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L3: Memory Hierarchy Optimization I, 
Locality and Data Placement 
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Administrative 

•  Next assignment coming on Wednesday 
–  Preview (next slide) 
–  Goals of assignment:  

–  simple memory hierarchy management 
–  block-thread decomposition tradeoff 

–  Due Friday, Feb. 4, 5PM 
–  Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Mailing lists 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s1-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Assigment: Signal Recognition 
•  Definition:  

–  Apply input signal (a vector) to a set of precomputed 
transform matrices 

–  Examine result to determine which of a collection of 
transform matrices is closest to signal 

–  Compute M1V, M2V, …, MnV 

ApplySignal (float * mat, float *signal, int M) { 
    float result = 0.0; /* register */ 

for (i=0; i<M; i++) { 
    for (j=0; j<M; j++) { 
        result[i] += mat[i][j] *signal[j]; 
} 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Requirements:  
•  Use global memory, 
registers and shared memory 
only (no constant memory) 
•  Explore different  ways of 
laying out data 
•  Explore different numbers of 
blocks and threads 
•  Be careful that formulation 
is correct 

Overview of Lecture 

•  Complete scheduling example from last time 
•  Where data can be stored 

•  And how to get it there 
•  Some guidelines for where to store data 

–  Who needs to access it? 
–  Read only vs. Read/Write 
–  Footprint of data 

•  High level description of how to write code to optimize for 
memory hierarchy 
–  More details Wednesday and next week 

•  Reading:  
–  Chapter 5, Kirk and Hwu book 
–  Or, http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf 
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SM Warp Scheduling 

•  SM hardware implements zero-
overhead Warp scheduling 
–  Warps whose next instruction has 

its operands ready for consumption 
are eligible for execution 

–  Eligible Warps are selected for 
execution on a prioritized scheduling 
policy 

–  All threads in a Warp execute the 
same instruction when selected 

•  4 clock cycles needed to dispatch 
the same instruction for all threads 
in a Warp in G80 
–  If one global memory access is 

needed for every 4 instructions 
–  A minimum of 13 Warps are needed 

to fully tolerate 200-cycle memory 
latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 
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SM Instruction Buffer – Warp Scheduling 

•  Fetch one warp instruction/cycle 
–  from instruction cache  
–  into any instruction buffer slot 

•  Issue one “ready-to-go” warp 
instruction/cycle 
–  from any warp - instruction buffer slot 
–  operand scoreboarding used to prevent 

hazards 
•  Issue selection based on round-robin/

age of warp 
•  SM broadcasts the same instruction to 

32 Threads of a Warp 

I $ 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 
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Scoreboarding 

•  How to determine if a thread is ready to 
execute? 

•  A scoreboard is a table in hardware that 
tracks 
–  instructions being fetched, issued, executed  
–  resources (functional units and operands) they 

need 
– which instructions modify which registers 

•  Old concept from CDC 6600 (1960s) to 
separate memory and computation 
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Scoreboarding 
•  All register operands of all instructions in the 

Instruction Buffer are scoreboarded 
–  Status becomes ready after the needed values are 

deposited 
–  prevents hazards 
–  cleared instructions are eligible for issue 

•  Decoupled Memory/Processor pipelines 
–  any thread can continue to issue instructions until 

scoreboarding prevents issue 
–  allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops 

8 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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc.on 

Instruc.on 
State 

Warp 1  42  Compueng 

Warp 3  95  Compueng 

Warp 8  11  Operands 
ready to go 

… 

Schedule 
at time k 
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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc.on 

Instruc.on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  Compueng 

Warp 8  11  Compueng 

… 

Schedule 
at time k+1 
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Details of Mapping 
•  If #blocks in a grid exceeds number of SMs,  

–  multiple blocks mapped to an SM 
–  treated independently 
–  provides more warps to scheduler so good as long as 

resources not exceeded 
–  Possibly stalls when scheduling across blocks 

(registers and shared memory cannot support 
multiple blocks) 

