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Overview
• New research project planned for 2020 across 

Georgia Tech, U.Alberta, IBM
• Motivated by past work at IBM on ASTI optimizer 

for Fortran, and recent MLIR work at IBM with 
U.Alberta

• Goal is to leverage past experiences with ASTI’s  
High-level Intermediate Representation (HIR) to 
evaluate the design space for an MLIR dialect for 
optimization of Fortran codes
– Special focus on array statements, loops, array accesses
– Such an MLIR dialect could be useful for optimization of 

HPC codes in other languages as well
• Complementary to ECP Flang project
• All feedback and suggestions are most welcome! 2



Background: ASTI Optimizer
(Analyzer, Scalarizer, Transformer, Interprocedural optimizer)
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Scalarization example

136 Vivek Sarkar

(a) Example loop containing an array assignment statement:

----------------------------------------------------------

do k = 1, n

A(1:n,1:n) = A(1:n,1:n) + spread(B(1:n,k),2,n) *

spread(C(k,1:n),1,n)

end do

(b) After unoptimized scalarization:

------------------------------------

do k = 1, n

do i1 = 1, n ! parallelizable loop

T1(i1) = B(i1,k)

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T2(i1,i2) = T1(i1)

end do

end do

do i1 = 1, n ! parallelizable loop

T3(i1) = C(k,i1)

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T4(i1,i2) = T3(i2)

end do

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

T5(i1,i2) = A(i1,i2) + T2(i1,i2) * T4(i1,i2)

end do

end do

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

A(i1,i2) = T5(i1,i2)

end do

end do

end do

Fig. 3. Matrix multiply example
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(c) After optimized scalarization:

----------------------------------

do k = 1, n

do i2 = 1, n ! parallelizable loop

do i1 = 1, n ! parallelizable loop

A(i1,i2) = A(i1,i2) + B(i1,k) * C(k,i2)

end do

end do

end do

(d) After collective transformation of loop nest (c):

-----------------------------------------------------

do bb$_i2=1,n,b$_i2 ! parallelizable loop

do bb$_i1=1,n,b$_i1 ! parallelizable loop

do bb$_k =1,n,b$_k

do i2=max(1,bb$_i2),min(n,bb$_i2+b$_i2-1)

do i1=max(1,bb$_i1),min(n,bb$_i1+b$_i1-1)

do k=max(1,bb$_k),min(n,bb$_k+b$_k-1),1

A(i1,i2) = A(i1,i2) + B(i1,k) * C(k,i2)

end do

end do

end do

end do

end do

end do

Fig. 4. Matrix multiply example (contd.)
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Fig. 5. Performance measurements for matrix multiply example
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Structure of ASTI Transformer
[LCPC 1991, PLDI 1992, CASCON 1994, ICPP 1995, IBM JRD 1997, ICPP 1997, 

SPAA 1997, LCR 1998, LCPC 1998, ISPASS 2000, ICS 2000, IJPP 2001]

ASTI transformations include: 
• Loop transformations: distribution, fusion 
unimodular, tiling, unrolling, coalescing, 
parallelization, array language scalarization
• Data transformations: scalar replacement, 
alignment, padding

Loop Structure Graph and 
Dependence Analysis foundations 
derived from prior work in PTRAN 
project

Demand-driven 
incremental analyses

Analyze IR

Transform IR

Build IR

START

END

Traditional Optimizer Structure
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Loop Structure 
Tree

~ o o p  structure tree for matrix multiply-transpose example. 

Loop-level  control  flow  graphs  for  matrix multiply-transpose 
example. 

computed on demand  for any loop body, when  the 
transformer  has  to  enumerate  its  control  and  data 
dependences.  Together,  the  LST  and  the individual 
LCFGs,  input/output lists, and  LDGs  comprise  the  LSG 
representation  introduced in this  paper.  As a whole,  the 
LSG is initialized from  the  information  provided by the 

240 ASTI analyzer component  (control flow graph,  intervals, 
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SSA, constant  propagation, value numbering,  induction 
variable analysis), but  subsequent  transformations of the 
LSG  update only the  LSG  without reinvoking any of the 
analysis algorithms. 

