
1/27/11

1

L4: Memory Hierarchy Optimization II,
Locality and Data Placement, cont.

CS6963  1 L4: Memory Hierarchy, II 

Administrative

•  Next assignment available
–  Next three slides
–  Goals of assignment:

–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Tuesday, Feb. 8, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  L4: Memory Hierarchy, II  2 

Assigment: Signal Recognition
•  Definition:

–  Apply input signal (a vector) to a set of precomputed transform
matrices

–  Examine result to determine which of a collection of transform
matrices is closest to signal

–  Compute M1V, M2V, …, MnV
–  Revised formulation (for class purposes): compute MV1, MV2, …, MVn

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 

CS6963  L4: Memory Hierarchy, II 

Requirements:
•  Use global memory,
registers and shared memory
only (no constant memory)
•  Explore different ways of
laying out data
•  Explore different numbers of
blocks and threads
•  Be careful that formulation
is correct

3 

Assignment 2: What You Will Implement
We provide the sequential code. Your goal is to write two CUDA
versions of this code:

 (1) one that uses global memory
 (2) one that uses a combination of global memory and shared

memory
You'll time the code, but will not be graded on the actual
performance. Rather, your score will be based on whether you
produce two working versions of code, and the analysis of
tradeoffs.

For your two versions, you should try three different thread and
block decomposition strategies:

 (1) a small number of blocks and a large number of threads
 (2) a large number of blocks and fewer threads
(3) some intermediate point, or different number of dimensions
in the block/thread decomposition

L4: Memory Hierarchy, II  4 

1/27/11

2

Assignment 2: Analyzing the Results

You'll need to perform a series of experiments and report on
results. For each measurement, you should compute the average
execution time of five runs.

What insights can you gain from the performance measurements
and differences in behavior.

EXTRA CREDIT: Can you come up with a better implementation of
this code? You can use other memory structures, or simply vary
how much work is performed within a thread. How much faster is
it?

L4: Memory Hierarchy, II  5 

Overview of Lecture

•  Review: Where data can be stored (summary)
•  And how to get it there

•  Review: Some guidelines for where to store data
–  Who needs to access it?
–  Read only vs. Read/Write
–  Footprint of data

•  Slightly more detailed description of how to write
code to optimize for memory hierarchy
–  More details next week

•  Reading:
–  Chapter 5, Kirk and Hwu book
–  Or, http://courses.ece.illinois.edu/ece498/al/

textbook/Chapter4-CudaMemoryModel.pdf

CS6963  L4: Memory Hierarchy, II  6 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963  L4: Memory Hierarchy, II  7 

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 

{ Today’s 
Lecture 

8 L4: Memory Hierarchy, II 

1/27/11

3

L4: Memory Hierarchy, II 

Hardware Implementation: Memory
Architecture

•  The local, global, constant, and
texture spaces are regions of
device memory (DRAM)

•  Each multiprocessor has:
–  A set of 32-bit registers per

processor
–  On-chip shared memory

•  Where the shared memory
space resides

–  A read-only constant cache
•  To speed up access to the

constant memory space
–  A read-only texture cache

•  To speed up access to the
texture memory space

•  NEW: surface memory can be
written, but unsafe within same
kernel

–  Data cache (Fermi only)
Global, constant, texture memories 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Device 

Mul*processor N 
Mul*processor 2 

Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Data Cache, Fermi only 

9 

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963  L4: Memory Hierarchy, II  10 

Data Placement: Conceptual
•  Copies from host to device go to some part of global memory

(possibly, constant or texture memory)
•  How to use SP shared memory

•  Must construct or be copied from global memory by kernel program
•  How to use constant or texture cache

–  Read-only “reused” data can be placed in constant & texture memory
by host

•  Also, how to use registers
–  Most locally-allocated data is placed directly in registers
–  Even array variables can use registers if compiler understands

access patterns
–  Can allocate “superwords” to registers, e.g., float4
–  Excessive use of registers will “spill” data to local memory

•  Local memory
–  Deals with capacity limitations of registers and shared memory
–  Eliminates worries about race conditions
–  … but SLOW

CS6963  L4: Memory Hierarchy, II  11 

Data Placement: Syntax

•  Through type qualifiers
–  __constant__, __shared__, __local__,

__device__
•  Through cudaMemcpy calls

–  Flavor of call and symbolic constant designate
where to copy

•  Implicit default behavior
–  Device memory without qualifier is global memory
–  Host by default copies to global memory
–  Thread-local variables go into registers unless

capacity exceeded, then local memory

CS6963  L4: Memory Hierarchy, II  12 

1/27/11

4

Recall: Shared Memory

•  Common Programming Pattern (5.1.2
of CUDA manual)
–  Load data into shared memory
–  Synchronize (if necessary)
–  Operate on data in shared memory
–  Synchronize (if necessary)
–  Write intermediate results to global

memory
–  Repeat until done

Shared 
memory 

Global memory 

CS6963  L4: Memory Hierarchy, II  13 

Mechanics of Using Shared Memory

•  __shared__ type qualifier required
•  Must be allocated from global/device

function, or as “extern”
•  Examples:

