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L6: Memory Hierarchy Optimization IV,  
Bandwidth Optimization 

CS6963 

Administrative 

•  Next assignment available 
–  Goals of assignment:  

–  simple memory hierarchy management 
–  block-thread decomposition tradeoff 

–  Due Tuesday, Feb. 8, 5PM 
–  Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Project proposals due Wednesday, March 9 

•  Questions/discussion 
•  Mailing lists 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s1-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Faculty Project Suggestions 

•  Mike Kirby: 
•  Immersed boundary method 
•  Spectral element library co-processing with CPU 
•  Hybridized discontinuous Galerkin method 

•  Kris Sikorski: 
•  Reliable algorithms for summation of large data 

sets 

•  Matt Might: 
– Containment analysis (program analysis) 

Project Proposal (due 3/9) 

•  Proposal Logistics: 
–  Significant implementation, worth 55% of grade 
–  Each person turns in the proposal (should be same 

as other team members) 
•  Proposal: 

–  3-4 page document (11pt, single-spaced) 
–  Submit with handin program:  

  “handin cs6963 prop <pdf-file>” 
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Content of Proposal 
I.  Team members: Name and a sentence on expertise for each member 
II.   Problem description 

-  What is the computation and why is it important? 
-  Abstraction of computation: equations, graphic or pseudo-code, no more 

than 1 page 
III.   Suitability for GPU acceleration 

-  Amdahl’s Law: describe the inherent parallelism.  Argue that it is close 
to 100% of computation.  Use measurements from CPU execution of 
computation if possible. 

-  Synchronization and Communication: Discuss what data structures may 
need to be protected by synchronization, or communication through 
host. 

-  Copy Overhead: Discuss the data footprint and anticipated cost of 
copying to/from host memory. 

IV.  Intellectual Challenges 
-  Generally, what makes this computation worthy of a project? 
-  Point to any difficulties you anticipate at present in achieving high 

speedup 
CS6963 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Projects – How to Approach 

•  Some questions: 
1.  Amdahl’s Law: target bulk of computation 

 and can profile to obtain key computations… 
2.  Strategy for gradually adding GPU execution to 

CPU code while maintaining correctness 
3.  How to partition data & computation to avoid 

synchronization? 
4.  What types of floating point operations and 

accuracy requirements? 
5.  How to manage copy overhead? 
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Overview 

•  Bandwidth optimization 
•  Global memory coalescing 
•  Avoiding shared memory bank conflicts 
•  A few words on alignment 

•  Reading:  
–  Chapter 4, Kirk and Hwu 
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf 
–  Chapter 5, Kirk and Hwu 
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter5-CudaPerformance.pdf 
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth 

optimizations) of NVIDIA CUDA Programming Guide 

CS6963 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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 

CS6963 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Optimizing the Memory Hierarchy on 
GPUs, Overview 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 
•  Align data structures to address boundaries 

CS6963 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Data Location Impacts Latency of 
Memory Access 

•  Registers  
–  Can load in current instruction cycle 

•  Constant or Texture Memory 
–  In cache? Single address can be loaded for half-

warp per cycle 
–  O/W, global memory access 

•  Global memory 
•  Shared memory 

–  Single cycle if accesses can be done in parallel 
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Introduction to Memory System 

•  Recall execution model for a multiprocessor 
– Scheduling unit: A “warp” of threads is issued 

at a time (32 threads in current chips) 
– Execution unit: Each cycle, 8 “cores” or SPs are 

executing (32 cores in a Fermi) 
– Memory unit: Memory system scans a “half 

warp” or 16 threads for data to be loaded; (full 
warp for Fermi) 
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Global Memory Accesses 

•  Each thread issues memory accesses to 
data types of varying sizes, perhaps as 
small as 1 byte entities 

•  Given an address to load or store, memory 
returns/updates “segments” of either 32 
bytes, 64 bytes or 128 bytes 

•  Maximizing bandwidth: 
– Operate on an entire 128 byte segment for 

each memory transfer 
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Understanding Global Memory Accesses 
Memory protocol for compute capability 1.2 and 
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1) 

•  Start with memory request by smallest numbered 
thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on data 
type) 

•  Find other active threads requesting addresses within 
that segment and coalesce 

•  Reduce transaction size if possible 
•  Access memory and mark threads as “inactive” 
•  Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms as well as new Linux machines! 

CS6963 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Protocol for most systems (including lab6 
machines) even more restrictive 

•  For compute capability 1.0 and 1.1 
– Threads must access the words in a 

segment in sequence 
– The kth thread must access the kth word 
– Alignment to the beginning of a segment 
becomes a very important optimization! 

CS6963 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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 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Consecutive 
threads will 
access different 
rows in memory. 

Each thread will 
require a different 
memory 
operation. 

Odd: But this is 
the RIGHT layout 
for a 
conventional 
multi-core! 
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Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, 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Each thread in a half-
warp (assuming rows 
of 16 elements) will 
access consecutive 
memory locations. 

GREAT!  All accesses  
are coalesced. 

With just a 4x4 block, 
we may need 4 
separate memory 
operations to load data 
for a half-warp. 
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How to find out compute capability 

See Appendix A.1 in NVIDIA CUDA Programming Guide to look up your device. 

Also, recall “deviceQuery” in SDK to learn about features of installed device. 

Older CADE machines are all Compute Capability 1.0 or 1.1. 

Linux lab, most CADE machines and Tesla cluster are Compute Capability 1.2 and 
1.3. 

