
2/10/11 

1 

L8: Writing Correct Programs,
cont. and Control Flow

L8: Control Flow 

Administrative
•  Next assignment available

–  Goals of assignment:
–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Thursday, Feb. 10, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Project proposals due Wednesday, March 9

•  Questions/discussion
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  L8: Control Flow 

Questions/comments from
previous lectures

•  Is there a shared memory bank conflict for when
each thread accesses contiguous 8-bit or 16-bit data?
–  YES for compute capability below 2.0, see G3.3

CUDA 3.2 programming guide
–  NO for compute capability 2.0 and greater, see

G4.3 CUDA 3.2 programming guide
•  GTX 460 and 560 do have 48 cores per SM (7 or 8)

–  Seem to use a different warpsize?

L8: Control Flow 

Outline
•  Finish discussion of page-locked memory on host
•  Control Flow

•  SIMT execution model in presence of control flow
•  Divergent branches

•  Improving Control Flow Performance
–  Organize computation into warps with same control flow path
–  Avoid control flow by modifying computation
–  Tests for aggregate behavior (warp voting)

•  Read (a little) about this:
 Kirk and Hwu, Ch. 5
 NVDIA Programming Guide, 5.4.2 and B.12
 http://www.realworldtech.com/page.cfm?
ArticleID=RWT090808195242&p=1

L8: Control Flow CS6963 

2/10/11 

2 

Host-Device Transfers (implicit in
synchronization discussion)

•  Host-Device Data Transfers
–  Device to host memory bandwidth much lower

than device to device bandwidth
–  8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak

(Tesla C1060)

•  Minimize transfers
–  Intermediate data can be allocated, operated on,

and deallocated without ever copying them to
host memory

•  Group transfers
–  One large transfer much better than many small

ones
Slide source: Nvidia, 2008 L8: Control Flow 

Asynchronous Copy To/From Host
(compute capability 1.1 and above)

•  Warning: I have not tried this!
•  Concept:

–  Memory bandwidth can be a limiting factor on GPUs
–  Sometimes computation cost dominated by copy cost
–  But for some computations, data can be “tiled” and computation of

tiles can proceed in parallel (some of our projects)
–  Can we be computing on one tile while copying another?

•  Strategy:
–  Use page-locked memory on host, and asynchronous copies
–  Primitive cudaMemcpyAsync
–  Effect is GPU performs DMA from Host Memory
–  Synchronize with cudaThreadSynchronize()

L8: Control Flow 

Page-Locked Host Memory
•  How the Async copy works:

–  DMA performed by GPU memory controller
–  CUDA driver takes virtual addresses and

translates them to physical addresses
–  Then copies physical addresses onto GPU
–  Now what happens if the host OS decides to

swap out the page???
•  Special malloc holds page in place on host

–  Prevents host OS from moving the page
–  CudaMallocHost()

•  But performance could degrade if this is done on
lots of pages!
–  Bypassing virtual memory mechanisms

L8: Control Flow 

Example of Asynchronous
Data Transfer

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(…);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(…);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream2 identify streams associated with asynchronous
call (note 4th “parameter” to kernel invocation)

L8: Control Flow 

2/10/11 

3 

Code from asyncAPI SDK project
// allocate host memory
CUDA_SAFE_CALL(cudaMallocHost((void**)&a, nbytes));
memset(a, 0, nbytes);

// allocate device memory
CUDA_SAFE_CALL(cudaMalloc((void**)&d_a, nbytes));
CUDA_SAFE_CALL(cudaMemset(d_a, 255, nbytes));

… // declare grid and thread dimensions and create start and stop events

// asynchronously issue work to the GPU (all to stream 0)
cudaEventRecord(start, 0);
cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHostToDevice, 0);
increment_kernel<<<blocks, threads, 0, 0>>>(d_a, value);
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0);
cudaEventRecord(stop, 0);

// have CPU do some work while waiting for GPU to finish

// release resources
CUDA_SAFE_CALL(cudaFreeHost(a));
CUDA_SAFE_CALL(cudaFree(d_a));

L8: Control Flow 

More Parallelism to Come
(Compute Capability 2.0)

Stream concept: create, destroy, tag asynchronous
operations with stream

–  Special synchronization mechanisms for streams:
queries, waits and synchronize functions

•  Concurrent Kernel Execution
–  Execute multiple kernels (up to 4) simultaneously

•  Concurrent Data Transfers
–  Can concurrently copy from host to GPU and GPU to

host using asynchronous Memcpy

L8: Control Flow 

Section 3.2.6 of CUDA 3.2 manual

Debugging: Using Device Emulation Mode
•  An executable compiled in device emulation

mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  When running in device emulation mode, one can:
–  Use host native debug support (breakpoints,

inspection, etc.)
–  Access any device-specific data from host code

and vice-versa
–  Call any host function from device code (e.g.

printf) and vice-versa
–  Detect deadlock situations caused by improper

usage of __syncthreads

L8: Control Flow © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Debugging: Device Emulation Mode Pitfalls
•  Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location by
multiple threads could produce different results.

