
2/7/11 

1 

L7: Writing Correct
Programs

L7: Wri+ng Correct Programs 

Administrative
•  Next assignment available

–  Goals of assignment:
–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Tuesday, Feb. 8, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Project proposals due Wednesday, March 9

•  Questions/discussion
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  2

Outline
•  How to tell if your parallelization is correct?
•  Definitions:

–  Race conditions and data dependences
–  Example

•  Reasoning about race conditions
•  A Look at the Architecture:

•  how to protect memory accesses from race conditions?
•  Synchronization within a block: __syncthreads();
•  Synchronization across blocks (through global memory)

–  atomicOperations (example)
–  memoryFences

•  Debugging

L7: Wri+ng Correct Programs CS6963 

What can we do to determine if
parallelization is correct in CUDA?

•  -deviceemu code (to be emulated on host, executed serially)
–  Versions prior to CUDA 3.x

•  Can compare GPU output to CPU output, or compare GPU output
to device emulation output
•  Race condition may still be present

•  Debugging environments (new!)
•  Cuda gdb (Linux)
•  Parallel Nsight (Windows and Vista)

We’ll come back to both of these at the end.

•  Or can (try to) prevent introduction of race conditions (bulk of
lecture)

CS6963  L7: Wri+ng Correct Programs 

2/7/11 

2 

Reminder: Count 6s from L1
•  Global, device functions and excerpts from host, main

CS6963 

int __host__ void outer_compute  
   (int *h_in_array, int *h_out_array) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_out_array); 

    cudaMemcpy(h_out_array, d_out_array,    
     BLOCKSIZE*sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
  for (int i=0; i<BLOCKSIZE; i++)  
  {  sum+=out_array[i]; } 
  prin] (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

Compute individual results 
for each thread 

Serialize final results 
gathering on host 

L7: Wri+ng Correct Programs 

What if we computed sum on GPU?
•  Global, device functions and excerpts from host, main

CS6963 

int __host__ void outer_compute  
   (int *h_in_array, int *h_sum) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_sum); 
   cudaThreadSynchronize(); 
    cudaMemcpy(h_sum, d_sum,    
     sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
int *sum;  // an integer 
outer_compute(in_array, sum); 
prin] (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*sum) { 

  *sum = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      *sum +=    
           compare(val, 6); 

   } 
} 

Each thread increments 
“sum” variable 

L7: Wri+ng Correct Programs 

Threads Access the Same Memory!

•  Global memory and shared memory within an
SM can be freely accessed by multiple
threads

•  Requires appropriate sequencing of memory
accesses across threads to same location if
at least one access is a write

L7: Wri+ng Correct Programs CS6963 

More Formally:
Race Condition or Data Dependence

•  A race condition exists when the result
of an execution depends on the timing
of two or more events.

•  A data dependence is an ordering on a
pair of memory operations that must be
preserved to maintain correctness.

L7: Wri+ng Correct Programs CS6963 

2/7/11 

3 

Data Dependence

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same
program statement.

•  Two important uses of data dependence information (among others):
Parallelization: no data dependence between two computations 
 parallel execution safe
Locality optimization: absence of data dependences & presence of
 reuse  reorder memory accesses for
 better data locality (next week)

L7: Wri+ng Correct Programs CS6963 

Data Dependence of Scalar
Variables

True (flow) dependence
 a =
 = a

Anti-dependence
 = a
 a =

Output dependence
 a =
 a =

Input dependence (for locality)
 = a

 = a

Definition: Data dependence exists from a reference
instance i to i’ iff
 either i or i’ is a write operation
 i and i’ refer to the same variable
 i executes before i’

L7: Wri+ng Correct Programs CS6963 

Some Definitions (from Allen & Kennedy)
•  Definition 2.5:

–  Two computations are equivalent if, on the same inputs,
•  they produce identical outputs
•  the outputs are executed in the same order

•  Definition 2.6:
–  A reordering transformation

•  changes the order of statement execution
•  without adding or deleting any statement executions.

•  Definition 2.7:
–  A reordering transformation preserves a dependence if

•  it preserves the relative execution order of the dependences’
source and sink.