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocaion */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   // create or copy from global memory 
   d_s_array[j] = …; 
   //synchronize threads before use  
   __syncthreads(); 
   … = d_s_array[x]; // now can use any element 

 // more synchronizaion needed if updated 

   // may write result back to global memory  
   d_g_array[j] =  d_s_array[j]; 
}  

CS6963  L4: Memory Hierarchy, II  14 

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963  L4: Memory Hierarchy, II  15 

Temporal Reuse in Sequential Code

•  Same data used in distinct iterations I and
I’

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1]

• A[j] has self-temporal reuse in loop i

CS6963  L4: Memory Hierarchy, II  16 

1/27/11

5

Spatial Reuse (Ignore for now)

•  Same data transfer (usually cache line) used in
distinct iterations I and I’

·  A[j] has self-spatial reuse in loop j
•  Multi-dimensional array note: C arrays are

stored in row-major order

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963  L4: Memory Hierarchy, II  17 

Group Reuse

•  Same data used by distinct references

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in
loop j 

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963  L4: Memory Hierarchy, II  18 

Loop Permutation:
A Reordering Transformation

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 
19

L4: Memory Hierarchy I 

Safety of Permutation

•  Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)
 A[i+1][j-1]=A[i][j]

 +B[j]; 

CS6963 
20

L4: Memory Hierarchy I 

•  Intuition: Cannot permute two loops i and j in a loop
nest if doing so changes the relative order of a read
and write or two writes to the same memory location

1/27/11

6

Tiling (Blocking):
Another Loop Reordering Transformation
•  Tiling reorders loop iterations to bring

iterations that reuse data closer in time

J 

I 

J 

I 

CS6963  L4: Memory Hierarchy, II  21 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] + B[j][i];

Permute
(Seq. view)

CS6963  L4: Memory Hierarchy, II  22 

Legality of Tiling

•  Tiling is safe only if it does not change
the order in which memory locations are
read/written
– We’ll talk about correctness after memory

hierarchies
•  Tiling can conceptually be used to

perform the decomposition into threads
and blocks
– We’ll show this later, too

L4: Memory Hierarchy, II  23 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations
–  Between grids if total data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

–  Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still
exceeds shared memory capacity

CS6963  L4: Memory Hierarchy, II  24 

1/27/11

7

CUDA Version of Example (Tiling for
Computation Partitioning)

L4: Memory Hierarchy, II  25 

Block
dimension
Thread
dimension
Loop within
Thread

for (ii=1; ii<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)
 for (j=1; j<N; j++)
 D[i] = D[i] +B[j][i]; 

…
<<<ComputeI(N/s,s)>>>(d_D, d_B, N);
…

__global__ ComputeI (float *d_D, float *d_B, int N) {
int ii = blockIdx.x;
int i = ii*s + threadIdx.x;
for (j=0; j<N; j++)

 d_D[i] = d_D[i] + d_B[j*N+i];
}

Textbook Shows Tiling for Limited
Capacity Shared Memory

•  Compute Matrix Multiply using shared
memory accesses

•  We’ll show how to derive it using tiling

L4: Memory Hierarchy, II  26 

L4: Memory Hierarchy, II 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix muliplicaion on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  27  L4: Memory Hierarchy, II 

Tiled Matrix Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  28 

1/27/11

8

Tiling View (Simplified Code)

for (int i = 0; i < Width; ++i) ‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }

L4: Memory Hierarchy, II  29 

for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Let’s Look at This Code

L4: Memory Hierarchy, II  30 

for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Tile i

Tile j

Tile k (inside
thread)

Strip-Mined Code

L4: Memory Hierarchy, II  31 

for (int ii = 0; ii < Width; ii+=TI) ‏
 for (int i=ii; i<ii*TI-1; i++)
 for (int jj=0; jj<Width; jj+=TJ)
 for (int j = jj; j < jj*TJ-1; j++) {
 double sum = 0;
 for (int kk = 0; kk < Width; kk+=TK) {

 for (int k = kk; k < kk*TK-1; k++)
 sum += M[i][k] * N[k][j];
 }
 P[i][j] = sum;
 }

Block dimensions
Thread dimensions

L4: Memory Hierarchy, II 

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
 M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  32 

1/27/11

9

L4: Memory Hierarchy, II 

CUDA Code – Kernel Overview
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

 code from the next few slides };

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  33  L4: Memory Hierarchy, II 

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  34 

L4: Memory Hierarchy, II 

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  35  L4: Memory Hierarchy, II 

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480.  36 

1/27/11

10

Matrix Multiply in CUDA

•  Imagine you want to compute extremely
large matrices.
– That don’t fit in global memory

•  This is where an additional level of tiling
could be used, between grids

CS6963  L4: Memory Hierarchy, II  37 

Summary of Lecture

•  How to place data in shared memory
•  Introduction to Tiling transformation

– For computation partitioning
– For limited capacity in shared memory

•  Matrix multiply example

CS6963  L4: Memory Hierarchy, II  38 

Next Time

•  Complete this example
– Also, registers and texture memory

•  Reasoning about reuse and locality
•  Introduction to bandwidth optimization

CS6963  L4: Memory Hierarchy, II  39 

