexpression
elimination

Liveness
analysis

Dead store
elimination

Dependence
analysis

Instruction
scheduling

Examples:

Optimization = Analysis + Transformation 8

Issues
• Heuristics: sequence of optimization passes for a

given optimization level is usually hardwired
• Phase ordering: a later optimization can create

new opportunities for a previous optimization
• Compile time/space overheads: all optimization

passes are performed on all instructions in all
procedures

• Unpredictability: hard to predict how much
performance improvement will be delivered by
compiler optimizations

• Pessimization: optimizing transformations can
sometimes degrade performance

9

Rethinking compilers …a quantitative approach

Optimization = Cost function + Analysis + Transformation

Demand-driven
Analysis

Demand-driven
Transformation

IR

Optimized IR

Cost Function

Cost Function Analysis Transformation

Store freqs Live variable analysis Dead store elimination

Basic block freqs Bounds analysis Bounds check elimination

Cache misses Dependence vectors Loop interchange and tiling

Examples:

Target machine
parameters

10

Transformations performed in
ASTI for Locality Optimizations

Other transformations performed for Vector/SMP/HPF parallelization
11

Challenges
• Cost function should be efficient to compute but

sufficiently accurate
– Use lower and upper bounds as approximations

• Well-tuned code should not incur large
compilation overhead
– Perform analysis and transformation incrementally and

on demand, only when cost function indicates potential
for performance improvement

– Use algorithms with low-polynomial-time complexity
• Phase ordering should be driven by cost functions

– Use classical optimization theory heuristics in driver for
optimizing compiler e.g., sort potential transformations
in decreasing order of benefit

12

Summary
• Time to rethink optimizing compilers

– Reduce compilation overhead
– Increase optimization effectiveness

• Quantitative approach provides a promising
foundation

• Future goal: build an optimizer in which all
optimization selection and phase ordering
decisions are driven by cost functions rather than
hardwired heuristics
– MLIR offers a promising opportunity for such an

approach
– Fortran is an important domain for demonstrating such

an approach
13

BACKUP SLIDES START
HERE

14

Structure of
Optimizing
Compilers

Front end

HIR optimizations

Lowering of IR

Source code

Optimized LIR

LIR optimizations

Instruction Selection
MCR = Machine
Code
Representation

Optimized Binary code

MCR optimizations

Final assembly

LIR = Low-level
Intermediate Representation

HIR = High-level
Intermediate
Representation

Optimized HIR

Optimized MCR

Middle end

Back end

15

