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L7: Writing Correct 
Programs 

L7: Wri+ng Correct Programs 

Administrative 
•  Next assignment available 

–  Goals of assignment:  
–  simple memory hierarchy management 
–  block-thread decomposition tradeoff 

–  Due Tuesday, Feb. 8, 5PM 
–  Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Project proposals due Wednesday, March 9 

•  Questions/discussion 
•  Mailing lists 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s1-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Outline 
•  How to tell if your parallelization is correct? 
•  Definitions:  

–  Race conditions and data dependences 
–  Example 

•  Reasoning about race conditions 
•  A Look at the Architecture: 

•  how to protect memory accesses from race conditions?    
•  Synchronization within a block: __syncthreads();    
•  Synchronization across blocks (through global memory) 

–  atomicOperations (example) 
–  memoryFences 

•  Debugging 
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What can we do to determine if 
parallelization is correct in CUDA? 

•  -deviceemu code (to be emulated on host, executed serially) 
–  Versions prior to CUDA 3.x 

•  Can compare GPU output to CPU output, or compare GPU output 
to device emulation output  
•  Race condition may still be present 

•  Debugging environments (new!) 
•  Cuda gdb (Linux) 
•  Parallel Nsight (Windows and Vista) 

We’ll come back to both of these at the end. 

•  Or can (try to) prevent introduction of race conditions (bulk of 
lecture) 

CS6963  L7: 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Reminder: Count 6s from L1 
•  Global, device functions and excerpts from host, main 

CS6963 

int __host__ void outer_compute  
   (int *h_in_array, int *h_out_array) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_out_array); 

    cudaMemcpy(h_out_array, d_out_array,    
     BLOCKSIZE*sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
  for (int i=0; i<BLOCKSIZE; i++)  
  {  sum+=out_array[i]; } 
  prin] (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

Compute individual results 
for each thread 

Serialize final results 
gathering on host 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What if we computed sum on GPU? 
•  Global, device functions and excerpts from host, main 
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int __host__ void outer_compute  
   (int *h_in_array, int *h_sum) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_sum); 
   cudaThreadSynchronize(); 
    cudaMemcpy(h_sum, d_sum,    
     sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
int *sum;  // an integer 
outer_compute(in_array, sum); 
prin] (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*sum) { 

  *sum = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      *sum +=    
           compare(val, 6); 

   } 
} 

Each thread increments 
“sum” variable 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Threads Access the Same Memory! 

•  Global memory and shared memory within an 
SM can be freely accessed by multiple 
threads 

•  Requires appropriate sequencing of memory 
accesses across threads to same location if 
at least one access is a write 
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More Formally:  
Race Condition or Data Dependence 

•  A race condition exists when the result 
of an execution depends on the timing 
of two or more events. 

•  A data dependence is an ordering on a 
pair of memory operations that must be 
preserved to maintain correctness. 
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Data Dependence 

•  Definition: 
Two memory accesses are involved in a data dependence if they may 
refer to the same memory location and one of the references is a 
write. 

A data dependence can either be between two distinct program 
statements or two different dynamic executions of the same 
program statement. 

•  Two important uses of data dependence information (among others): 
Parallelization: no data dependence between two computations   
    parallel execution safe 
Locality optimization: absence of data dependences & presence of 
    reuse  reorder memory accesses for      
     better data locality (next week) 
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Data Dependence of Scalar 
Variables 

True (flow) dependence 
  a   =  
     = a 

Anti-dependence 
     = a 
  a   = 

Output dependence 
  a   = 
  a   = 

Input dependence (for locality) 
    = a 

        = a 

Definition: Data dependence exists from a reference 
instance i to i’ iff  
 either i or i’ is a write operation    
 i and i’ refer to the same variable   
 i executes before i’   
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Some Definitions (from Allen & Kennedy) 
•  Definition 2.5:  

–  Two computations are equivalent if, on the same inputs, 
•  they produce identical outputs 
•  the outputs are executed in the same order 

•  Definition 2.6: 
–  A reordering transformation  

•  changes the order of statement execution  
•  without adding or deleting any statement executions. 

•  Definition 2.7: 
–  A reordering transformation preserves a dependence if  

•  it preserves the relative execution order of the dependences’ 
source and sink. 

CS6963  L7: Wri+ng 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Reference: “Op+mizing Compilers for Modern Architectures:  A Dependence‐Based 
Approach”, Allen and Kennedy, 2002, Ch. 2.  

Fundamental Theorem of 
Dependence 

•  Theorem 2.2: 
–  Any reordering transformation that preserves 

every dependence in a program preserves the 
meaning of that program. 

