
1/27/11 

1 

L4: Memory Hierarchy Optimization II, 
Locality and Data Placement, cont. 
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Administrative 

•  Next assignment available 
–  Next three slides 
–  Goals of assignment:  

–  simple memory hierarchy management 
–  block-thread decomposition tradeoff 

–  Due Tuesday, Feb. 8, 5PM 
–  Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Mailing lists 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s1-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Assigment: Signal Recognition 
•  Definition:  

–  Apply input signal (a vector) to a set of precomputed transform 
matrices 

–  Examine result to determine which of a collection of transform 
matrices is closest to signal 

–  Compute M1V, M2V, …, MnV 
–  Revised formulation (for class purposes): compute MV1, MV2, …, MVn  

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 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Requirements:  
•  Use global memory, 
registers and shared memory 
only (no constant memory) 
•  Explore different  ways of 
laying out data 
•  Explore different numbers of 
blocks and threads 
•  Be careful that formulation 
is correct 
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Assignment 2: What You Will Implement 
We provide the sequential code. Your goal is to write two CUDA 
versions of this code: 

 (1) one that uses global memory 
 (2) one that uses a combination of global memory and shared 

memory 
You'll time the code, but will not be graded on the actual 
performance.  Rather, your score will be based on whether you 
produce two working versions of code, and the analysis of 
tradeoffs. 

For your two versions, you should try three different thread and 
block decomposition strategies: 

 (1) a small number of blocks and a large number of threads  
 (2) a large number of blocks and fewer threads 
(3) some intermediate point, or different number of dimensions 
in the block/thread decomposition 
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Assignment 2: Analyzing the Results 

You'll need to perform a series of experiments and report on 
results.  For each measurement, you should compute the average 
execution time of five runs.   

What insights can you gain from the performance measurements 
and differences in behavior. 

EXTRA CREDIT: Can you come up with a better implementation of 
this code?  You can use other memory structures, or simply vary 
how much work is performed within a thread.  How much faster is 
it? 
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Overview of Lecture 

•  Review: Where data can be stored (summary) 
•  And how to get it there 

•  Review: Some guidelines for where to store data 
–  Who needs to access it? 
–  Read only vs. Read/Write 
–  Footprint of data 

•  Slightly more detailed description of how to write 
code to optimize for memory hierarchy 
–  More details next week 

•  Reading:  
–  Chapter 5, Kirk and Hwu book 
–  Or, http://courses.ece.illinois.edu/ece498/al/

textbook/Chapter4-CudaMemoryModel.pdf 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 

CS6963  L4: Memory Hierarchy, II  7 

Optimizing the Memory Hierarchy on 
GPUs, Overview 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 
•  Align data structures to address boundaries 

CS6963 

{ Today’s 
Lecture 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Hardware Implementation: Memory 
Architecture 

•  The local, global, constant, and 
texture spaces are regions of 
device memory (DRAM) 

•  Each multiprocessor has: 
–  A set of 32-bit registers per 

processor 
–  On-chip shared memory 

•  Where the shared memory 
space resides 

–  A read-only constant cache 
•  To speed up access to the 

constant memory space 
–  A read-only texture cache 

•  To speed up access to the 
texture memory space 

•  NEW: surface memory can be 
written, but unsafe within same 
kernel 

–  Data cache (Fermi only) 
Global, constant, texture memories 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University 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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Data Placement: Conceptual 
•  Copies from host to device go to some part of global memory 

(possibly, constant or texture memory) 
•  How to use SP shared memory 

•  Must construct or be copied from global memory by kernel program  
•  How to use constant or texture cache 

–  Read-only “reused” data can be placed in constant & texture memory 
by host 

•  Also, how to use registers 
–  Most locally-allocated data is placed directly in registers 
–  Even array variables can use registers if compiler understands 

access patterns 
–  Can allocate “superwords” to registers, e.g., float4 
–  Excessive use of registers will “spill” data to local memory 