CS6963  11 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Transparent Scalability 

•  Hardware is free to assigns blocks to 
any processor at any time 
–  A kernel scales across any number of 

parallel processors 
Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative to other blocks.  

time 

12 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Switching Gears: Targets of Memory 
Hierarchy Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 
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Optimizing the Memory Hierarchy on 
GPUs, Overview 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 
•  Align data structures to address boundaries 

CS6963 

{ Today’s 
Lecture 

14 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Hardware Implementation: Memory 
Architecture 

•  The local, global, constant, and 
texture spaces are regions of 
device memory (DRAM) 

•  Each multiprocessor has: 
–  A set of 32-bit registers per 

processor 
–  On-chip shared memory 

•  Where the shared memory 
space resides 

–  A read-only constant cache 
•  To speed up access to the 

constant memory space 
–  A read-only texture cache 

•  To speed up access to the texture 
memory space 

–  Data cache (Fermi only) 
Global, constant, texture memories 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David 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and 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Device 

Mul.processor N 
Mul.processor 2 

Mul.processor 1 

Device memory 

Shared Memory 

Instruc.on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Data Cache, Fermi only 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Terminology Review 

•  device = GPU = set of multiprocessors  
•  Multiprocessor = set of processors & shared memory 
•  Kernel = GPU program 
•  Grid = array of thread blocks that execute a kernel 
•  Thread block = group of SIMD threads that execute 

a kernel and can communicate via shared memory 

Memory Location Cached Access Who 
Local Off-chip No Read/write One thread 
Shared On-chip N/A - resident Read/write All threads in a block 
Global Off-chip No Read/write All threads + host 
Constant Off-chip Yes Read All threads + host 
Texture Off-chip Yes Read All threads + host 
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David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Access Times 

•  Register – dedicated HW - single cycle 
•  Constant and Texture caches – possibly single 

cycle, proportional to addresses accessed by warp 
•  Shared Memory – dedicated HW - single cycle if 

no “bank conflicts” 
•  Local Memory – DRAM, no cache - *slow* 
•  Global Memory – DRAM, no cache - *slow* 
•  Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
•  Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
•  Instruction Memory (invisible) – DRAM, cached 
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David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 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Data Placement: Conceptual 
•  Copies from host to device go to some part of global memory 

(possibly, constant or texture memory) 
•  How to use SP shared memory 

•  Must construct or be copied from global memory by kernel program  
•  How to use constant or texture cache 

–  Read-only “reused” data can be placed in constant & texture memory 
by host 

•  Also, how to use registers 
–  Most locally-allocated data is placed directly in registers 
–  Even array variables can use registers if compiler understands 

access patterns 
–  Can allocate “superwords” to registers, e.g., float4 
–  Excessive use of registers will “spill” data to local memory 

•  Local memory  
–  Deals with capacity limitations of registers and shared memory 
–  Eliminates worries about race conditions 
–  … but SLOW 
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Data Placement: Syntax 

•  Through type qualifiers  
–  __constant__, __shared__, __local__, 

__device__ 
•  Through cudaMemcpy calls 

–  Flavor of call and symbolic constant designate 
where to copy 

•  Implicit default behavior 
–  Device memory without qualifier is global memory 
–  Host by default copies to global memory 
–  Thread-local variables go into registers unless 

capacity exceeded, then local memory 

CS6963  L3: Memory Hierarchy, 1 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Language Extensions: Variable Type Qualifiers 

•  __device__ is optional when used with 
__local__,  __shared__, or  
__constant__ 

Memory Scope Lifetime 
__device__ __local__    int LocalVar; local thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign  L3: Memory Hierarchy, 1 

Variable Type Restrictions 

•  Pointers can only point to memory 
allocated or declared in global memory: 
– Allocated in the host and passed to the 

kernel:  
 __global__ void KernelFunc(float* 
ptr) 

