
1/31/11

1

L5: Memory Hierarchy Optimization III,
Data Placement, cont. and Memory

Bandwidth Optimizations

CS6963  1 L5: Memory Hierarchy, III 

Administrative

•  Next assignment available
–  Next four slides
–  Goals of assignment:

–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Tuesday, Feb. 8, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  L5: Memory Hierarchy, III  2 

Assigment: Signal Recognition
•  Definition:

–  Apply input signal (a vector) to a set of precomputed transform
matrices

–  Examine result to determine which of a collection of transform
matrices is closest to signal

–  Compute M1V, M2V, …, MnV
–  Revised formulation (for class purposes): compute MV1, MV2, …, MVn

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 

CS6963  L5: Memory Hierarchy, III 

Requirements:
•  Use global memory,
registers and shared memory
only (no constant memory)
•  Explore different ways of
laying out data
•  Explore different numbers of
blocks and threads
•  Be careful that formulation
is correct

3 

Assignment 2: What You Will Implement
We provide the sequential code. Your goal is to write two CUDA
versions of this code:

 (1) one that uses global memory
 (2) one that uses a combination of global memory and shared

memory
You'll time the code, but will not be graded on the actual
performance. Rather, your score will be based on whether you
produce two working versions of code, and the analysis of
tradeoffs.

For your two versions, you should try three different thread and
block decomposition strategies:

 (1) a small number of blocks and a large number of threads
 (2) a large number of blocks and fewer threads
(3) some intermediate point, or different number of dimensions
in the block/thread decomposition

L5: Memory Hierarchy, III  4 

1/31/11

2

Assignment 2: Analyzing the Results

You'll need to perform a series of experiments and report on
results. For each measurement, you should compute the average
execution time of five runs.

What insights can you gain from the performance measurements
and differences in behavior.

EXTRA CREDIT: Can you come up with a better implementation of
this code? You can use other memory structures, or simply vary
how much work is performed within a thread. How much faster is
it?

L5: Memory Hierarchy, III  5 

How to tell if results are correct
•  Parallel execution may involve reordering the updates to

memory locations
–  Recall “reduction” count6s from L1

•  Correct for commutative and associative operations
(addition in this case)
–  Is IEEE floating point associative? (not really)

•  Also, GPU and CPU arithmetic not always identically
implemented
•  Even completely independent operations may yield different

results when comparing CPU and GPU implementations
SO, we compare floating point values to a particular level of
error tolerance to determine correctness

 Example:
 CUTBoolean res = cutComparefe(d_P, h_P, Width*Width, 0.00001);

L5: Memory Hierarchy, III  6 

Overview of Lecture

•  Review: Tiling for computation partitioning
and fixed capacity storage

•  Review: More detailed derivation of matrix
multiply from text

•  Reading:
– Chapter 5, Kirk and Hwu book
– Or, http://courses.ece.illinois.edu/ece498/al/

textbook/Chapter4-CudaMemoryModel.pdf

CS6963  L5: Memory Hierarchy, III  7 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963  L5: Memory Hierarchy, III  8 

1/31/11

3

Tiling (Blocking):
Another Loop Reordering Transformation
•  Tiling reorders loop iterations to bring

iterations that reuse data closer in time

J 

I 

J 

I 

CS6963  L5: Memory Hierarchy, III  9 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] + B[j][i];

Permute
(Seq. view)

CS6963  L5: Memory Hierarchy, III  10 

CUDA Version of Example (Tiling for
Computation Partitioning)

L5: Memory Hierarchy, III  11 

Block
dimension
Thread
dimension
Loop within
Thread

for (ii=1; ii<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)
 for (j=1; j<N; j++)
 D[i] = D[i] +B[j][i]; 

…
<<<ComputeI(N/s,s)>>>(d_D, d_B, N);
…

__global__ ComputeI (float *d_D, float *d_B, int N) {
int ii = blockIdx.x;
int i = ii*s + threadIdx.x;
for (j=0; j<N; j++)

 d_D[i] = d_D[i] + d_B[j*N+i];
}

Textbook Shows Tiling for Limited
Capacity Shared Memory

•  Compute Matrix Multiply using shared
memory accesses

•  We’ll show how to derive it using tiling

L5: Memory Hierarchy, III  12 

1/31/11

4

L5: Memory Hierarchy, III 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix mulWplicaWon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  13  L5: Memory Hierarchy, III 