L7: Wri+ng Correct Programs CS6963 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Parallelization as a Reordering 
Transformation in CUDA 

__host callkernel() { 

   dim3 blocks(bx,by); 

   dim3 threads(tx,ty,tz); 

   …   
kernelcode<<<blocks,threads>>>(<a
rgs>); 

}  

__global kernelcode(<args>) { 

    /* code refers to threadIdx.x, 
threadIdx.y, threadIdx.z, blockIdx.x, 
blockIdx.y */ 

} 

__host callkernel() { 

for (int bIdx_x=0; bIdx_x<bx; bIdx_x++) { 

for (int bIdx_y=0; bIdx_y<by; bIdx_y++) { 

for (int tIdx_x=0; tIdx_x<tx; tIdx_x++) { 

for (int tIdx_y=0; tIdx_y<ty; tIdx_y++) { 

for (int tIdx_z=0; tIdx_z<tz; tIdx_z++) { 

/* code refers to tIdx_x, tIdx_y, tIdx_z, 
bIdx_x, bIdx_y */ 

}}}}} 

EQUIVALENT? 
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Forall (or CUDA kernels or Doall) loops:  
Loops whose iterations can execute in parallel (a particular reordering 
transformation) 

Example 
  forall (i=1; i<=n; i++)  
   A[i] = B[i] + C[i]; 

Meaning? 

Consider Parallelizable Loops 

Each iteration can execute independently of others 
Free to schedule iterations in any order 

Why are parallelizable loops an important concept for data-parallel 
programming models? 
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CUDA Equivalent to “Forall” 

__host callkernel() { 

forall (int bIdx_x=0; bIdx_x<bx; bIdx_x++) { 

forall (int bIdx_y=0; bIdx_y<by; bIdx_y++) { 

forall (int tIdx_x=0; tIdx_x<tx; tIdx_x++) { 

forall (int tIdx_y=0; tIdx_y<ty; tIdx_y++) { 

forall (int tIdx_z=0; tIdx_z<tz; tIdx_z++) { 

/* code refers to tIdx_x, tIdx_y, tIdx_z, 
bIdx_x, bIdx_y */ 

}}}}} 
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Using Data Dependences to Reason 
about Race Conditions 

•  Compiler research on data dependence 
analysis provides a systematic way to 
conservatively identify race conditions on 
scalar and array variables 
–  “Forall” if no dependences cross the iteration 

boundary of a parallel loop.  (no loop-carried 
dependences) 

–  If a race condition is found,  
– EITHER serialize loop(s) carrying dependence by 

making it internal to thread program, or part of the 
host code 

– OR add “synchronization” 

L7: Wri+ng Correct Programs CS6963 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Back to our Example: What if Threads 
Need to Access Same Memory Location 

•  Dependence on sum across iterations/threads 
–  But reordering ok since operations on sum are associative  

•  Load/increment/store must be done atomically to 
preserve sequential meaning 

•  Add Synchronization 
–  Protect memory locations 
–  Control-based (what are threads doing?) 

•  Definitions: 
–  Atomicity: a set of operations is atomic if either they all 

execute or none executes.  Thus, there is no way to see the 
results of a partial execution. 

–  Mutual exclusion: at most one thread can execute the code 
at any time 

–  Barrier: forces threads to stop and wait until all threads 
have arrived at some point in code, and typically at the same 
point 
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Gathering Results on GPU:  
Barrier Synchronization w/in Block 

void __syncthreads(); 
•  Functionality: Synchronizes all threads in a block 

–  Each thread waits at the point of this call until all 
other threads have reached it 

–  Once all threads have reached this point, execution 
resumes normally 

•  Why is this needed? 
–  A thread can freely read the shared memory of its 

thread block or the global memory of either its 
block or grid. 

–  Allows the program to guarantee partial ordering of 
these accesses to prevent incorrect orderings.   

•  Watch out!   
–  Potential for deadlock when it appears in 

conditionals 
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Gathering Results on GPU for “Count 6” 
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

 __syncthreads(); 
   if (threadIdx.x == 0) { 
     for 0..BLOCKSIZE‐1 

     *d_sum += d_out[i];         
   } 

L7: Wri+ng Correct 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Gathering Results on GPU:  
Atomic Update to Sum Variable 

int atomicAdd(int* address, int val);  
  Increments the integer at address by val. 

