
2/2/11

1

L6: Memory Hierarchy Optimization IV,
Bandwidth Optimization

CS6963 

Administrative

•  Next assignment available
–  Goals of assignment:

–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Tuesday, Feb. 8, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Project proposals due Wednesday, March 9

•  Questions/discussion
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  L5: Memory Hierarchy, IV  2 

Faculty Project Suggestions

•  Mike Kirby:
•  Immersed boundary method
•  Spectral element library co-processing with CPU
•  Hybridized discontinuous Galerkin method

•  Kris Sikorski:
•  Reliable algorithms for summation of large data

sets

•  Matt Might:
– Containment analysis (program analysis)

Project Proposal (due 3/9)

•  Proposal Logistics:
–  Significant implementation, worth 55% of grade
–  Each person turns in the proposal (should be same

as other team members)
•  Proposal:

–  3-4 page document (11pt, single-spaced)
–  Submit with handin program:

 “handin cs6963 prop <pdf-file>”

CS6963 
4

L6: Memory Hierarchy IV 

2/2/11

2

Content of Proposal
I.  Team members: Name and a sentence on expertise for each member
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.

-  Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

-  Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV.  Intellectual Challenges
-  Generally, what makes this computation worthy of a project?
-  Point to any difficulties you anticipate at present in achieving high

speedup
CS6963 

5

L6: Memory Hierarchy IV 

Projects – How to Approach

•  Some questions:
1.  Amdahl’s Law: target bulk of computation

 and can profile to obtain key computations…
2.  Strategy for gradually adding GPU execution to

CPU code while maintaining correctness
3.  How to partition data & computation to avoid

synchronization?
4.  What types of floating point operations and

accuracy requirements?
5.  How to manage copy overhead?

CS6963 
6

L6: Memory Hierarchy IV 

Overview

•  Bandwidth optimization
•  Global memory coalescing
•  Avoiding shared memory bank conflicts
•  A few words on alignment

•  Reading:
–  Chapter 4, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf
–  Chapter 5, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter5-CudaPerformance.pdf
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth

optimizations) of NVIDIA CUDA Programming Guide

CS6963 
7

L6: Memory Hierarchy IV 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
8

L6: Memory Hierarchy IV 

2/2/11

3

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 
9

L6: Memory Hierarchy IV 

Data Location Impacts Latency of
Memory Access

•  Registers
–  Can load in current instruction cycle

•  Constant or Texture Memory
–  In cache? Single address can be loaded for half-

warp per cycle
–  O/W, global memory access

•  Global memory
•  Shared memory

–  Single cycle if accesses can be done in parallel

10

L6: Memory Hierarchy IV 

CS6963 

Introduction to Memory System

•  Recall execution model for a multiprocessor
– Scheduling unit: A “warp” of threads is issued

at a time (32 threads in current chips)
– Execution unit: Each cycle, 8 “cores” or SPs are

executing (32 cores in a Fermi)
– Memory unit: Memory system scans a “half

warp” or 16 threads for data to be loaded; (full
warp for Fermi)

11

L6: Memory Hierarchy IV 

CS6963 

Global Memory Accesses

•  Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

•  Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

•  Maximizing bandwidth:
– Operate on an entire 128 byte segment for

each memory transfer

12

L6: Memory Hierarchy IV 

CS6963 

2/2/11

4

Understanding Global Memory Accesses
Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on data
type)

•  Find other active threads requesting addresses within
that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!

CS6963 
13

L6: Memory Hierarchy IV 

Protocol for most systems (including lab6
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word
– Alignment to the beginning of a segment
becomes a very important optimization!

CS6963 
14

L6: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

15

L6: Memory Hierarchy IV 

Consecutive
threads will
access different
rows in memory.

Each thread will
require a different
memory
operation.

Odd: But this is
the RIGHT layout
for a
conventional
multi-core!

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

16

L6: Memory Hierarchy IV 

Each thread in a half-
warp (assuming rows
of 16 elements) will
access consecutive
memory locations.

GREAT! All accesses
are coalesced.

With just a 4x4 block,
we may need 4
separate memory
operations to load data
for a half-warp.

2/2/11

5

How to find out compute capability

See Appendix A.1 in NVIDIA CUDA Programming Guide to look up your device.

Also, recall “deviceQuery” in SDK to learn about features of installed device.

Older CADE machines are all Compute Capability 1.0 or 1.1.

Linux lab, most CADE machines and Tesla cluster are Compute Capability 1.2 and
1.3.

Fermi machines are 2.x.