CS6963  L7: Wri+ng Correct Programs 

Reference: “Op+mizing Compilers for Modern Architectures:  A Dependence‐Based 
Approach”, Allen and Kennedy, 2002, Ch. 2.  

Fundamental Theorem of
Dependence

•  Theorem 2.2:
–  Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

L7: Wri+ng Correct Programs CS6963 

2/7/11 

4 

Parallelization as a Reordering
Transformation in CUDA

__host callkernel() {

 dim3 blocks(bx,by);

 dim3 threads(tx,ty,tz);

 …
kernelcode<<<blocks,threads>>>(<a
rgs>);

}

__global kernelcode(<args>) {

 /* code refers to threadIdx.x,
threadIdx.y, threadIdx.z, blockIdx.x,
blockIdx.y */

}

__host callkernel() {

for (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

for (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

for (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

for (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

for (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

EQUIVALENT?
L7: Wri+ng Correct Programs CS6963 

Forall (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering
transformation)

Example
 forall (i=1; i<=n; i++)
 A[i] = B[i] + C[i];

Meaning?

Consider Parallelizable Loops

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel
programming models?

L7: Wri+ng Correct Programs CS6963 

CUDA Equivalent to “Forall”

__host callkernel() {

forall (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

forall (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

forall (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

forall (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

forall (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

L7: Wri+ng Correct Programs CS6963 

Using Data Dependences to Reason
about Race Conditions

•  Compiler research on data dependence
analysis provides a systematic way to
conservatively identify race conditions on
scalar and array variables
–  “Forall” if no dependences cross the iteration

boundary of a parallel loop. (no loop-carried
dependences)

–  If a race condition is found,
– EITHER serialize loop(s) carrying dependence by

making it internal to thread program, or part of the
host code

– OR add “synchronization”

L7: Wri+ng Correct Programs CS6963 

2/7/11 

5 

Back to our Example: What if Threads
Need to Access Same Memory Location

•  Dependence on sum across iterations/threads
–  But reordering ok since operations on sum are associative

•  Load/increment/store must be done atomically to
preserve sequential meaning

•  Add Synchronization
–  Protect memory locations
–  Control-based (what are threads doing?)

•  Definitions:
–  Atomicity: a set of operations is atomic if either they all

execute or none executes. Thus, there is no way to see the
results of a partial execution.

–  Mutual exclusion: at most one thread can execute the code
at any time

–  Barrier: forces threads to stop and wait until all threads
have arrived at some point in code, and typically at the same
point

L7: Wri+ng Correct Programs CS6963 

Gathering Results on GPU:
Barrier Synchronization w/in Block

void __syncthreads();
•  Functionality: Synchronizes all threads in a block

–  Each thread waits at the point of this call until all
other threads have reached it

–  Once all threads have reached this point, execution
resumes normally

•  Why is this needed?
–  A thread can freely read the shared memory of its

thread block or the global memory of either its
block or grid.

–  Allows the program to guarantee partial ordering of
these accesses to prevent incorrect orderings.

•  Watch out!
–  Potential for deadlock when it appears in

conditionals

CS6963  L7: Wri+ng Correct Programs 

Gathering Results on GPU for “Count 6”
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

 __syncthreads(); 
   if (threadIdx.x == 0) { 
     for 0..BLOCKSIZE‐1 

     *d_sum += d_out[i];         
   } 

L7: Wri+ng Correct Programs 

Gathering Results on GPU:
Atomic Update to Sum Variable

int atomicAdd(int* address, int val);
 Increments the integer at address by val.