Atomic means that once initiated, the 
operation executes to completion 
without interruption by other threads 

CS6963  L7: Wri+ng Correct Programs 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Gathering Results on GPU for “Count 6” 
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 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__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

atomicAdd(d_sum,  
                    d_out_array[threadIdx.x]); 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Available Atomic Functions 
All but CAS take two operands (unsigned int *address, int (or other type) val); 

Arithmetic: 
•  atomicAdd() – add val to address 
•  atomicSub() – subtract val from address 
•  atomicExch() – exchange val at address, return old value 
•  atomicMin() 
•  atomicMax() 
•  atomicInc() 
•  atomicDec()  
•  atomicCAS() 

Bitwise Functions: 
•  atomicAnd() 
•  atomicOr() 
•  atomicXor()  
See Appendix B11 of NVIDIA CUDA 3.2 Programming Guide 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Atomic Operation News 
•  Only available for devices with compute 

capability 1.1 or higher 
•  Operating on shared memory and for either 

32-bit or 64-bit global data for compute 
capability 1.2 or higher 

•  64-bit in shared memory for compute 
capability 2.0 or higher 

•  atomicAdd for floating point (32-bit) available 
for compute capability 2.0 or higher 
(otherwise, just signed and unsigned integer). 

L7: Wri+ng Correct Programs 

Synchronization Within/Across Blocks:  
Memory Fence Instructions 

void __threadfence_block(); 
•  waits until all global and shared memory accesses made by the 

calling thread prior to call are visible to all threads in the thread 
block. In general, when a thread issues a series of writes to 
memory in a particular order, other threads may see the effects 
of these memory writes in a different order. 

void __threadfence(); 
•  Similar to above, but visible to all threads in the device for 

global memory accesses and all threads in the thread block for 
shared memory accesses. 

void __threadfence_system(); 
•  Similar to above, but also visible to host for “page-locked” host 

memory accesses. 

Appendix B.5 of NVIDIA CUDA 3.2 Programming Manual 
L7: Wri+ng Correct Programs CS6963 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Memory Fence Example  
__device__ unsigned int count = 0; 
__shared__ bool isLastBlockDone; 
__global__ void sum(const float* array,  
                            unsigned int N, float* result) { 
// Each block sums a subset of the input array 
float par+alSum = calculatePar+alSum(array, N); 
if (threadIdx.x == 0) { 
   // Thread 0 of each block stores the par+al sum 
   // to global memory 
   result[blockIdx.x] = par+alSum; 

   // Thread 0 makes sure its result is visible to 
   // all other threads 
   __threadfence(); 

   // Thread 0 of each block signals that it is done 
   unsigned int value = atomicInc(&count, gridDim.x); 

    // Thread 0 of each block determines if its block is 
   // the last block to be done 
   isLastBlockDone = (value == (gridDim.x ‐ 1)); 
} 

// Synchronize to make sure that each thread 
// reads the correct value of isLastBlockDone 
__syncthreads(); 

if (isLastBlockDone) { 
   // The last block sums the par+al sums 
   // stored in result[0 .. gridDim.x‐1] 
   float totalSum = calculateTotalSum(result); 

   if (threadIdx.x == 0) { 
      // Thread 0 of last block stores total sum 
      // to global memory and resets count so that 
      // next kernel call works properly 
      result[0] = totalSum; 
      count = 0; 
   } 
} 

} 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Make sure write to 
result complete 
before con+nuing 

Host-Device Transfers (implicit in 
synchronization discussion) 

•  Host-Device Data Transfers 
–  Device to host memory bandwidth much lower 

than device to device bandwidth 
–  8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak 

(Tesla C1060) 

•  Minimize transfers 
–  Intermediate data can be allocated, operated on, 

and deallocated without ever copying them to 
host memory 

•  Group transfers 
–  One large transfer much better than many small 

ones 
Slide source: Nvidia, 2008 

Asynchronous Copy To/From Host  
(compute capability 1.1 and above) 

•  Warning: I have not tried this! 
•  Concept: 

–  Memory bandwidth can be a limiting factor on GPUs 
–  Sometimes computation cost dominated by copy cost 
–  But for some computations, data can be “tiled” and computation of 

tiles can proceed in parallel (some of our projects) 
–  Can we be computing on one tile while copying another? 

