
Compiler-managed Cache on Commodity
Hardware

Chen Ding
Professor
University of Rochester
Rochester, New York, USA

Joint work with Dong Chen

Workshop on MLIR for HPC, 21 October 2019

Chen Ding, University of Rochester

Memory Problems

• The perennial bottleneck
• Memory Wall [Wulf and McKee, 1995]
• Memory Bandwidth Bottleneck [My dissertation, advisor Ken Kennedy, 1999]
• Power Wall ~2005
• Locality Wall [Kogge, MEMSYS 2017 keynote]

• Data movement problems take center stage
• Memory complexity

• Organization: size, topology, sharing
• To support massive parallelism

• Objectives: latency, throughput, power, energy, lifetime
• Compartmental and heuristic solutions are increasingly brittle

• Need new abstractions to reliably tackle complexity

2

Chen Ding, University of Rochester

Lease Cache [ASPLOS’19]

• Each access is accompanied by a lease
• Measured by the number of accesses

• The cache stores the data block for the duration of the lease
• Let the currently accessed data block be B
• If B’s next access happens before the lease expires

• It is a cache hit, and the lease is renewed
• Otherwise, B is evicted at the end of the lease

• Two analogies
• Lease cache is allocated as a heap is allocated

• A lease is a lifetime in cache
• Automatic water faucet at an airport restroom

• Lease cache is collaborative [Wang, McKinley, Rosenburg, Weems, PACT’02]

3

Chen Ding, University of Rochester

Statistical Caching Using the Lease Cache [ASPLOS’19]

• Locality represented by the distribution of forward reuse intervals
• Future prediction based on collective behavior

• Instead of individual accesses
• Statistical prediction subsumes precise prediction

• Optimal statistical caching
• Degenerate case: uniform lease for all accesses

• It approximates the performance of LRU
• Other benefits

• Guaranteed worst case access time in real-time systems
• Defense against side-channel attacks

• One problem: the lease cache may not be fixed size
• This talk: program-level leases on x86 processors

4

Chen Ding, University of Rochester

An Example Program with Leases [LCPC’19]

• Assume unit size cache
block, cache size C < M
the array size

• Both A, B are cached

5

However, each term in this equation is greater than 0. So,
the assumption l1 > l12 doesn’t hold and we have l12 � l1.
Similarly, if we assume that l12 > l2, all terms in this equation
are smaller than 0. So, l12 always lies within the range (l1, l2)
with respective to any RI distributions. ⇤

Next we will prove that the per-reference lease assignment
can achieve higher hit ratio than reference-group lease assign-
ment. We call it as the group monotonicity.

Theorem 10 (Group Monotonicity). For two references r1, r2
with any RI distributions and access ratios, let l1, l2 be the
leases selected individually and l12 the lease selected for them
as group. Then l12 cannot give a lower miss ratio for the same
or less cache allocation than l1, l2, that is, for all l12, l1, l2 such
that ALLOC(Dr1 , l1) +ALLOC(Dr2 , l2) = ALLOC(Dr12 , l12), we
must have

H (Dr1 , l1) +H (Dr2 , l2) � H (Dr12 , l12)
where H represents the hit ratio.

Proof. As indicated in Figure 11a, at time t , leases l t1 and l t2
were assigned to references r1, r2 respectively. Algorithm 1,
Line 9 indicates that the change of PPUC could be derived
from the ratio between the increment of hit ratio and that of
space, written as ∆PPUC = ∆H

