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L5: Memory Hierarchy Optimization III, 
Data Placement, cont. and Memory 

Bandwidth Optimizations 
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Administrative 

•  Next assignment available 
–  Next four slides 
–  Goals of assignment:  

–  simple memory hierarchy management 
–  block-thread decomposition tradeoff 

–  Due Tuesday, Feb. 8, 5PM 
–  Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Mailing lists 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s1-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Assigment: Signal Recognition 
•  Definition:  

–  Apply input signal (a vector) to a set of precomputed transform 
matrices 

–  Examine result to determine which of a collection of transform 
matrices is closest to signal 

–  Compute M1V, M2V, …, MnV 
–  Revised formulation (for class purposes): compute MV1, MV2, …, MVn  

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 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Requirements:  
•  Use global memory, 
registers and shared memory 
only (no constant memory) 
•  Explore different  ways of 
laying out data 
•  Explore different numbers of 
blocks and threads 
•  Be careful that formulation 
is correct 
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Assignment 2: What You Will Implement 
We provide the sequential code. Your goal is to write two CUDA 
versions of this code: 

 (1) one that uses global memory 
 (2) one that uses a combination of global memory and shared 

memory 
You'll time the code, but will not be graded on the actual 
performance.  Rather, your score will be based on whether you 
produce two working versions of code, and the analysis of 
tradeoffs. 

For your two versions, you should try three different thread and 
block decomposition strategies: 

 (1) a small number of blocks and a large number of threads  
 (2) a large number of blocks and fewer threads 
(3) some intermediate point, or different number of dimensions 
in the block/thread decomposition 
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Assignment 2: Analyzing the Results 

You'll need to perform a series of experiments and report on 
results.  For each measurement, you should compute the average 
execution time of five runs.   

What insights can you gain from the performance measurements 
and differences in behavior. 

EXTRA CREDIT: Can you come up with a better implementation of 
this code?  You can use other memory structures, or simply vary 
how much work is performed within a thread.  How much faster is 
it? 
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How to tell if results are correct 
•  Parallel execution may involve reordering the updates to 

memory locations 
–  Recall “reduction” count6s from L1 

•  Correct for commutative and associative operations 
(addition in this case) 
–  Is IEEE floating point associative? (not really) 

•  Also, GPU and CPU arithmetic not always identically 
implemented 
•  Even completely independent operations may yield different 

results when comparing CPU and GPU implementations 
SO, we compare floating point values to a particular level of 
error tolerance to determine correctness 

 Example:  
 CUTBoolean res = cutComparefe( d_P, h_P, Width*Width, 0.00001);  
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Overview of Lecture 

•  Review: Tiling for computation partitioning 
and fixed capacity storage 

•  Review: More detailed derivation of matrix 
multiply from text 

•  Reading:  
– Chapter 5, Kirk and Hwu book 
– Or, http://courses.ece.illinois.edu/ece498/al/

textbook/Chapter4-CudaMemoryModel.pdf 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 
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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Tiling reorders loop iterations to bring 

iterations that reuse data closer in time 

J 

I 

J 

I 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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] + B[j][i]; 

Permute 
(Seq. view) 
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CUDA Version of Example (Tiling for 
Computation Partitioning) 
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Block  
dimension 
Thread  
dimension 
Loop within 
Thread 

for (ii=1; ii<N; ii+=s) 
for (i=ii; i<min(ii+s-1,N); i++) 
   for (j=1; j<N; j++) 
   D[i] = D[i] +B[j][i]; 

… 
<<<ComputeI(N/s,s)>>>(d_D, d_B, N); 
… 

__global__ ComputeI (float *d_D, float *d_B, int N) { 
int ii = blockIdx.x;  
int i = ii*s + threadIdx.x; 
for (j=0; j<N; j++) 

 d_D[i] = d_D[i] + d_B[j*N+i]; 
} 

Textbook Shows Tiling for Limited 
Capacity Shared Memory 

•  Compute Matrix Multiply using shared 
memory accesses 

•  We’ll show how to derive it using tiling 
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Matrix Multiplication 
A Simple Host Version in C 
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// Matrix mulWplicaWon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width) 
{    
    for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 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Tiled Matrix Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 
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Tiling View (Simplified Code) 

for (int i = 0; i < Width; ++i)  
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
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for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Let’s Look at This Code 
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for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Tile i 

Tile j 

Tile k (inside 
thread) 
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Strip-Mined Code 
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for (int ii = 0; ii < Width; ii+=TI)  
    for (int i=ii; i<ii*TI-1; i++) 
     for (int jj=0; jj<Width; jj+=TJ) 
        for (int j = jj; j < jj*TJ-1; j++) { 
            double sum = 0; 
          for (int kk = 0; kk < Width; kk+=TK) { 

    for (int k = kk; k < kk*TK-1; k++)  
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Block dimensions 
Thread dimensions 

