
1/24/11

1

L3: Memory Hierarchy Optimization I,
Locality and Data Placement

CS6963  1 L3: Memory Hierarchy, 1 

Administrative

•  Next assignment coming on Wednesday
–  Preview (next slide)
–  Goals of assignment:

–  simple memory hierarchy management
–  block-thread decomposition tradeoff

–  Due Friday, Feb. 4, 5PM
–  Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s1-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  L3: Memory Hierarchy, 1 

Assigment: Signal Recognition
•  Definition:

–  Apply input signal (a vector) to a set of precomputed
transform matrices

–  Examine result to determine which of a collection of
transform matrices is closest to signal

–  Compute M1V, M2V, …, MnV

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 

CS6963  L3: Memory Hierarchy, 1 

Requirements:
•  Use global memory,
registers and shared memory
only (no constant memory)
•  Explore different ways of
laying out data
•  Explore different numbers of
blocks and threads
•  Be careful that formulation
is correct

Overview of Lecture

•  Complete scheduling example from last time
•  Where data can be stored

•  And how to get it there
•  Some guidelines for where to store data

–  Who needs to access it?
–  Read only vs. Read/Write
–  Footprint of data

•  High level description of how to write code to optimize for
memory hierarchy
–  More details Wednesday and next week

•  Reading:
–  Chapter 5, Kirk and Hwu book
–  Or, http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf

CS6963  L3: Memory Hierarchy, 1 

1/24/11

2

SM Warp Scheduling

•  SM hardware implements zero-
overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized scheduling
policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all threads
in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimum of 13 Warps are needed

to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

5 
From L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

SM Instruction Buffer – Warp Scheduling

•  Fetch one warp instruction/cycle
–  from instruction cache
–  into any instruction buffer slot

•  Issue one “ready-to-go” warp
instruction/cycle
–  from any warp - instruction buffer slot
–  operand scoreboarding used to prevent

hazards
•  Issue selection based on round-robin/

age of warp
•  SM broadcasts the same instruction to

32 Threads of a Warp

I $

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

6 
From L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Scoreboarding

•  How to determine if a thread is ready to
execute?

•  A scoreboard is a table in hardware that
tracks
–  instructions being fetched, issued, executed
–  resources (functional units and operands) they

need
– which instructions modify which registers

•  Old concept from CDC 6600 (1960s) to
separate memory and computation

CS6963  7 
From L2: Hardware Overview 

Scoreboarding
•  All register operands of all instructions in the

Instruction Buffer are scoreboarded
–  Status becomes ready after the needed values are

deposited
–  prevents hazards
–  cleared instructions are eligible for issue

•  Decoupled Memory/Processor pipelines
–  any thread can continue to issue instructions until

scoreboarding prevents issue
–  allows Memory/Processor ops to proceed in shadow of

Memory/Processor ops

8 
From L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

1/24/11

3

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc.on 

Instruc.on 
State 

Warp 1  42  Compueng 

Warp 3  95  Compueng 

Warp 8  11  Operands 
ready to go 

… 

Schedule
at time k

CS6963  9 
From L2: Hardware Overview 

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc.on 

Instruc.on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  Compueng 

Warp 8  11  Compueng 

… 

Schedule
at time k+1

CS6963  10 
From L2: Hardware Overview 

Details of Mapping
•  If #blocks in a grid exceeds number of SMs,

–  multiple blocks mapped to an SM
–  treated independently
–  provides more warps to scheduler so good as long as

resources not exceeded
–  Possibly stalls when scheduling across blocks

(registers and shared memory cannot support
multiple blocks)

CS6963  11 
From L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Transparent Scalability

•  Hardware is free to assigns blocks to
any processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

12 
L2: Hardware Overview 

1/24/11

4

Switching Gears: Targets of Memory
Hierarchy Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963  L3: Memory Hierarchy, 1 

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 

{ Today’s 
Lecture 

14 L3: Memory Hierarchy, 1 

L3: Memory Hierarchy, 1 

Hardware Implementation: Memory
Architecture

•  The local, global, constant, and
texture spaces are regions of
device memory (DRAM)