•  Strategy: 
–  Use page-locked memory on host, and asynchronous copies 
–  Primitive cudaMemcpyAsync 
–  Effect is GPU performs DMA from Host Memory 
–  Synchronize with cudaThreadSynchronize() 

Page-Locked Host Memory 
•  How the Async copy works: 

–  DMA performed by GPU memory controller 
–  CUDA driver takes virtual addresses and 

translates them to physical addresses 
–  Then copies physical addresses onto GPU 
–  Now what happens if the host OS decides to 

swap out the page??? 
•  Special malloc holds page in place on host 

–  Prevents host OS from moving the page 
–  CudaMallocHost() 

•  But performance could degrade if this is done on 
lots of pages! 
–  Bypassing virtual memory mechanisms 
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Example of Asynchronous 
Data Transfer 

cudaStreamCreate(&stream1); 
cudaStreamCreate(&stream2); 
cudaMemcpyAsync(dst1, src1, size, dir, stream1); 
kernel<<<grid, block, 0, stream1>>>(…); 
cudaMemcpyAsync(dst2, src2, size, dir, stream2); 
kernel<<<grid, block, 0, stream2>>>(…); 

src1 and src2 must have been allocated using cudaMallocHost 
stream1 and stream2 identify streams associated with asynchronous 
call (note 4th “parameter” to kernel invocation) 

Code from asyncAPI SDK project 
// allocate host memory 
CUDA_SAFE_CALL( cudaMallocHost((void**)&a, nbytes) ); 
memset(a, 0, nbytes); 

// allocate device memory 
CUDA_SAFE_CALL( cudaMalloc((void**)&d_a, nbytes) ); 
CUDA_SAFE_CALL( cudaMemset(d_a, 255, nbytes) ); 

… // declare grid and thread dimensions and create start and stop events 

// asynchronously issue work to the GPU (all to stream 0) 
cudaEventRecord(start, 0); 
cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHostToDevice, 0); 
increment_kernel<<<blocks, threads, 0, 0>>>(d_a, value); 
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0); 
cudaEventRecord(stop, 0); 

// have CPU do some work while waiting for GPU to finish 

// release resources 
CUDA_SAFE_CALL( cudaFreeHost(a) ); 
CUDA_SAFE_CALL( cudaFree(d_a) ); 

More Parallelism to Come 
(Compute Capability 2.0) 

Stream concept: create, destroy, tag asynchronous 
operations with stream 

–  Special synchronization mechanisms for streams: 
queries, waits and synchronize functions 

•  Concurrent Kernel Execution 
–  Execute multiple kernels (up to 4) simultaneously 

•  Concurrent Data Transfers 
–  Can concurrently copy from host to GPU and GPU to 

host using asynchronous Memcpy 
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Section 3.2.6 of CUDA 3.2 manual 

Debugging: Using Device Emulation Mode 
•  An executable compiled in device emulation 

mode (nvcc -deviceemu) runs completely on 
the host using the CUDA runtime 
–  No need of any device and CUDA driver 
–  Each device thread is emulated with a host thread 

•  When running in device emulation mode, one can: 
–  Use host native debug support (breakpoints, 

inspection, etc.) 
–  Access any device-specific data from host code 

and vice-versa 
–  Call any host function from device code (e.g. 

printf) and vice-versa 
–  Detect deadlock situations caused by improper 

usage of __syncthreads 
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Debugging: Device Emulation Mode Pitfalls 
•  Emulated device threads execute sequentially, so 

simultaneous accesses of the same memory location by 
multiple threads could produce different results. 

•  Dereferencing device pointers on the host or host 
pointers on the device can produce correct results in 
device emulation mode, but will generate an error in 
device execution mode 

•  Results of floating-point computations will slightly 
differ because of: 
–  Different compiler outputs, instruction sets 
–  Use of extended precision for intermediate results 

•  There are various options to force strict single 
precision on the host 
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Debugging: Run-time functions & macros for 
error checking 

In CUDA run-time services, 
  cudaGetDeviceProperties(deviceProp &dp, d); 
   check number, type and whether device present 

In libcutil.a of Software Developers’ Kit, 
     cutComparef (float *ref, float *data, unsigned len); 
   compare output with reference from CPU implementation    

In cutil.h of Software Developers’ Kit (with #define 
_DEBUG or –D_DEBUG compile flag),  
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>)) 
     check for error in run-time call and exit if error detected  
CUT_SAFE_MALLOC(cudaMalloc(<args>)); 
    similar to above, but for malloc calls 
CUT_CHECK_ERROR(“error message goes here”); 

 check for error immediately following kernel execution and 
if detected, exit with error message 
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Summary of Lecture 
•  Data dependence can be used to determine the 

safety of reordering transformations such as parallelization 
•  preserving dependences = preserving “meaning” 

•  In the presence of dependences, synchronization is 
needed to guarantee safe access to memory 

•  Synchronization mechanisms on GPUs: 
–  __syncthreads() barrier within a block 
–  Atomic functions on locations in memory across blocks 
–  Memory fences within and across blocks, and host page-

locked memory 
•  More concurrent execution 

–  Host page-locked memory 
–  Concurrent streams 

•  Debugging your code 
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Next Time 
•  Control Flow 

– Divergent branches 
•  More project organization 
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