– Obtained as the address of a global 
variable: float* ptr = &GlobalVar; 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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Rest of Today’s Lecture 

•  Mechanics of how to place data in 
shared memory and constant memory 

•  Tiling transformation to reuse data 
within 
– Shared memory 
– Constant cache 
– Data cache (Fermi only) 

L3: Memory Hierarchy, 1 © David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 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Constant Memory Example 

•  Signal recognition example:  
– Apply input signal (a vector) to a set of 

precomputed transform matrices 
– Compute M1V, M2V, …, MnV 

__constant__ float d_signalVector[M]; 
__device__ float R[N][M]; 

__host__ void outerApplySignal () { 
    float *h_inputSignal; 
    dim3 dimGrid(N); 
    dim3 dimBlock(M); 
    cudaMemcpyToSymbol (d_signalVector, 
          h_inputSignal, M*sizeof(float)); 
   // input matrix is in d_mat 
   ApplySignal<<<dimGrid,dimBlock>>> 
       (d_mat, M); 
} 

__global__ void ApplySignal (float * d_mat,  
                                                    int M) { 
    float result = 0.0; /* register */ 

    for (j=0; j<M; j++) 
        result += d_mat[blockIdx.x][threadIdx.x][j] * 
               d_signalVector[j]; 
    R[blockIdx.x][threadIdx.x] = result; 
} 

CS6963  L3: Memory Hierarchy, 1 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More on Constant Cache 
•  Example from previous slide 

– All threads in a block accessing same 
element of signal vector 

– Brought into cache for first access, then 
latency equivalent to a register access  

P0 
Instruceon 

Unit P!  PM‐1 

Reg 

... 
Reg  Reg 

Constant Cache 

LD signalVector[j] 

CS6963 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Memory 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Additional Detail 

•  Suppose each thread accesses different 
data from constant memory on same 
instruction 
– Reuse across threads? 

•  Consider capacity of constant cache and locality 
•  Code transformation needed?  (later in lecture) 
•  Cache latency proportional to number of 

accesses in a warp 
– No reuse?   

•  Should not be in constant memory. 
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 L3: Memory Hierarchy, 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Now Let’s Look at Shared Memory 

•  Common Programming Pattern (5.1.2 
of CUDA manual) 
–  Load data into shared memory 
–  Synchronize (if necessary) 
–  Operate on data in shared memory 
–  Synchronize (if necessary) 
–  Write intermediate results to global 

memory 
–  Repeat until done 

Shared 
memory 

Global memory 

CS6963  L3: Memory Hierarchy, 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Mechanics of Using Shared Memory 

•  __shared__ type qualifier required 
•  Must be allocated from global/device 

function, or as “extern” 
•  Examples: 

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocaeon */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   // create or copy from global memory 
   d_s_array[j] = …; 
   //synchronize threads before use  
   __syncthreads(); 
   … = d_s_array[x]; // now can use any element 

 // more synchronizaeon needed if updated 

   // may write result back to global memory  
   d_g_array[j] =  d_s_array[j]; 
}  

CS6963  L3: Memory Hierarchy, 1 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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 

CS6963  L3: Memory Hierarchy, 1 

Temporal Reuse in Sequential Code 

•  Same data used in distinct iterations I and 
I’  

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1] 

• A[j] has self-temporal reuse in loop i 

CS6963  L3: Memory Hierarchy, 1 

Spatial Reuse (Ignore for now) 

•  Same data transfer (usually cache line) used in 
distinct iterations  I and I’  

·  A[j] has self-spatial reuse in loop j 
•  Multi-dimensional array note: C arrays are 

stored in row-major order 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 

CS6963  L3: Memory Hierarchy, 1 

Group Reuse 

•  Same data used by distinct references 

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in 
loop j 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 

CS6963  L3: Memory Hierarchy, 1 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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Tiling reorders loop iterations to bring 

iterations that reuse data closer in time 

J 

I 

J 

I 

CS6963  L3: Memory Hierarchy, 1 

Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] + B[j][i]; 