•  Each multiprocessor has:
–  A set of 32-bit registers per

processor
–  On-chip shared memory

•  Where the shared memory
space resides

–  A read-only constant cache
•  To speed up access to the

constant memory space
–  A read-only texture cache

•  To speed up access to the texture
memory space

–  Data cache (Fermi only)
Global, constant, texture memories 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Device 

Mul.processor N 
Mul.processor 2 

Mul.processor 1 

Device memory 

Shared Memory 

Instruc.on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Data Cache, Fermi only 

L3: Memory Hierarchy, 1 

Terminology Review

•  device = GPU = set of multiprocessors
•  Multiprocessor = set of processors & shared memory
•  Kernel = GPU program
•  Grid = array of thread blocks that execute a kernel
•  Thread block = group of SIMD threads that execute

a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

1/24/11

5

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963  L3: Memory Hierarchy, 1  L3: Memory Hierarchy, 1 

Access Times

•  Register – dedicated HW - single cycle
•  Constant and Texture caches – possibly single

cycle, proportional to addresses accessed by warp
•  Shared Memory – dedicated HW - single cycle if

no “bank conflicts”
•  Local Memory – DRAM, no cache - *slow*
•  Global Memory – DRAM, no cache - *slow*
•  Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
•  Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
•  Instruction Memory (invisible) – DRAM, cached

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Data Placement: Conceptual
•  Copies from host to device go to some part of global memory

(possibly, constant or texture memory)
•  How to use SP shared memory

•  Must construct or be copied from global memory by kernel program
•  How to use constant or texture cache

–  Read-only “reused” data can be placed in constant & texture memory
by host

•  Also, how to use registers
–  Most locally-allocated data is placed directly in registers
–  Even array variables can use registers if compiler understands

access patterns
–  Can allocate “superwords” to registers, e.g., float4
–  Excessive use of registers will “spill” data to local memory

•  Local memory
–  Deals with capacity limitations of registers and shared memory
–  Eliminates worries about race conditions
–  … but SLOW

CS6963  L3: Memory Hierarchy, 1 

Data Placement: Syntax

•  Through type qualifiers
–  __constant__, __shared__, __local__,

__device__
•  Through cudaMemcpy calls

–  Flavor of call and symbolic constant designate
where to copy

•  Implicit default behavior
–  Device memory without qualifier is global memory
–  Host by default copies to global memory
–  Thread-local variables go into registers unless

capacity exceeded, then local memory

CS6963  L3: Memory Hierarchy, 1 

1/24/11

6

L3: Memory Hierarchy, 1 

Language Extensions: Variable Type Qualifiers

•  __device__ is optional when used with
__local__, __shared__, or
__constant__

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  L3: Memory Hierarchy, 1 

Variable Type Restrictions

•  Pointers can only point to memory
allocated or declared in global memory:
– Allocated in the host and passed to the

kernel:
 __global__ void KernelFunc(float*
ptr)

– Obtained as the address of a global
variable: float* ptr = &GlobalVar;

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Rest of Today’s Lecture

•  Mechanics of how to place data in
shared memory and constant memory

•  Tiling transformation to reuse data
within
– Shared memory
– Constant cache
– Data cache (Fermi only)

L3: Memory Hierarchy, 1 © David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Constant Memory Example

•  Signal recognition example:
– Apply input signal (a vector) to a set of

precomputed transform matrices
– Compute M1V, M2V, …, MnV

__constant__ float d_signalVector[M]; 
__device__ float R[N][M]; 

__host__ void outerApplySignal () { 
    float *h_inputSignal; 
    dim3 dimGrid(N); 
    dim3 dimBlock(M); 
    cudaMemcpyToSymbol (d_signalVector, 
          h_inputSignal, M*sizeof(float)); 
   // input matrix is in d_mat 
   ApplySignal<<<dimGrid,dimBlock>>> 
       (d_mat, M); 
} 

__global__ void ApplySignal (float * d_mat,  
  int M) { 
    float result = 0.0; /* register */ 

    for (j=0; j<M; j++) 
        result += d_mat[blockIdx.x][threadIdx.x][j] * 
               d_signalVector[j]; 
    R[blockIdx.x][threadIdx.x] = result; 
} 

CS6963  L3: Memory Hierarchy, 1 

1/24/11

7

More on Constant Cache
•  Example from previous slide

– All threads in a block accessing same
element of signal vector

– Brought into cache for first access, then
latency equivalent to a register access

P0 
Instruceon 

Unit P!  PM‐1 

Reg 

... 
Reg  Reg 

Constant Cache 

LD signalVector[j] 

CS6963  L3: Memory Hierarchy, 1 

Additional Detail

•  Suppose each thread accesses different
data from constant memory on same
instruction
– Reuse across threads?