The program’s loop  structure is self-evident  in the 
hierarchical  structure of the LSG. In  contrast  to  the 
forward  control  dependence  graph [23-251, the LSG 
avoids the  creation of pseudo-control-flow edges  that  can 
potentially  weaken analysis by representing  control flow 
paths  that  cannot  be  executed in the  original  program.  An 
important  strength of the  LSG is its robust  handling of 
irreducible regions [3]. An  irreducible  region is merged, 
with the  smallest single-entry  region  in which it is 
contained,  into a single-loop  node,  thus isolating  it from 
other  (containing,  contained,  or  unrelated)  loops in the 
LST which remain eligible for all transformations  and 
optimizations. 

The following sections  describe  the  four  major  data 
structures in the  LSG:  the  loop  structure  tree,  the  loop- 
level control flow graph,  the  inputloutput lists, and  the 
loop-level dependence  graph. 

Loop structure tree (LST) 
The  loop  structure  tree  represents  the  loop-nesting 
structure of the  input  program.  It is derived  from  the 
interval  structure used in  the modified interval analysis 
formulated by Schwartz and  Sharir [19]. If the flow graph 
contains  an  irreducible  region  (a strongly connected 
region with multiple  entries), we include  that  irreducible 
region within  its smallest  containing  single-entry  region 
(which we refer  to as  a loop) and  mark  that  loop  as 
irreducible.  An  irreducible  loop is not eligible for any loop 
transformation,  but all other  loops  are eligible for  loop 
transformations.  Thus,  each  interior  node of the  interval 
structure  tree  represents a single-entry  loop,  and  each leaf 
node of the  interval  structure  tree  corresponds  to a node 
in the  control flow graph. Usually,  a node in the  control 
flow graph is a basic block which may contain  multiple 
statements.  Since many program  transformations  are  based 
on single statements, we expand  each basic  block into its 
individual statements when constructing  the  loop  structure 
tree.  Thus,  each  interior  node  (I-node) of the  LST 
represents a (structured  or  unstructured)  loop,  and  each 
leaf node  (S-node) of the  LST  represents a statement. 

related  to its  loop. For example,  the loop-level control 
flow graph  (LCFG),  input/output lists, loop  dependence 
graph  (LDG),  loop-carried  dependence vectors, and  the 
transformation  sequence  are all anchored in the  I-node 
for  the  appropriate  loop. 

Figure 6 shows the  loop  structure  tree  built  for  the 
matrix  multiply-transpose example  program in Figure 4. 
For  convenience, we create a  special I-node, Z.0, that 
represents  the  entire  subroutine  as a dummy  loop. Z.0 is 

The  I-node  serves  as a useful  anchor  for all information 
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Loop-Level Control 
Flow Graphs

~ o o p  structure tree for matrix multiply-transpose example. 

Loop-level  control  flow  graphs  for  matrix multiply-transpose 
example. 

computed on demand  for any loop body, when  the 
transformer  has  to  enumerate  its  control  and  data 
dependences.  Together,  the  LST  and  the individual 
LCFGs,  input/output lists, and  LDGs  comprise  the  LSG 
representation  introduced in this  paper.  As a whole,  the 
LSG is initialized from  the  information  provided by the 

240 ASTI analyzer component  (control flow graph,  intervals, 
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SSA, constant  propagation, value numbering,  induction 
variable analysis), but  subsequent  transformations of the 
LSG  update only the  LSG  without reinvoking any of the 
analysis algorithms. 

The program’s loop  structure is self-evident  in the 
hierarchical  structure of the LSG. In  contrast  to  the 
forward  control  dependence  graph [23-251, the LSG 
avoids the  creation of pseudo-control-flow edges  that  can 
potentially  weaken analysis by representing  control flow 
paths  that  cannot  be  executed in the  original  program.  An 
important  strength of the  LSG is its robust  handling of 
irreducible regions [3]. An  irreducible  region is merged, 
with the  smallest single-entry  region  in which it is 
contained,  into a single-loop  node,  thus isolating  it from 
other  (containing,  contained,  or  unrelated)  loops in the 
LST which remain eligible for all transformations  and 
optimizations. 

The following sections  describe  the  four  major  data 
structures in the  LSG:  the  loop  structure  tree,  the  loop- 
level control flow graph,  the  inputloutput lists, and  the 
loop-level dependence  graph. 