Permute 

CS6963  L3: Memory Hierarchy, 1 

Legality of Tiling 

•  Tiling is safe only if it does not change 
the order in which memory locations are 
read/written 
– We’ll talk about correctness after memory 

hierarchies  
•  Tiling can conceptually be used to 

perform the decomposition into threads 
and blocks  
– We’ll show this later, too 

L3: Memory Hierarchy, 1  35 

A Few Words On Tiling 

•  Tiling can be used hierarchically to compute 
partial results on a block of data wherever there 
are capacity limitations 
–  Between grids if total data exceeds global memory 

capacity 
–  Across thread blocks if shared data exceeds shared 

memory capacity (also to partition computation across 
blocks and threads) 

–  Within threads if data in constant cache exceeds cache 
capacity  or data in registers exceeds register capacity 
or (as in example) data in shared memory for block still 
exceeds shared memory capacity 

CS6963  L3: Memory Hierarchy, 1 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Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix muleplicaeon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 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Tiled Matrix Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 

M 

N 

P 

Psub 

BLOCK_SIZE 

WIDTH WIDTH 

BLOCK_SIZE BLOCK_SIZE 

bx 

tx 
01 bsize-1 2

0 1 2

by 
ty 

2
1
0

bsize-1 

2

1

0

B
L

O
C

K
_S

IZ
E

 
B

L
O

C
K

_S
IZ

E
 

B
L

O
C

K
_S

IZ
E

 

W
ID

T
H

 
W

ID
T

H
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CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
dim3 dimGrid(N.width  / dimBlock.x,  
      M.height / dimBlock.y); 

For very large N and M dimensions, one 
will need to add another level of blocking 

and execute the second-level blocks 
sequentially. 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

L3: Memory Hierarchy, 1 

CUDA Code – Kernel Overview 
// Block index 
int bx = blockIdx.x; 
int by = blockIdx.y; 
// Thread index 
int tx = threadIdx.x; 
int ty = threadIdx.y; 

// Pvalue stores the element of the block sub-matrix 
// that is computed by the thread 
float Pvalue = 0; 

// Loop over all the sub-matrices of M and N 
// required to compute the block sub-matrix 
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) { 

 code from the next few slides }; 
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CUDA Code - Load Data to Shared 
Memory 

// Get a pointer to the current sub-matrix Msub of M 

Matrix Msub = GetSubMatrix(M, m, by); 

// Get a pointer to the current sub-matrix Nsub of N 

Matrix Nsub = GetSubMatrix(N, bx, m); 

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; 
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; 

// each thread loads one element of the sub-matrix 

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); 

// each thread loads one element of the sub-matrix 

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty); 
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CUDA Code - Compute Result 

// Synchronize to make sure the sub-matrices are loaded 
// before starting the computation 

__syncthreads(); 

// each thread computes one element of the block sub-matrix 

for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

// Synchronize to make sure that the preceding 
// computation is done before loading two new 
// sub-matrices of M and N in the next iteration 

__syncthreads(); 
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CUDA Code - Save Result 

// Get a pointer to the block sub-matrix of P 

Matrix Psub = GetSubMatrix(P, bx, by); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 

SetMatrixElement(Psub, tx, ty, Pvalue); 

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 3.2 on 
C2050) yields just above 600 Gflops.  Higher on 
GTX480. 

Matrix Multiply in CUDA 

•  Imagine you want to compute extremely 
large matrices. 
– That don’t fit in global memory 

•  This is where an additional level of tiling 
could be used, between grids  
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Summary of Lecture 

•  How to place data in constant memory 
and shared memory 

•  Introduction to Tiling transformation 
•  Matrix multiply example 
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Next Time 

•  Complete this example 
– Also, registers and texture memory 

•  Reasoning about reuse and locality 
•  Introduction to bandwidth optimization 
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