•  Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

•  Results of floating-point computations will slightly
differ because of:
–  Different compiler outputs, instruction sets
–  Use of extended precision for intermediate results

•  There are various options to force strict single
precision on the host

L8: Control Flow © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

2/10/11 

4 

Debugging: Run-time functions & macros for
error checking

In CUDA run-time services,
 cudaGetDeviceProperties(deviceProp &dp, d);
 check number, type and whether device present

In libcutil.a of Software Developers’ Kit,
 cutComparef (float *ref, float *data, unsigned len);
 compare output with reference from CPU implementation

In cutil.h of Software Developers’ Kit (with #define
_DEBUG or –D_DEBUG compile flag),
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
 check for error in run-time call and exit if error detected
CUT_SAFE_MALLOC(cudaMalloc(<args>));
 similar to above, but for malloc calls
CUT_CHECK_ERROR(“error message goes here”);

 check for error immediately following kernel execution and
if detected, exit with error message

CS6963  L8: Control Flow 

A Very Simple Execution
Model

•  No branch prediction
– Just evaluate branch targets and wait for

resolution
– But wait is only a small number of cycles

once data is loaded from global memory
•  No speculation

– Only execute useful instructions

14
L8: Control Flow CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc;on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  compare
threadIdx,2

15
L8: Control Flow CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2) {
 out[threadIdx.x] += 100;
}
else {
 out[threadIdx.x] += 10;
}

P0 
Instruc;on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

/* Condition code cc =
true branch set by
predicate execution */
(CC) LD R5,
 &(out+threadIdx.x)
(CC) ADD R5, R5, 100
(CC) ST R5,
 &(out+threadIdx.x)

X X ✔ ✔

16
L8: Control Flow CS6963 

2/10/11 

5 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc;on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

/* possibly predicated
using CC */
(not CC) LD R5,
 &(out+threadIdx)
(not CC) ADD R5, R5, 10
(not CC) ST R5,
 &(out+threadIdx)

✔ ✔ X X

17
L8: Control Flow CS6963 

Terminology
•  Divergent paths

– Different threads within a warp take
different control flow paths within a kernel
function

– N divergent paths in a warp?
•  An N-way divergent warp is serially issued over

the N different paths using a hardware stack
and per-thread predication logic to only write
back results from the threads taking each
divergent path.

•  Performance decreases by about a factor of N

18
L8: Control Flow CS6963 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

How thread blocks are
partitioned

•  Thread blocks are partitioned into warps
–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from

generation to generation
–  (Covered next)

•  However, DO NOT rely on any ordering between
warps
–  If there are any dependences between threads, you must

__syncthreads() to get correct results
19

L8: Control Flow

First Level of Defense:
Avoid Control Flow

•  Clever example from MPM

•  No need to test for divide by 0 error,
and slight delta does not impact results

mi = Sipmpp∑ +1.0x10−100

Vi =
SipmpVpp∑
mi

Add small constant 
to mass so that  

velocity calcula;on 
never divides by zero 

20
L8: Control Flow CS6963 

2/10/11 

6 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Control Flow Instructions
•  A common case: avoid divergence when branch

condition is a function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a

block
•  Branch granularity < warp size; threads 0 and 1 follow

different path than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a

block
•  Branch granularity is a whole multiple of warp size; all threads

in any given warp follow the same path

21
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Reduction Example
(related to “count 6”)

•  Assume an in-place reduction using
shared memory
– The original vector is in device global

memory
– The shared memory is used to hold a partial

sum vector
– Each iteration brings the partial sum vector

closer to the final sum
– The final solution will be in element 0

22
L8: Control Flow

How to Accumulate Result in
Shared Memory

In original implementation (Lecture 1), we collected per-thread
results into d_out[threadIdx.x].

In updated implementation (Lecture 7), we collected per-block results
into d_out[0] for a single block, thus serializing the accumulation
computation on the GPU.

Suppose we want to exploit some parallelism in this accumulation part,
which will be particularly important to performance as we scale the
number of threads.

A common idiom for reduction computations is to use a tree-
structured results-gathering phase, where independent threads
collect their results in parallel. Assume SIZE=16 and
BLOCKSIZE(elements computed per thread)=4.