Tiled Matrix Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  14 

Tiling View (Simplified Code)

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }

L5: Memory Hierarchy, III  15 

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Let’s Look at This Code

L5: Memory Hierarchy, III  16 

for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Tile i

Tile j

Tile k (inside
thread)

1/31/11

5

Strip-Mined Code

L5: Memory Hierarchy, III  17 

for (int ii = 0; ii < Width; ii+=TI)
 for (int i=ii; i<ii*TI-1; i++)
 for (int jj=0; jj<Width; jj+=TJ)
 for (int j = jj; j < jj*TJ-1; j++) {
 double sum = 0;
 for (int kk = 0; kk < Width; kk+=TK) {

 for (int k = kk; k < kk*TK-1; k++)
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Block dimensions
Thread dimensions

To be used to stage data
in shared memory

Derivation of code in text

•  TI = TJ = TK = “TILE_WIDTH”
•  All matrices square, Width x Width
•  Copies of M and N in shared memory

–  TILE_WIDTH x TILE_WIDTH
•  “Linearized” 2-d array accesses:

 a[i][j] is equivalent to a[i*Row + j]
•  Each SM computes a “tile” of output matrix P from a block of

consecutive rows of M and a block of consecutive columns of N
–  dim3 Grid (Width/TILE_WIDTH, Width/TILE_WIDTH);
–  dim3 Block (TILE_WIDTH, TILE_WIDTH)

•  Then, location P[i][j] corresponds to
 P [by*TILE_WIDTH+ty] [bx*TILE_WIDTH+tx] or
 P[Row][Col]

L5: Memory Hierarchy, III  18 

Final Code (from text, p. 87)
__global__ void MatrixMulKernel (float *Md, float *Nd, float *Pd, int Width) {
1.  __shared__ float Mds [TILE_WIDTH] [TILE_WIDTH];
2.  __shared__ float Nds [TILE_WIDTH] [TILE_WIDTH];
3 & 4. int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y;
//Identify the row and column of the Pd element to work on
5 & 6. int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m=0; m < Width / TILE_WIDTH; ++m) {
// Collaborative (parallel) loading of Md and Nd tiles into shared memory
9. Mds [ty] [tx] = Md [Row*Width + (m*TILE_WIDTH + tx)];
10. Nds [ty] [tx] = Nd [(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads(); // make sure all threads have completed copy before calculation
12. for (int k = 0; k < TILE_WIDTH; ++k) // Update Pvalue for TKxTK tiles in Mds and Nds
13. Pvalue += Mds [ty] [k] * Nds [k] [tx];
14. __syncthreads(); // make sure calculation complete before copying next tile
 } // m loop
15. Pd [Row*Width + Col] = Pvalue;
}

L5: Memory Hierarchy, III  19  L5: Memory Hierarchy, III 

Performance

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480. 

20 

1/31/11

6

Matrix Multiply in CUDA

•  Imagine you want to compute extremely
large matrices.
– That don’t fit in global memory

•  This is where an additional level of tiling
could be used, between grids

CS6963  L5: Memory Hierarchy, III  21 

“Tiling” for Registers
•  A similar technique can be used to map data to

registers
•  Unroll-and-jam

•  Unroll outer loops in a nest and fuse together
resulting inner loops

•  Equivalent to “strip-mine” followed by permutation
and unrolling

•  Fusion safe if dependences are not reversed
•  Scalar replacement

–  May be followed by replacing array references
with scalar variables to help compiler identify
register opportunities

CS6963 
22

L5: Memory Hierarchy II 
L5: Memory Hierarchy, III 

L5: Memory Hierarchy, III   23 

Tiling inner loops I and K (+permutation)
for (K = 0; K<N; K+=TK)
 for (I = 0; I<N; I+=TI)

 for (J =0; J<N; J++)
 for (KK = K; KK<min(K+TK, N); KK++)
 for (II = I; II<min(I+ TI, N); II++)
 P[J][II] = P[J][II] + M[KK][II] * N[J][KK];

TI

C A B

TK

Unroll-and-jam for matrix multiply

L5: Memory Hierarchy, III   24 

Unroll II loop,TI = 4 (equiv. to
unroll&jam)

Now parallel computations are exposed
*

M

N
P

+

First, Apply Unroll-and-Jam

for (K = 0; K<N; K+=TK)
 for (I = 0; I<N; I+=4)

 for (J =0; J<N; J++)
 for (KK = K; KK<min(K+TK, N); KK++)
 P[J][II] = P[J][II] + M[KK][II] * N[J][KK];