To be used to stage data 
in shared memory 

Derivation of code in text 

•  TI = TJ = TK = “TILE_WIDTH” 
•  All matrices square, Width x Width 
•  Copies of M and N in shared memory  

–  TILE_WIDTH x TILE_WIDTH 
•  “Linearized” 2-d array accesses: 

   a[i][j] is equivalent to a[i*Row + j] 
•  Each SM computes a “tile” of output matrix P from a block of 

consecutive rows of M and a block of consecutive columns of N 
–  dim3 Grid (Width/TILE_WIDTH, Width/TILE_WIDTH);  
–  dim3 Block (TILE_WIDTH, TILE_WIDTH) 

•  Then, location P[i][j] corresponds to              
  P [by*TILE_WIDTH+ty] [bx*TILE_WIDTH+tx] or          
  P[Row][Col] 
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Final Code (from text, p. 87) 
__global__ void MatrixMulKernel (float *Md, float *Nd, float *Pd, int Width) { 
1.  __shared__ float Mds [TILE_WIDTH] [TILE_WIDTH]; 
2.  __shared__ float Nds [TILE_WIDTH] [TILE_WIDTH]; 
3 & 4.        int bx = blockIdx.x; int by = blockIdx.y;  int tx = threadIdx.x; int ty = threadIdx.y; 
//Identify the row and column of the Pd element to work on  
5 & 6.      int Row = by * TILE_WIDTH + ty;    int Col = bx * TILE_WIDTH + tx; 
7.            float Pvalue = 0; 
// Loop over the Md and Nd tiles required to compute the Pd element 
8.            for (int m=0; m < Width / TILE_WIDTH; ++m) { 
// Collaborative (parallel) loading of Md and Nd tiles into shared memory 
9.                Mds [ty] [tx] = Md [Row*Width + (m*TILE_WIDTH + tx)]; 
10.              Nds [ty] [tx] = Nd [(m*TILE_WIDTH + ty)*Width + Col]; 
11.              __syncthreads();                                    // make sure all threads have completed copy before calculation 
12.              for (int k = 0; k < TILE_WIDTH; ++k)     // Update Pvalue for TKxTK tiles in Mds and Nds 
13.                  Pvalue += Mds [ty] [k] * Nds [k] [tx]; 
14.              __syncthreads();                                   // make sure calculation complete before copying next tile 
               }  // m loop 
15.          Pd [Row*Width + Col]  =  Pvalue; 
} 
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Performance 

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480. 

20 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Matrix Multiply in CUDA 

•  Imagine you want to compute extremely 
large matrices. 
– That don’t fit in global memory 

•  This is where an additional level of tiling 
could be used, between grids  
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“Tiling” for Registers 
•  A similar technique can be used to map data to 

registers 
•  Unroll-and-jam 

•  Unroll outer loops in a nest and fuse together 
resulting inner loops 

•  Equivalent to “strip-mine” followed by permutation 
and unrolling 

•  Fusion safe if dependences are not reversed 
•  Scalar replacement 

–  May be followed by replacing array references 
with scalar variables to help compiler identify 
register opportunities 

CS6963 
22

L5: Memory Hierarchy II 
L5: Memory Hierarchy, III 

L5: Memory Hierarchy, III   23 

Tiling inner loops I and K (+permutation) 
for (K = 0; K<N; K+=TK) 
     for (I = 0; I<N; I+=TI) 

     for (J =0; J<N; J++) 
      for (KK = K; KK<min(K+TK, N); KK++) 
        for (II = I; II<min(I+ TI, N); II++) 
           P[J][II] = P[J][II] + M[KK][II] * N[J][KK]; 

TI 

C A B 

TK 

Unroll-and-jam for matrix multiply 
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Unroll II loop,TI = 4 (equiv. to 
unroll&jam) 

Now parallel computations are exposed 
* 

M 

N 
P 

+ 

First, Apply Unroll-and-Jam 

for (K = 0; K<N; K+=TK) 
     for (I = 0; I<N; I+=4) 

     for (J =0; J<N; J++) 
      for (KK = K; KK<min(K+TK, N); KK++) 
          P[J][II] = P[J][II] + M[KK][II] * N[J][KK]; 

                 P[J][II+1] = P[J][II+1] + M[KK][II+1] * N[J][KK]; 
                 P[J][II+2] = P[J][II+2] + M[KK][II+2] * N[J][KK]; 
                 P[J][II+3] = P[J][II+3] + M[KK][II+3] * N[J][KK]; 