CS6963 
23

L8: Control Flow

Recall: Serialized Gathering of Results on
GPU for “Count 6”

__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

 __syncthreads(); 
   if (threadIdx.x == 0) { 
     for 0..BLOCKSIZE‐1 

     *d_sum += d_out[i];         
   } 

24
L8: Control Flow

2/10/11 

7 

Tree-Structured Computation

out[0] += out[2]

out[0] += out[1] out[2] += out[3]

out[0] out[1] out[2] out[3]

Tree-structured results-gathering phase, where independent threads collect their
results in parallel.

Assume SIZE=16 and BLOCKSIZE(elements computed per thread)=4.

CS6963 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

A possible implementation for
just the reduction

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];

}

26
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Vector Reduction with Branch
Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements
iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

27
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Some Observations
•  In each iteration, two control flow paths will be

sequentially traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition may cost extra cycles

depending on the implementation of divergence
•  No more than half of threads will be executing at any

time
–  All odd index threads are disabled right from the beginning!
–  On average, less than ¼ of the threads will be activated for

all warps over time.
–  After the 5th iteration, entire warps in each block will be

disabled, poor resource utilization but no divergence.
•  This can go on for a while, up to 4 more iterations (512/32=16=

24), where each iteration only has one thread activated until all
warps retire

28
L8: Control Flow

2/10/11 

8 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

What’s Wrong?

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];

}

29
L8: Control Flow

BAD: Divergence
due to interleaved
branch decisions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

A better implementation

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 d_out[t] += d_out[t+stride];

}

30
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Thread 0

No Divergence until < 16 sub-
sums

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31 1

3

4

31
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

A shared memory
implementation

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 partialSum[t] += partialSum[t+stride];

}

32
L8: Control Flow

2/10/11 

9 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Some Observations About the New
Implementation

•  Only the last 5 iterations will have
divergence

•  Entire warps will be shut down as
iterations progress
– For a 512-thread block, 4 iterations to shut

down all but one warp in each block
– Better resource utilization, will likely retire

warps and thus blocks faster
•  Recall, no bank conflicts either

33
L8: Control Flow

Predicated Execution Concept

<p1> LDR r1,r2,0

•  If p1 is TRUE, instruction executes normally

•  If p1 is FALSE, instruction treated as NOP

34
L8: Control Flow

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Predication Example

:
:

if (x == 10)

 c = c + 1;

:

:

 :

 :

 LDR r5, X
 p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

 :
 :

35
L8: Control Flow

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

B

A

C

D

A
B
C
D

Predication can be very helpful for
if-else

36
L8: Control Flow

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

2/10/11 

10 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

If-else example
 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p1> inst 2 from B

<p1> :

 :

<p2> inst 1 from C
<p2> inst 2 from C

 :

 :

 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p2> inst 1 from C

<p1> inst 2 from B

<p2> inst 2 from C

<p1> :

 :

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

37
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Instruction Predication in G80
•  Comparison instructions set condition codes (CC)
•  Instructions can be predicated to write results only when CC

meets criterion (CC != 0, CC >= 0, etc.)

•  Compiler tries to predict if a branch condition is likely to
produce many divergent warps
–  If guaranteed not to diverge: only predicates if < 4 instructions
–  If not guaranteed: only predicates if < 7 instructions

•  May replace branches with instruction predication

•  ALL predicated instructions take execution cycles
–  Those with false conditions don’t write their output

•  Or invoke memory loads and stores
–  Saves branch instructions, so can be cheaper than serializing

divergent paths (for small # instructions)
38

L8: Control Flow

Warp Vote Functions
(Compute Capability > 1.2)

•  Can test whether condition on all threads
in a warp evaluates to same value
int __all(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for all of them.
int __any(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for any of them.

39
L8: Control Flow CS6963 

Using Warp Vote Functions
•  Can tailor code for when none/all take a

branch.
•  Eliminate overhead of branching and

predication.
•  Particularly useful for codes where

most threads will be the same
– Example 1: looking for something unusual in

image data
– Example 2: dealing with boundary conditions

40
L8: Control Flow CS6963 

2/10/11 

11 

Summary of Lecture
•  More concurrent execution and its safety

–  Host page-locked memory
–  Concurrent streams

•  Debugging your code
•  Impact of control flow on performance

–  Due to SIMD execution model for threads
•  Execution model/code generated

–  Stall based on CC value (for long instr sequences)
–  Predicated code (for short instr sequences)

•  Strategies for avoiding control flow
–  Eliminate divide by zero test (MPM)
–  Warp vote function

•  Group together similar control flow paths into warps
–  Example: “tree” reduction

L8: Control Flow CS6963 

Next Time
•  Finish Control Flow

– Divergent branches
•  More project organization

L8: Control Flow CS6963 