•  Consider capacity of constant cache and locality
•  Code transformation needed? (later in lecture)
•  Cache latency proportional to number of

accesses in a warp
– No reuse?

•  Should not be in constant memory.

CS6963  L3: Memory Hierarchy, 1 

Now Let’s Look at Shared Memory

•  Common Programming Pattern (5.1.2
of CUDA manual)
–  Load data into shared memory
–  Synchronize (if necessary)
–  Operate on data in shared memory
–  Synchronize (if necessary)
–  Write intermediate results to global

memory
–  Repeat until done

Shared 
memory 

Global memory 

CS6963  L3: Memory Hierarchy, 1 

Mechanics of Using Shared Memory

•  __shared__ type qualifier required
•  Must be allocated from global/device

function, or as “extern”
•  Examples:

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocaeon */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   // create or copy from global memory 
   d_s_array[j] = …; 
   //synchronize threads before use  
   __syncthreads(); 
   … = d_s_array[x]; // now can use any element 

 // more synchronizaeon needed if updated 

   // may write result back to global memory  
   d_g_array[j] =  d_s_array[j]; 
}  

CS6963  L3: Memory Hierarchy, 1 

1/24/11

8

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963  L3: Memory Hierarchy, 1 

Temporal Reuse in Sequential Code

•  Same data used in distinct iterations I and
I’

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1]

• A[j] has self-temporal reuse in loop i

CS6963  L3: Memory Hierarchy, 1 

Spatial Reuse (Ignore for now)

•  Same data transfer (usually cache line) used in
distinct iterations I and I’

·  A[j] has self-spatial reuse in loop j
•  Multi-dimensional array note: C arrays are

stored in row-major order

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963  L3: Memory Hierarchy, 1 

Group Reuse

•  Same data used by distinct references

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in
loop j 

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963  L3: Memory Hierarchy, 1 

1/24/11

9

Tiling (Blocking):
Another Loop Reordering Transformation
•  Tiling reorders loop iterations to bring

iterations that reuse data closer in time

J 

I 

J 

I 

CS6963  L3: Memory Hierarchy, 1 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] + B[j][i];

Permute

CS6963  L3: Memory Hierarchy, 1 

Legality of Tiling

•  Tiling is safe only if it does not change
the order in which memory locations are
read/written
– We’ll talk about correctness after memory

hierarchies
•  Tiling can conceptually be used to

perform the decomposition into threads
and blocks
– We’ll show this later, too

L3: Memory Hierarchy, 1  35 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations
–  Between grids if total data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

–  Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still
exceeds shared memory capacity

CS6963  L3: Memory Hierarchy, 1 

1/24/11

10

L3: Memory Hierarchy, 1 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix muleplicaeon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  L3: Memory Hierarchy, 1 

Tiled Matrix Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

L3: Memory Hierarchy, 1 

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
 M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

L3: Memory Hierarchy, 1 

CUDA Code – Kernel Overview
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

 code from the next few slides };

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

1/24/11

11

L3: Memory Hierarchy, 1 

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

L3: Memory Hierarchy, 1 

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

L3: Memory Hierarchy, 1 

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480. 

Matrix Multiply in CUDA

•  Imagine you want to compute extremely
large matrices.
– That don’t fit in global memory

•  This is where an additional level of tiling
could be used, between grids

CS6963  L3: Memory Hierarchy, 1 

1/24/11

12

Summary of Lecture

•  How to place data in constant memory
and shared memory

•  Introduction to Tiling transformation
•  Matrix multiply example

CS6963  L3: Memory Hierarchy, 1 

Next Time

•  Complete this example
– Also, registers and texture memory

•  Reasoning about reuse and locality
•  Introduction to bandwidth optimization

CS6963  L3: Memory Hierarchy, 1 