 P[J][II+1] = P[J][II+1] + M[KK][II+1] * N[J][KK];
 P[J][II+2] = P[J][II+2] + M[KK][II+2] * N[J][KK];
 P[J][II+3] = P[J][II+3] + M[KK][II+3] * N[J][KK];

*
M

N
P

+ *
M

N
P

+ *
M

N
P

+

1/31/11

7

L5: Memory Hierarchy, III   25 

Scalar Replacement: Replace accesses to P with scalars

Now P accesses can be mapped to “named registers”

for (K = 0; K<N; K+=TK)
 for (I = 0; I<N; I+=4)

 for (J =0; J<N; J++) {
 P0 = P[J][I]; P1 = P[J][I+1]; P2 = P[J][I+2,J]; P3 = P[J][I+3];

 for (KK = K; KK<min(K+TK, N); KK++) {
 P0 = P0 + M[KK][II] * N[J][KK];

 P1 = P1 + M[KK][II+1] * N[J][KK];
 P2 = P2 + M[KK][II+2] * N[J][KK];
 P3 = P3 + M[KK][II+3] * N[J][KK];
 }
 P[J][I] = P0; P[J][I+1] = P1; P[J][I+2] = P2; P[J][I+3] = P3;
 }

Now can expose registers using scalar
replacement (or simply unroll kk loop)

Overview of Texture Memory
•  Recall, texture cache of read-only data
•  Special protocol for allocating and copying to GPU

–  texture<Type, Dim, ReadMode> texRef;
•  Dim: 1, 2 or 3D objects

•  Special protocol for accesses (macros)
–  tex2D(<name>,dim1,dim2);

•  In full glory can also apply functions to textures
•  Writing possible, but unsafe if followed by read in

same kernel

26
L5: Memory Hierarchy III 

CS6963 

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindFloat);
cudaArray* cu_array;
cudaMallocArray(&cu_array, &channelDesc, width, height);
cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear; tex.normalized = true;
cudaBindTextureToArray(tex,cu_array, channelDesc);
// execute the kernel
transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;

… = tex2D(tex,i,j);
27

L5: Memory Hierarchy III 
CS6963 

When to use Texture (and Surface) Memory

(From 5.3 of CUDA manual) Reading device memory through
texture or surface fetching present some benefits that can make
it an advantageous alternative to reading device memory from
global or constant memory:
•  If memory reads to global or constant memory will not be

coalesced, higher bandwidth can be achieved providing that
there is locality in the texture fetches or surface reads (this is
less likely for devices of compute capability 2.x given that global
memory reads are cached on these devices);

•  Addressing calculations are performed outside the kernel by
dedicated units;

•  Packed data may be broadcast to separate variables in a single
operation;

•  8-bit and 16-bit integer input data may be optionally converted
to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0]
(see Section 3.2.4.1.1).

L5: Memory Hierarchy, III  28 

1/31/11

8

Memory Bandwidth Optimization

•  Goal is to maximize utility of data for each data
transfer from global memory

•  Memory system will “coalesce” accesses for a
collection of consecutive threads if they are within an
aligned 128 byte portion of memory (from half-warp
or warp)

•  Implications for programming:
–  Desirable to have consecutive threads in tx

dimension accessing consecutive data in memory
–  Significant performance impact, but Fermi data

cache makes it slightly less important

L5: Memory Hierarchy, III  29 

Introduction to Global Memory Bandwidth:
Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

•  Find other active threads requesting addresses
within that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
CS6963 

30
L5: Memory Hierarchy II 

L5: Memory Hierarchy, III 

Protocol for most systems (including lab6
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word

CS6963  L5: Memory Hierarchy, III  31  L5: Memory Hierarchy, III 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

32
L5: Memory Hierarchy III 

1/31/11

9

L5: Memory Hierarchy, III 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

33
L5: Memory Hierarchy III 

Summary of Lecture

•  Tiling transformation
– For computation partitioning
– For limited capacity in shared memory
– For registers

•  Matrix multiply example
•  Unroll-and-jam for registers
•  Bandwidth optimization

– Global memory coalescing

CS6963  L5: Memory Hierarchy, III  34 

Next Time

•  Complete bandwidth optimizations
– Shared memory bank conflicts
– Bank conflicts in global memory (briefly)

CS6963  L5: Memory Hierarchy, III  35 

