MLIR for Fortran

Vivek Sarkar * (Georgia Tech)
Nelson Amaral (U.Alberta)
Kit Barton (IBM)

Wang Chen (IBM)

* Disclaimer: opinions in this talk are those of the
presenter, and do not reflect the official opinions of IBM!



Overview

New research project planned for 2020 across
Georgia Tech, U.Alberta, IBM

Motivated by past work at IBM on ASTI optimizer
for Fortran, and recent MLIR work at IBM with
U.Alberta

Goal 1s to leverage past experiences with ASTI’s
High-level Intermediate Representation (HIR) to
evaluate the design space for an MLIR dialect for
optimization of Fortran codes
— Special focus on array statements, loops, array accesses
— Such an MLIR dialect could be useful for optimization of
HPC codes in other languages as well

Complementary to ECP Flang project

All feedback and suggestions are most welcome! 2



Background: ASTI Optimizer

(Analyzer, Scalarizer, Transformer, Interprocedural optimizer)

e Automatic selection of high-order transformations in the
IBM XL Fortran compilers

e Quantitative approach to program optimization using cost
models

e High-order transformations selected for uniprocessor target
include: loop distribution, fusion, interchange, reversal,
skewing, tiling, unrolling, and scalar replacement of array
references

e Design and initial product implementation completed during
1991—-1993

Reference: “Automatic Selection of High Order Transformations in the IBM
XL Fortran Compilers”, V. Sarkar, IBM Journal of Res. & Dev., Vol. 41,
No. 3, May 1997. ‘
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Fortran Product Compiler (Version

Fortran 90
front end

Intermediate
Language

-ghot ASTI Optimizer

Transformed
intermediate
language

\

Interprocedural

-qipa optimizer

Optimized
intermediate
language

03 Optimizing
back end

Translation
to HIR

Input HIR 1

Analyzer
Scalarizer

Transformer

Transformed
HIR

Code augmentor

Transformed &
augmented HIR

Translation
from HIR

Optimized l
RS/6000
executable




(a) Example loop containing an array assignment staten
dok =1, n
A(1:n,1:n) = A(1:n,1:n) + spread(B(1:n,k),2,n) *
spread(C(k,1:n),1,n)
end do

(b) After unoptimized scalarization:
dok =1, n
do i1 =1, n ! parallelizable loop
T1(i1) = B(il,k)
end do

do i2 =1, n ! parallelizable loop
do il =1, n ! parallelizable loop
T2(i1,i2) = T1(i1)
end do
end do

do il =1, n ! parallelizable loop
T3(i1) = C(k,il)
end do

do i2 =1, n ! parallelizable loop
do il =1, n ! parallelizable loop
T4(i1,i2) = T3(i2)
end do
end do

do i2 =1, n ! parallelizable loop

do il =1, n ! parallelizable loop
T5(i1,i2) = A(i1,i2) + T2(i1,i2) * T4(i1,i2)
end do
end do

do i2 = 1, n ! parallelizable loop

do il =1, n ! parallelizable loop
A(i1,i2) = T5(i1,i2)
end do
end do

end do

Scalarization example

(c) After optimized scalarization:

dok =1, n
do i2 = 1, n ! parallelizable loop
doil =1, n | parallelizable loop
A(i1,i2) = A(i1,i2) + B(il,k) * C(k,i2)
end do
end do
end do

(d) After collective transformation of loop nest (c):
do bb$_i2=1,n,b$_i2 ! parallelizable loop
do bb$_il=1,n,b$_il ! parallelizable loop
do bb$_k =1,n,b$_k
do i2=max(1,bb$_i2) ,min(n,bb$_i2+b$_i2-1)
do il=max(1,bb$_il) ,min(n,bb$_il+b$_il1-1)
do k=max(1,bb$_k),min(n,bb$_k+b$_k-1),1
A(i1,i2) = A(i1,i2) + B(il,k) * C(k,i2)
end do
end do
end do
end do
end do 5
end do



Structure of ASTI Transformer
[LCPC 1991, PLDI 1992, CASCON 1994, ICPP 1995, IBM JRD 1997, ICPP 1997,
SPAA 1997, LCR 1998, LCPC 1998, ISPASS 2000, ICS 2000, IJPP 2001]
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Structure of a Single Optimization Pass
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Issues

Heuristics: sequence of optimization passes for a
given optimization level i1s usually hardwired

Phase ordering: a later optimization can create
new opportunities for a previous optimization

Compile time/space overheads: all optimization
passes are performed on all instructions in all
procedures

Unpredictability: hard to predict how much
performance improvement will be delivered by
compiler optimizations

Pessimization: optimizing transformations can
sometimes degrade performance



Rethinking compilers ...a quantitative approach

Optimization = Cost function + Analysis + Transformation

IR
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Examples:
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Transformations performed in
ASTI for Locality Optimizations

. Initialization

Loop distribution

. Identification of perfect loop nests
Reduction recognition

Locality optimization

Loop fusion

Loop—invariant scalar replacement

Loop unrolling and interleaving

Local scalar replacement

. Transcription — generate transformed HIR
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Other transformations performed for Vector/SMP/HPF parallelization
11



Challenges

Cost function should be efficient to compute but
sufficiently accurate

— Use lower and upper bounds as approximations
Well-tuned code should not incur large
compilation overhead

— Perform analysis and transformation incrementally and
on demand, only when cost function indicates potential
for performance improvement

— Use algorithms with low-polynomial-time complexity

Phase ordering should be driven by cost functions

— Use classical optimization theory heuristics in driver for
optimizing compiler e.g., sort potential transformations
in decreasing order of benefit
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Summary

e Time to rethink optimizing compilers
— Reduce compilation overhead
— Increase optimization effectiveness

e Quantitative approach provides a promising
foundation

e Future goal: build an optimizer in which all
optimization selection and phase ordering
decisions are driven by cost functions rather than
hardwired heuristics

— MLIR offers a promising opportunity for such an
approach

— Fortran 1s an important domain for demonstrating such

an approach .
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Source code HIR = High-level Structure of
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Optimized Binary code




