
EigenCFA: A CFA for the λ-Calculus on a GPU

Tarun Prabhu, Shreyas Ramalingam

Abstract

We propose a novel technique to perform 0CFA for a 2-ary CPS λ-calculus on a GPU.
By carefully encoding the program and using matrix operations exclusively to perform the
abstract interpretation, we believe that we can improve on existing control-flow analyses.

1 Team Members

- Tarun Prabhu: is interested in compiler design and static analysis.

- Shreyas Ramalingam: is interested in optimization for scientific computing.

2 Introduction

Traditional zero-order control flow analysis (0CFA) algorithms run in cubic time and there is
strong evidence to suggest that it cannot be improved [1]. In light of this, parallelizing the CFA
would be the obvious approach to obtain faster analyses. We propose a novel technique to perform
0CFA for a 2-ary continuation passing style (CPS) λ-calculus on a GPU. Since GPU’s are very
good at performing matrix multiplications efficiently, all the store lookups and updates will be
performed using matrix multiplication.

2.1 The Language

call ∈ Call ::= (f e1 e2)
f, e ∈ Exp = V ar + Lam

v ∈ V ar is a set of identifiers
lam ∈ Lam ::= (λ(v1 v2) call)

2.2 Abstract State Space

ς̂ ∈ Σ = Call × Ŝtore
σ̂ ∈ Ŝtore = V ar → L̂ams

L̂ ∈ L̂ams = P(Lam)

1

2.3 0CFA Abstract Semantics

As a transition relation (⇒) ⊂ Σ× Σ

([[(f e1 e2)]], σ̂ (call, σ̂)
([[(λ(v1 v2)call)]] ∈ Ê(f, σ̂)

L̂1 = ˆ(E)(e1, σ̂)

L̂2 = ˆ(E)(e2, σ̂)
σ̂′ = σ̂ t [v1 7→ L̂1, v2 7→ L̂2

where,

Ê : V ar × Ŝtore → P(Lam)
Ê(v, σ̂) = σ̂(v)

Ê(lam, σ̂) = {lam}

2.4 Helper Functions

A number of helper functions will be used to lookup information about lambda expressions and
call sites. These functions will return vectors which will be used to lookup variables and lambda
expressions in the store. A brief description of the functions is given below:

Fun : ~Call→ ~Exp (extracts the function expression from a call site)
Arg1 : ~Call→ ~Exp (extracts the first argument expression from a call site)
Arg2 : ~Call→ ~Exp (extracts the second argument expression from a call site)

LamCall : ~Lam→ ~Call (extracts the call site from a lambda term)
LamVar1 : ~Lam→ ~Exp (extracts the first formal argument from a lambda term)
LamVar2 : ~Lam→ ~Exp (extracts the second formal argument from a lambda term)

2.5 Pseduo-code

1. Pre-process program and populate datastructures which will be used by the helper functions
described in 2.4.

2. Initialize the store and copy it into global memory of the GPU.

3. foreach call in program

~L = ~σ(Fun(call))
~L1 = ~σ(Arg1(call))
~L2 = ~σ(Arg2(call))
~call′ = ~σ(LamCall(~L))
~v1 = ~σ(LamVar1(~L))
~v2 = ~σ(LamVar2(~L))
σ′ = σ + ~L1 × vT

1 + ~L2 × vT
2

: Here σ(•) is a lookup into the store

2

4. End

3 Suitability for GPU acceleration

Encoding the entire problem as a series of operations on matrices, we will utilize the inherent
power of a GPU to perform matrix operations efficiently. Each iteration in our scheme has at
least 2 matrix multiplications and 1 matrix addition. While this approach to doing 0CFA is not
something which is usually implemented on a CPU, we believe that for large problem sizes, the
GPU method will outperform current CPU techniques in terms of speed.

3.1 Amdahl’s Law

It is difficult to quantify the speed-up which this technique will provide, primarily because it
doesn’t seem likely that this technique will be used on a CPU to perform an analysis. If, for
the sake of argument, we do assume that this exact method will be implemented on a CPU, the
speedup will be proportional to the speedup that is obtained for matrix multiply on the GPU.

3.2 Synchronization and Communication

In the initial implementation, the CUBLAS library will be used to perform the matrix multipli-
cation. The interpretation will be controlled from the host with several kernel calls being made
to perform the lookups and updates (which are matrix operations). In order to improve the space
and time efficiency, a matrix multiplication library could be developed which would operate on
bit vectors. Another improvement would be to have more of the CFA computation on the kernel
instead of the host.

3.3 Copy Overhead

For every call site being evaluated, we would need to copy the values of L1, L2, v1, v2 from the
host to the device memory. This could become very signficant unless it is optimized way.

4 Challenges

We foresee a number of challenges in implementing our scheme:

4.1 Kernel Call Overhead

Currently, at least 3 kernel calls will be made per call-site. The overhead involved in setting
up these kernel calls could become significant. A major challenge would be to perform as many
lookup and update operations as possible within a single kernel call. This would entail writing a
very customized matrix multiplication library tailored specifically to the current task. This would
also reduce the overhead of copying vectors to the device at every call-site.

4.2 Memory Requirements

A naive encoding of the program into matrices would result in very large, very sparse matrices.
Fitting such large matrices into the limited memory of the GPU is a major challenge. Encoding
the matrix as a bit vector would lead to big gains on this front, at the expense of making the
multiplication operation more complex.

3

4.3 Helper Functions

Efficient helper functions would significantly improve performance since there are 6 calls being
made to these functions per call-site. The most efficient design for these functions has yet to be
determined.

5 Implementation Details

Parsing lambda calculus is a task more suited to functional programming languages like Scheme.
We propose to use a pre-processor written in PLT Scheme which will generate the lookup tables
and the initial store. The main CFA engine will be written in CUDA and will first read in the
data generated by the pre-processor and then proceed with the analysis.

References

[1] David van Horn, Harry G. Mairson Flow analysis, linearity, and PTIME. Static Analysis
Symposium (SAS) 2008.

4