* 
M 

N 
P 

+ * 
M 

N 
P 

+ * 
M 

N 
P 

+ 
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Scalar Replacement: Replace accesses to P with scalars 

Now P accesses can be mapped to “named registers” 

for (K = 0; K<N; K+=TK) 
     for (I = 0; I<N; I+=4) 

     for (J =0; J<N; J++) { 
             P0 = P[J][I]; P1 = P[J][I+1]; P2 = P[J][I+2,J]; P3 = P[J][I+3]; 

      for (KK = K; KK<min(K+TK, N); KK++) { 
          P0 = P0 + M[KK][II] * N[J][KK]; 

                 P1 = P1 + M[KK][II+1] * N[J][KK]; 
                 P2 = P2 + M[KK][II+2] * N[J][KK]; 
                 P3 = P3 + M[KK][II+3] * N[J][KK]; 
              } 
              P[J][I] = P0; P[J][I+1] = P1; P[J][I+2] = P2; P[J][I+3] = P3;         
         } 

Now can expose registers using scalar 
replacement (or simply unroll kk loop) 

Overview of Texture Memory 
•  Recall, texture cache of read-only data 
•  Special protocol for allocating and copying to GPU 

–  texture<Type, Dim, ReadMode> texRef;  
•  Dim: 1, 2 or 3D objects 

•  Special protocol for accesses (macros) 
–  tex2D(<name>,dim1,dim2); 

•  In full glory can also apply functions to textures 
•  Writing possible, but unsafe if followed by read in 

same kernel 

26
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Using Texture Memory (simpleTexture project 
from SDK) 

cudaMalloc( (void**) &d_data, size); 
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, 

cudaChannelFormatKindFloat); 
cudaArray* cu_array; 
cudaMallocArray( &cu_array, &channelDesc, width, height );  
cudaMemcpyToArray( cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice); 
// set texture parameters 
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;  
tex.filterMode = cudaFilterModeLinear; tex.normalized = true; 
cudaBindTextureToArray( tex,cu_array, channelDesc); 
// execute the kernel 
transformKernel<<< dimGrid, dimBlock, 0 >>>( d_data, width, height, angle); 

Kernel function:  
// declare texture reference for 2D float texture 
texture<float, 2, cudaReadModeElementType> tex; 

… = tex2D(tex,i,j); 
27
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When to use Texture (and Surface) Memory 

(From 5.3 of CUDA manual) Reading device memory through 
texture or surface fetching present some benefits that can make 
it an advantageous alternative to reading device memory from 
global or constant memory:  
•  If memory reads to global or constant memory will not be 

coalesced, higher bandwidth can be achieved providing that 
there is locality in the texture fetches or surface reads (this is 
less likely for devices of compute capability 2.x given that global 
memory reads are cached on these devices);  

•  Addressing calculations are performed outside the kernel by 
dedicated units;  

•  Packed data may be broadcast to separate variables in a single 
operation;  

•  8-bit and 16-bit integer input data may be optionally converted 
to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0] 
(see Section 3.2.4.1.1).  
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Memory Bandwidth Optimization 

•  Goal is to maximize utility of data for each data 
transfer from global memory 

•  Memory system will “coalesce” accesses for a 
collection of consecutive threads if they are within an 
aligned 128 byte portion of memory (from half-warp 
or warp) 

•  Implications for programming: 
–  Desirable to have consecutive threads in tx 

dimension accessing consecutive data in memory 
–  Significant performance impact, but Fermi data 

cache makes it slightly less important 
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Introduction to Global Memory Bandwidth:  
Understanding Global Memory Accesses 

Memory protocol for compute capability 
1.2* (CUDA Manual 5.1.2.1) 

•  Start with memory request by smallest numbered 
thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on 
data type) 

•  Find other active threads requesting addresses 
within that segment and coalesce 

•  Reduce transaction size if possible 
•  Access memory and mark threads as “inactive” 
•  Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms 
CS6963 

30
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Protocol for most systems (including lab6 
machines) even more restrictive 

•  For compute capability 1.0 and 1.1 
– Threads must access the words in a 

segment in sequence 
– The kth thread must access the kth word 
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M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 
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… 
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Summary of Lecture 

•  Tiling transformation 
– For computation partitioning 
– For limited capacity in shared memory 
– For registers 

•  Matrix multiply example 
•  Unroll-and-jam for registers 
•  Bandwidth optimization 

– Global memory coalescing 
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Next Time 

•  Complete bandwidth optimizations 
– Shared memory bank conflicts 
– Bank conflicts in global memory (briefly) 
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