17

L6: Memory Hierarchy IV 

CS6963 

Alignment

•  Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
– An aligned memory address is a multiple of

the memory segment size
– In compute 1.0 and 1.1 devices, address

accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

– In future systems, sometimes alignment
can reduce number of accesses

CS6963 
18

L6: Memory Hierarchy IV 

More on Alignment

•  Objects allocated statically or by
cudaMalloc begin at aligned addresses
– But still need to think about index

expressions
•  May want to align structures

struct __align__(8) { struct __align__(16) {
 float a; float a;
 float b; float b;
}; float c;
 };

CS6963 
19

L6: Memory Hierarchy IV 

What Can You Do to Improve Bandwidth
to Global Memory?

•  Think about spatial reuse and access
patterns across threads
– May need a different computation & data

partitioning
– May want to rearrange data in shared

memory, even if no temporal reuse
(transpose example)

– Similar issues, but much better in future
hardware generations

CS6963 
20

L6: Memory Hierarchy IV 

2/2/11

6

Bandwidth to Shared Memory:
Parallel Memory Accesses

•  Consider each thread accessing a
different location in shared memory

•  Bandwidth maximized if each one is able
to proceed in parallel

•  Hardware to support this
– Banked memory: each bank can support an

access on every memory cycle

CS6963 
21

L6: Memory Hierarchy IV 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits
per clock cycle

•  Successive 32-bit words are assigned to
successive banks

•  G80 has 16 banks
–  So bank = address % 16
–  Same as the size of a half-warp

•  No bank conflicts between different half-
warps, only within a single half-warp

22

L6: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
–  If all threads of a half-warp access different banks, there

is no bank conflict
–  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)
•  The slow case:

–  Bank Conflict: multiple threads in the same half-warp
access the same bank

–  Must serialize the accesses
–  Cost = max # of simultaneous accesses to a single bank

23

L6: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  No Bank Conflicts
–  Linear addressing

stride == 1

•  No Bank Conflicts
–  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

24

L6: Memory Hierarchy IV 

2/2/11

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

25

L6: Memory Hierarchy IV 

Putting It Together: Global Memory
Coalescing and Bank Conflicts

•  Let’s look at matrix transpose
•  Simple goal: Replace A[i][j] with A[j][i]
•  Any reuse of data?
•  Do you think shared memory might be

useful?

26

L6: Memory Hierarchy IV 

Matrix Transpose (from SDK)
_global__ void transpose(float *odata, float *idata, int width, int height)
{

 // read the element
 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 unsigned int index_in = yIndex * width + xIndex;
 temp = idata[index_in];

 // write the transposed element to global memory
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 unsigned int index_out = yIndex * height + xIndex;
 odata[index_out] = temp;
}

odata and idata in 
global memory 

CS6963 
27

L6: Memory Hierarchy IV 

Coalesced Matrix Transpose
_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM];

 // read the matrix tile into shared memory
 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 unsigned int index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];

 __syncthreads();

 // write the transposed matrix tile to global memory
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 unsigned int index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
}

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 
28

L6: Memory Hierarchy IV 

2/2/11

8

Optimized Matrix Transpose (from SDK)
_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

 // read the matrix tile into shared memory
 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 unsigned int index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];

 __syncthreads();

 // write the transposed matrix tile to global memory
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 unsigned int index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
}

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 
29

L6: Memory Hierarchy IV 

Further Optimization: Partition Camping

•  A further optimization improves bank
conflicts in global memory
•  But has not proven that useful in codes with

additional computation

•  Map blocks to different parts of chips
int bid = blockIdx.x + gridDim.x*blockIdx.y;
by = bid%gridDim.y;
bx = ((bid/gridDim.y)+by)%gridDim.x;

30

L6: Memory Hierarchy IV 

Performance Results for Matrix
Transpose (GTX280)

1024 2048 3072 4096 5120 6144 7168 8192

0

10

20

30

40

50

60

70

80

90
SDK−prev

CHILL

SDK−new

Problem Sizes(Square Matrices)

G
B

/s
e
c

SDK-prev: all optimizations other than partition camping
CHiLL: generated by our compiler
SDK-new: includes partition camping

31

L6: Memory Hierarchy IV 

Summary of Lecture

•  Completion of bandwidth optimizations
– Global memory coalescing
– Alignment
– Shared memory bank conflicts
– “Partitioning camping”

•  Matrix transpose example

CS6963 
32

L6: Memory Hierarchy IV 

2/2/11

9

Next Time

•  A look at correctness
•  Synchronization mechanisms

CS6963 
33

L6: Memory Hierarchy IV 