∆Space . When assigning l12 to
both references, the hit ratio will become Hinit + (∆PPUC2 +
∆PPUC3)⇤∆Spacegrp and that will become Hinit+(∆PPUC1 +
∆PPUC4) ⇤∆Spaceref when assigning l1, l2 separately to r1, r2,
where Hinit is the hit ratio achieved at time t , ∆Spacegrp and
∆Spaceref represents the increment of space when assign-
ing leases to reference groups and single references respec-
tively. In Lemma 9, we have already proved that ∆Spacegrp =
∆Spaceref. Given Algorithm 1 Line 16, which shows that
each time a old lease was replaced if and only if the incre-
ment PPUC for the new lease is greater than that for the old
lease (∆PPUCnew � ∆PPUCold), we have from Algorithm 1
∆PPUC4 � ∆PPUC3 and ∆PPUC1 � ∆PPUC2. For the same

cache size, this inequality of PPUC implies the inequality of
hit ratios, i.e. H (Dr1 , l1) +H (Dr2 , l2) � H (Dr12 , l12) ⇤

In the following corollary, we extend it to all reference
groups and we name it as group optimality, since it shows
that grouping references cannot improve cache performance,
and per reference leases give the best solution.

Corollary 11 (Group Optimality). For any reference groups
with any RI distributions, the lease assigned based on smaller
reference groups will always outperform the lease assigned
based on larger reference groups.

Proof. Figure 11b shows one example of representing the
reference grouping into DAG format. Theorem 10 could be
applied on every edge. Given that, every destination node will
incur higher miss ratio than its source nodes. ⇤

C Unused

Example Lease Cache Program Given the cache sizeC and
a program with a set of references, CARL generates a lease
assignment for each reference such that the average cache
size is C. The following is an example program with three
references. For illustration purpose, we assume that the cache
blocks are unit size, i.e. each block stores one data element,
and all data stay in cache. The comments show the three
references r1, r2, r3 and the leases assigned to each reference.
The first reference writes to A, before A is read in the next
access. The lease 1 is assigned to all r1 accesses.

Leases:

1 for ref1 accesses

2 for ref2 accesses

3M for (C-1)/M of ref3 accesses

0 for the rest of ref3 accesses

REPEAT FOREVER

DO I = 1, M

A = A + B(I) # ref1-ref3

ENDDO

END REPEAT

17

Chen Ding, University of Rochester

Compiler Assigned Reference Leases (CARL)

6

Output
Program

Input
Program

Lease
Assignment

Locality
Analysis

Program
Implementation

of Leases

MLIR Dialects: Linalg, Affine

Chen Ding, University of Rochester

Locality Analysis

• A relational theory of locality [TACO’19]
• Access locality, e.g. reuse distance
• Timescale locality, e.g. the footprint [ASPLOS’13]
• Cache locality e.g. the miss ratio

• Timescale locality
• Working-set size of all window lengths
• Computed from the reuse intervals

• Denning recursion [CACM’72]
• Explanation for finite-length traces [LCPC, 2018 in University of Utah]

• Xiang formula [PACT’13]
• Formal relations [TACO’19]

• Can it be computed using MLIR dialects?

7

Chen Ding, University of Rochester

Program Implementation of Leases

• Software control of cache eviction
• cflush and cflushopt on x86
• Designed to support persistency
• Used by HP’s Atlas system [Chakrabarti, Boehm, Bhandari OOPSLA’14]

• Lease implementation
• Static eviction insertion

• Related problem: software prefetching [Callahan, Kennedy, Porterfield ASPLOS’91;
Mowry, Lam, Gupta, ASPLOS’92]
• Ahead of time prefetch insertion (by k iterations)

• Preliminary transformation: scalar replacement [Carr, Kennedy TOPLAS’94]
• Can MLIR dialects help lease implementation?

• Dynamic eviction for irregular code

8

Chen Ding, University of Rochester

Summary

• Compiler leasing of cache memory
• Directly leveraging program knowledge of precise and statistical future

• Compiler implementation
• Program analysis to identify forward reuse intervals
• Optimal lease assignment algorithm
• Eviction insertion

• Using cflush and cflushopt on x86

• Research questions
• How is MLIR as the basis?
• Accuracy of the analysis and efficiency of eviction control
• Variable size cache demand
• Direct hardware support on accelerators (tomorrow’s talk)

9