Fermi machines are 2.x. 
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Alignment 

•  Addresses accessed within a half-warp 
may need to be aligned to the beginning 
of a segment to enable coalescing 
– An aligned memory address is a multiple of 

the memory segment size 
– In compute 1.0 and 1.1 devices, address 

accessed by lowest numbered thread must 
be aligned to beginning of segment for 
coalescing 

– In future systems, sometimes alignment 
can reduce number of accesses 

CS6963 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More on Alignment 

•  Objects allocated statically or by 
cudaMalloc begin at aligned addresses 
– But still need to think about index 

expressions  
•  May want to align structures 

struct __align__(8) {        struct __align__(16) {  
 float a;            float a; 
 float b;         float b;  
};            float c; 
                                                        };  

CS6963 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What Can You Do to Improve Bandwidth 
to Global Memory? 

•  Think about spatial reuse and access 
patterns across threads 
– May need a different computation & data 

partitioning 
– May want to rearrange data in shared 

memory, even if no temporal reuse 
(transpose example) 

– Similar issues, but much better in future 
hardware generations 

CS6963 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Bandwidth to Shared Memory: 
Parallel Memory Accesses 

•  Consider each thread accessing a 
different location in shared memory 

•  Bandwidth maximized if each one is able 
to proceed in parallel 

•  Hardware to support this 
– Banked memory: each bank can support an 

access on every memory cycle 

CS6963 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How addresses map to banks on G80 

•  Each bank has a bandwidth of 32 bits 
per clock cycle 

•  Successive 32-bit words are assigned to 
successive banks 

•  G80 has 16 banks 
–  So bank = address % 16 
–  Same as the size of a half-warp 

•  No bank conflicts between different half-
warps, only within a single half-warp 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of 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Shared memory bank conflicts 

•  Shared memory is as fast as registers if there are no 
bank conflicts 

•  The fast case: 
–  If all threads of a half-warp access different banks, there 

is no bank conflict 
–  If all threads of a half-warp access the identical address, 

there is no bank conflict (broadcast) 
•  The slow case: 

–  Bank Conflict: multiple threads in the same half-warp 
access the same bank 

–  Must serialize the accesses 
–  Cost = max # of simultaneous accesses to a single bank 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of 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Urbana‐Champaign 

Bank Addressing Examples 

•  No Bank Conflicts 
–  Linear addressing  

stride == 1 

•  No Bank Conflicts 
–  Random 1:1 Permutation 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of 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Urbana‐Champaign 

Bank Addressing Examples 

•  2-way Bank Conflicts 
–  Linear addressing  

stride == 2 

•  8-way Bank Conflicts 
–  Linear addressing  

stride == 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Putting It Together: Global Memory 
Coalescing and Bank Conflicts 

•  Let’s look at matrix transpose 
•  Simple goal: Replace A[i][j] with A[j][i] 
•  Any reuse of data? 
•  Do you think shared memory might be 

useful? 
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Matrix Transpose (from SDK) 
_global__ void transpose(float *odata, float *idata, int width, int height) 
{         

        // read the element 
        unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 
        unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 
        unsigned int index_in = yIndex * width + xIndex; 
        temp = idata[index_in]; 

        // write the transposed element to global memory 
        xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
        yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
        unsigned int index_out = yIndex * height + xIndex; 
        odata[index_out] = temp; 
} 

odata and idata in 
global memory 

CS6963 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Coalesced Matrix Transpose 
_global__ void transpose(float *odata, float *idata, int width, int height) 
{ 
        __shared__ float block[BLOCK_DIM][BLOCK_DIM]; 

        // read the matrix tile into shared memory 
        unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 
        unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 
        unsigned int index_in = yIndex * width + xIndex; 
        block[threadIdx.y][threadIdx.x] = idata[index_in]; 

        __syncthreads(); 

        // write the transposed matrix tile to global memory 
        xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
        yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
        unsigned int index_out = yIndex * height + xIndex; 
        odata[index_out] = block[threadIdx.x][threadIdx.y]; 
} 

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 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Optimized Matrix Transpose (from SDK) 
_global__ void transpose(float *odata, float *idata, int width, int height) 
{ 
        __shared__ float block[BLOCK_DIM][BLOCK_DIM+1]; 

        // read the matrix tile into shared memory 
        unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 
        unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 
        unsigned int index_in = yIndex * width + xIndex; 
        block[threadIdx.y][threadIdx.x] = idata[index_in]; 

        __syncthreads(); 

        // write the transposed matrix tile to global memory 
        xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
        yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
        unsigned int index_out = yIndex * height + xIndex; 
        odata[index_out] = block[threadIdx.x][threadIdx.y]; 
} 

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 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Further Optimization: Partition Camping 

•  A further optimization improves bank 
conflicts in global memory 
•  But has not proven that useful in codes with 

additional computation 

•  Map blocks to different parts of chips 
int bid = blockIdx.x + gridDim.x*blockIdx.y;  
by = bid%gridDim.y;   
bx = ((bid/gridDim.y)+by)%gridDim.x; 
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Performance Results for Matrix 
Transpose (GTX280) 
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SDK-prev: all optimizations other than partition camping 
CHiLL: generated by our compiler 
SDK-new: includes partition camping 
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Summary of Lecture 

•  Completion of bandwidth optimizations 
– Global memory coalescing 
– Alignment 
– Shared memory bank conflicts 
– “Partitioning camping” 

•  Matrix transpose example 

CS6963 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Next Time 

•  A look at correctness 
•  Synchronization mechanisms 
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