Atomic means that once initiated, the
operation executes to completion
without interruption by other threads

CS6963  L7: Wri+ng Correct Programs 

2/7/11 

6 

Gathering Results on GPU for “Count 6”
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

atomicAdd(d_sum,  
                    d_out_array[threadIdx.x]);   

L7: Wri+ng Correct Programs 

Available Atomic Functions
All but CAS take two operands (unsigned int *address, int (or other type) val);

Arithmetic:
•  atomicAdd() – add val to address
•  atomicSub() – subtract val from address
•  atomicExch() – exchange val at address, return old value
•  atomicMin()
•  atomicMax()
•  atomicInc()
•  atomicDec()
•  atomicCAS()

Bitwise Functions:
•  atomicAnd()
•  atomicOr()
•  atomicXor()
See Appendix B11 of NVIDIA CUDA 3.2 Programming Guide 

L7: Wri+ng Correct Programs CS6963 

Atomic Operation News
•  Only available for devices with compute

capability 1.1 or higher
•  Operating on shared memory and for either

32-bit or 64-bit global data for compute
capability 1.2 or higher

•  64-bit in shared memory for compute
capability 2.0 or higher

•  atomicAdd for floating point (32-bit) available
for compute capability 2.0 or higher
(otherwise, just signed and unsigned integer).

L7: Wri+ng Correct Programs 

Synchronization Within/Across Blocks:
Memory Fence Instructions

void __threadfence_block();
•  waits until all global and shared memory accesses made by the

calling thread prior to call are visible to all threads in the thread
block. In general, when a thread issues a series of writes to
memory in a particular order, other threads may see the effects
of these memory writes in a different order.

void __threadfence();
•  Similar to above, but visible to all threads in the device for

global memory accesses and all threads in the thread block for
shared memory accesses.

void __threadfence_system();
•  Similar to above, but also visible to host for “page-locked” host

memory accesses.

Appendix B.5 of NVIDIA CUDA 3.2 Programming Manual 
L7: Wri+ng Correct Programs CS6963 

2/7/11 

7 

Memory Fence Example
__device__ unsigned int count = 0; 
__shared__ bool isLastBlockDone; 
__global__ void sum(const float* array,  
                            unsigned int N, float* result) { 
// Each block sums a subset of the input array 
float par+alSum = calculatePar+alSum(array, N); 
if (threadIdx.x == 0) { 
   // Thread 0 of each block stores the par+al sum 
   // to global memory 
   result[blockIdx.x] = par+alSum; 

   // Thread 0 makes sure its result is visible to 
   // all other threads 
   __threadfence(); 

   // Thread 0 of each block signals that it is done 
   unsigned int value = atomicInc(&count, gridDim.x); 

    // Thread 0 of each block determines if its block is 
   // the last block to be done 
   isLastBlockDone = (value == (gridDim.x ‐ 1)); 
} 

// Synchronize to make sure that each thread 
// reads the correct value of isLastBlockDone 
__syncthreads(); 

if (isLastBlockDone) { 
   // The last block sums the par+al sums 
   // stored in result[0 .. gridDim.x‐1] 
   float totalSum = calculateTotalSum(result); 

   if (threadIdx.x == 0) { 
      // Thread 0 of last block stores total sum 
      // to global memory and resets count so that 
      // next kernel call works properly 
      result[0] = totalSum; 
      count = 0; 
   } 
} 

} 

L7: Wri+ng Correct Programs 

Make sure write to 
result complete 
before con+nuing 

Host-Device Transfers (implicit in
synchronization discussion)

•  Host-Device Data Transfers
–  Device to host memory bandwidth much lower

than device to device bandwidth
–  8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak

(Tesla C1060)

•  Minimize transfers
–  Intermediate data can be allocated, operated on,

and deallocated without ever copying them to
host memory

•  Group transfers
–  One large transfer much better than many small

ones
Slide source: Nvidia, 2008

Asynchronous Copy To/From Host
(compute capability 1.1 and above)

•  Warning: I have not tried this!
•  Concept:

–  Memory bandwidth can be a limiting factor on GPUs
–  Sometimes computation cost dominated by copy cost
–  But for some computations, data can be “tiled” and computation of

tiles can proceed in parallel (some of our projects)
–  Can we be computing on one tile while copying another?