•  Local memory  
–  Deals with capacity limitations of registers and shared memory 
–  Eliminates worries about race conditions 
–  … but SLOW 
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Data Placement: Syntax 

•  Through type qualifiers  
–  __constant__, __shared__, __local__, 

__device__ 
•  Through cudaMemcpy calls 

–  Flavor of call and symbolic constant designate 
where to copy 

•  Implicit default behavior 
–  Device memory without qualifier is global memory 
–  Host by default copies to global memory 
–  Thread-local variables go into registers unless 

capacity exceeded, then local memory 
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Recall: Shared Memory 

•  Common Programming Pattern (5.1.2 
of CUDA manual) 
–  Load data into shared memory 
–  Synchronize (if necessary) 
–  Operate on data in shared memory 
–  Synchronize (if necessary) 
–  Write intermediate results to global 

memory 
–  Repeat until done 

Shared 
memory 

Global memory 

CS6963  L4: Memory Hierarchy, II  13 

Mechanics of Using Shared Memory 

•  __shared__ type qualifier required 
•  Must be allocated from global/device 

function, or as “extern” 
•  Examples: 

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocaion */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   // create or copy from global memory 
   d_s_array[j] = …; 
   //synchronize threads before use  
   __syncthreads(); 
   … = d_s_array[x]; // now can use any element 

 // more synchronizaion needed if updated 

   // may write result back to global memory  
   d_g_array[j] =  d_s_array[j]; 
} 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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Temporal Reuse in Sequential Code 

•  Same data used in distinct iterations I and 
I’  

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1] 

• A[j] has self-temporal reuse in loop i 
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Spatial Reuse (Ignore for now) 

•  Same data transfer (usually cache line) used in 
distinct iterations  I and I’  

·  A[j] has self-spatial reuse in loop j 
•  Multi-dimensional array note: C arrays are 

stored in row-major order 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 
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Group Reuse 

•  Same data used by distinct references 

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in 
loop j 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 
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Loop Permutation: 
A Reordering Transformation 

for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

Which one is better for row-major storage? 

CS6963 
19
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Safety of Permutation 

•  Ok to permute? 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=0; j<6; j++) 
    A[i+1][j-1]=A[i][j] 

      +B[j]; 

CS6963 
20
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•  Intuition: Cannot permute two loops i and j in a loop 
nest if doing so changes the relative order of a read 
and write or two writes to the same memory location 
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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Tiling reorders loop iterations to bring 

iterations that reuse data closer in time 

J 

I 

J 

I 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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] + B[j][i]; 

Permute 
(Seq. view) 
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Legality of Tiling 

•  Tiling is safe only if it does not change 
the order in which memory locations are 
read/written 
– We’ll talk about correctness after memory 

hierarchies  
•  Tiling can conceptually be used to 

perform the decomposition into threads 
and blocks  
– We’ll show this later, too 
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A Few Words On Tiling 

•  Tiling can be used hierarchically to compute 
partial results on a block of data wherever there 
are capacity limitations 
–  Between grids if total data exceeds global memory 

capacity 
–  Across thread blocks if shared data exceeds shared 

memory capacity (also to partition computation across 
blocks and threads) 

–  Within threads if data in constant cache exceeds cache 
capacity  or data in registers exceeds register capacity 
or (as in example) data in shared memory for block still 
exceeds shared memory capacity 
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Memory 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CUDA Version of Example (Tiling for 
Computation Partitioning) 
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Block  
dimension 
Thread  
dimension 
Loop within 
Thread 

for (ii=1; ii<N; ii+=s) 
for (i=ii; i<min(ii+s-1,N); i++) 
   for (j=1; j<N; j++) 
   D[i] = D[i] +B[j][i]; 