Loop structure tree (LST) 
The  loop  structure  tree  represents  the  loop-nesting 
structure of the  input  program.  It is derived  from  the 
interval  structure used in  the modified interval analysis 
formulated by Schwartz and  Sharir [19]. If the flow graph 
contains  an  irreducible  region  (a strongly connected 
region with multiple  entries), we include  that  irreducible 
region within  its smallest  containing  single-entry  region 
(which we refer  to as  a loop) and  mark  that  loop  as 
irreducible.  An  irreducible  loop is not eligible for any loop 
transformation,  but all other  loops  are eligible for  loop 
transformations.  Thus,  each  interior  node of the  interval 
structure  tree  represents a single-entry  loop,  and  each leaf 
node of the  interval  structure  tree  corresponds  to a node 
in the  control flow graph. Usually,  a node in the  control 
flow graph is a basic block which may contain  multiple 
statements.  Since many program  transformations  are  based 
on single statements, we expand  each basic  block into its 
individual statements when constructing  the  loop  structure 
tree.  Thus,  each  interior  node  (I-node) of the  LST 
represents a (structured  or  unstructured)  loop,  and  each 
leaf node  (S-node) of the  LST  represents a statement. 

related  to its  loop. For example,  the loop-level control 
flow graph  (LCFG),  input/output lists, loop  dependence 
graph  (LDG),  loop-carried  dependence vectors, and  the 
transformation  sequence  are all anchored in the  I-node 
for  the  appropriate  loop. 

Figure 6 shows the  loop  structure  tree  built  for  the 
matrix  multiply-transpose example  program in Figure 4. 
For  convenience, we create a  special I-node, Z.0, that 
represents  the  entire  subroutine  as a dummy  loop. Z.0 is 

The  I-node  serves  as a useful  anchor  for all information 
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Structure of a Single Optimization Pass

Analysis

Transformation

IR

Optimized IR

Analysis
information

Analysis Transformation
Value 
numbering

Common 
subexpression 
elimination

Liveness 
analysis

Dead store 
elimination

Dependence 
analysis

Instruction 
scheduling

Examples:

Optimization = Analysis + Transformation 8



Issues
• Heuristics: sequence of optimization passes for a 

given optimization level is usually hardwired
• Phase ordering: a later optimization can create 

new opportunities for a previous optimization
• Compile time/space overheads: all optimization 

passes are performed on all instructions in all 
procedures

• Unpredictability: hard to predict how much 
performance improvement will be delivered by 
compiler optimizations

• Pessimization: optimizing transformations can 
sometimes degrade performance
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Rethinking compilers …a quantitative approach

Optimization = Cost function + Analysis + Transformation

Demand-driven
Analysis

Demand-driven
Transformation

IR

Optimized IR

Cost Function

Cost Function Analysis Transformation

Store freqs Live variable analysis Dead store elimination

Basic block freqs Bounds analysis Bounds check elimination

Cache misses Dependence vectors Loop interchange and tiling

Examples:

Target machine
parameters
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Transformations performed in 
ASTI for Locality Optimizations

Other transformations performed for Vector/SMP/HPF parallelization
11



Challenges
• Cost function should be efficient to compute but 

sufficiently accurate
– Use lower and upper bounds as approximations

• Well-tuned code should not incur large 
compilation overhead
– Perform analysis and transformation incrementally and 

on demand, only when cost function indicates potential 
for performance improvement

– Use algorithms with low-polynomial-time complexity
• Phase ordering should be driven by cost functions

– Use classical optimization theory heuristics in driver for 
optimizing compiler e.g., sort potential transformations 
in decreasing order of benefit
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Summary
• Time to rethink optimizing compilers

– Reduce compilation overhead
– Increase optimization effectiveness

• Quantitative approach provides a promising 
foundation

• Future goal: build an optimizer in which all 
optimization selection and phase ordering 
decisions are driven by cost functions rather than 
hardwired heuristics
– MLIR offers a promising opportunity for such an 

approach
– Fortran is an important domain for demonstrating such 

an approach
13



BACKUP SLIDES START 
HERE
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Structure of
Optimizing 
Compilers

Front end

HIR optimizations

Lowering of IR

Source code

Optimized LIR

LIR optimizations

Instruction Selection
MCR = Machine 
Code 
Representation

Optimized Binary code

MCR optimizations

Final assembly

LIR = Low-level 
Intermediate Representation

HIR = High-level 
Intermediate 
Representation

Optimized HIR

Optimized MCR

Middle end

Back end
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