•  Strategy:
–  Use page-locked memory on host, and asynchronous copies
–  Primitive cudaMemcpyAsync
–  Effect is GPU performs DMA from Host Memory
–  Synchronize with cudaThreadSynchronize()

Page-Locked Host Memory
•  How the Async copy works:

–  DMA performed by GPU memory controller
–  CUDA driver takes virtual addresses and

translates them to physical addresses
–  Then copies physical addresses onto GPU
–  Now what happens if the host OS decides to

swap out the page???
•  Special malloc holds page in place on host

–  Prevents host OS from moving the page
–  CudaMallocHost()

•  But performance could degrade if this is done on
lots of pages!
–  Bypassing virtual memory mechanisms

2/7/11 

8 

Example of Asynchronous
Data Transfer

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(…);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(…);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream2 identify streams associated with asynchronous
call (note 4th “parameter” to kernel invocation)

Code from asyncAPI SDK project
// allocate host memory
CUDA_SAFE_CALL(cudaMallocHost((void**)&a, nbytes));
memset(a, 0, nbytes);

// allocate device memory
CUDA_SAFE_CALL(cudaMalloc((void**)&d_a, nbytes));
CUDA_SAFE_CALL(cudaMemset(d_a, 255, nbytes));

… // declare grid and thread dimensions and create start and stop events

// asynchronously issue work to the GPU (all to stream 0)
cudaEventRecord(start, 0);
cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHostToDevice, 0);
increment_kernel<<<blocks, threads, 0, 0>>>(d_a, value);
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0);
cudaEventRecord(stop, 0);

// have CPU do some work while waiting for GPU to finish

// release resources
CUDA_SAFE_CALL(cudaFreeHost(a));
CUDA_SAFE_CALL(cudaFree(d_a));

More Parallelism to Come
(Compute Capability 2.0)

Stream concept: create, destroy, tag asynchronous
operations with stream

–  Special synchronization mechanisms for streams:
queries, waits and synchronize functions

•  Concurrent Kernel Execution
–  Execute multiple kernels (up to 4) simultaneously

•  Concurrent Data Transfers
–  Can concurrently copy from host to GPU and GPU to

host using asynchronous Memcpy

L7: Wri+ng Correct Programs 

Section 3.2.6 of CUDA 3.2 manual

Debugging: Using Device Emulation Mode
•  An executable compiled in device emulation

mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  When running in device emulation mode, one can:
–  Use host native debug support (breakpoints,

inspection, etc.)
–  Access any device-specific data from host code

and vice-versa
–  Call any host function from device code (e.g.

printf) and vice-versa
–  Detect deadlock situations caused by improper

usage of __syncthreads

L7: Wri+ng Correct Programs © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign

2/7/11 

9 

Debugging: Device Emulation Mode Pitfalls
•  Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location by
multiple threads could produce different results.

•  Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

•  Results of floating-point computations will slightly
differ because of:
–  Different compiler outputs, instruction sets
–  Use of extended precision for intermediate results

•  There are various options to force strict single
precision on the host

L7: Wri+ng Correct Programs © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign

Debugging: Run-time functions & macros for
error checking

In CUDA run-time services,
 cudaGetDeviceProperties(deviceProp &dp, d);
 check number, type and whether device present

In libcutil.a of Software Developers’ Kit,
 cutComparef (float *ref, float *data, unsigned len);
 compare output with reference from CPU implementation

In cutil.h of Software Developers’ Kit (with #define
_DEBUG or –D_DEBUG compile flag),
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
 check for error in run-time call and exit if error detected
CUT_SAFE_MALLOC(cudaMalloc(<args>));
 similar to above, but for malloc calls
CUT_CHECK_ERROR(“error message goes here”);

 check for error immediately following kernel execution and
if detected, exit with error message

CS6963  L7: Wri+ng Correct Programs 

Summary of Lecture
•  Data dependence can be used to determine the

safety of reordering transformations such as parallelization
•  preserving dependences = preserving “meaning”

•  In the presence of dependences, synchronization is
needed to guarantee safe access to memory

•  Synchronization mechanisms on GPUs:
–  __syncthreads() barrier within a block
–  Atomic functions on locations in memory across blocks
–  Memory fences within and across blocks, and host page-

locked memory
•  More concurrent execution

–  Host page-locked memory
–  Concurrent streams

•  Debugging your code

L7: Wri+ng Correct Programs CS6963 

Next Time
•  Control Flow

– Divergent branches
•  More project organization

L7: Wri+ng Correct Programs CS6963 