… 
<<<ComputeI(N/s,s)>>>(d_D, d_B, N); 
… 

__global__ ComputeI (float *d_D, float *d_B, int N) { 
int ii = blockIdx.x;  
int i = ii*s + threadIdx.x; 
for (j=0; j<N; j++) 

 d_D[i] = d_D[i] + d_B[j*N+i]; 
} 

Textbook Shows Tiling for Limited 
Capacity Shared Memory 

•  Compute Matrix Multiply using shared 
memory accesses 

•  We’ll show how to derive it using tiling 
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Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix muliplicaion on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 

© David Kirk/NVIDIA and Wen‐mei W. 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Tiled Matrix Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 

M 

N 

P 

Psub 

BLOCK_SIZE 

WIDTH WIDTH 

BLOCK_SIZE BLOCK_SIZE 

bx 

tx 
01 bsize-1 2

0 1 2

by 
ty 

2
1
0

bsize-1 

2

1

0

B
L

O
C

K
_S

IZ
E

 
B

L
O

C
K

_S
IZ

E
 

B
L

O
C

K
_S

IZ
E

 

W
ID

T
H

 
W

ID
T

H
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Tiling View (Simplified Code) 

for (int i = 0; i < Width; ++i)  ‏
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
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for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Let’s Look at This Code 
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for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Tile i 

Tile j 

Tile k (inside 
thread) 

Strip-Mined Code 
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for (int ii = 0; ii < Width; ii+=TI)  ‏
    for (int i=ii; i<ii*TI-1; i++) 
     for (int jj=0; jj<Width; jj+=TJ) 
        for (int j = jj; j < jj*TJ-1; j++) { 
            double sum = 0; 
          for (int kk = 0; kk < Width; kk+=TK) { 

    for (int k = kk; k < kk*TK-1; k++)  
                sum += M[i][k] * N[k][j]; 
            } 
            P[i][j] = sum; 
        } 

Block dimensions 
Thread dimensions 
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CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
dim3 dimGrid(N.width  / dimBlock.x,  
      M.height / dimBlock.y); 

For very large N and M dimensions, one 
will need to add another level of blocking 

and execute the second-level blocks 
sequentially. 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, 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CUDA Code – Kernel Overview 
// Block index 
int bx = blockIdx.x; 
int by = blockIdx.y; 
// Thread index 
int tx = threadIdx.x; 
int ty = threadIdx.y; 

// Pvalue stores the element of the block sub-matrix 
// that is computed by the thread 
float Pvalue = 0; 

// Loop over all the sub-matrices of M and N 
// required to compute the block sub-matrix 
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) { 

 code from the next few slides }; 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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CUDA Code - Load Data to Shared 
Memory 

// Get a pointer to the current sub-matrix Msub of M 

Matrix Msub = GetSubMatrix(M, m, by); 

// Get a pointer to the current sub-matrix Nsub of N 

Matrix Nsub = GetSubMatrix(N, bx, m); 

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; 
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; 

// each thread loads one element of the sub-matrix 

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); 

// each thread loads one element of the sub-matrix 

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty); 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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CUDA Code - Compute Result 

// Synchronize to make sure the sub-matrices are loaded 
// before starting the computation 

__syncthreads(); 

// each thread computes one element of the block sub-matrix 

for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

// Synchronize to make sure that the preceding 
// computation is done before loading two new 
// sub-matrices of M and N in the next iteration 

__syncthreads(); 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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CUDA Code - Save Result 

// Get a pointer to the block sub-matrix of P 

Matrix Psub = GetSubMatrix(P, bx, by); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 

SetMatrixElement(Psub, tx, ty, Pvalue); 

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480.  36 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Matrix Multiply in CUDA 

•  Imagine you want to compute extremely 
large matrices. 
– That don’t fit in global memory 

•  This is where an additional level of tiling 
could be used, between grids  
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Summary of Lecture 

•  How to place data in shared memory 
•  Introduction to Tiling transformation 

– For computation partitioning 
– For limited capacity in shared memory 

•  Matrix multiply example 
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Next Time 

•  Complete this example 
– Also, registers and texture memory 

•  Reasoning about reuse and locality 
•  Introduction to bandwidth optimization 
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